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Abstract—Millimeter-wave (mm-wave) device-to-device (D2D)
communication is considered one of the most promising enabling
technologies to meet the demanding requirements of future
networks. Previous works on mm-wave D2D network analysis
mostly considered the case that all devices were equipped with
exactly the same number of antennas, whereas real networks
are more complicated due to the coexistence of diverse devices.
In this paper, we present a comprehensive investigation on the
interference characteristics and link performance in mm-wave
D2D networks where the concurrent transmission beams are
varying in width. First, we establish a general and tractable
framework for the target network with Nakagami fading and
directional beamforming. To fully characterize the interference,
we derive the mean and variance of the interference and then
provide an approximation of the interference distribution by a
mixture of the inverse gamma and the log-normal distributions.
More importantly, the coexistence of varied beamwidths renders
their interactions and thus the interference quite complicated and
sensitive to the antenna pattern, highlighting the significance of
adopting an accurate model for the antenna pattern. Second,
to show the impact of heterogeneous antenna arrays on the link
performance, we derive the signal-to-interference-plus-noise ratio
(SINR) and rate distributions of the typical receiver as well
as their asymptotics, bounds, and approximations to get deep
insights on the performance of the network.

Index Terms—Stochastic geometry; Poisson point process;
millimeter wave; D2D communication; interference distribution;
success probability; rate distribution.

I. INTRODUCTION

A. Motivation

The proliferation of high-speed multi-media applications
and high-end devices (e.g., smartphones, laptops, machine-to-
machine communication devices, etc.) exacerbates the demand
for high data rate services. According to the latest visual net-
work index (VNI) report from Cisco [2], the global mobile data
traffic will increase nearly sevenfold between 2016 and 2021,
reaching 49.0 exabytes per month by 2021, wherein more than
three-fourths will be video. The need for greater capacity, and
hence greater spectrum utilization, has very recently led to
the advent of device-to-device (D2D) communications in the
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millimeter wave (mm-wave) band to efficiently use the large
bandwidth (multiple gigahertz).

Millimeter wave communication and networking is con-
cerned with taking advantage of the vast amount of spectrum
available in the range of 30 to 300 GHz, which offers great
potential in achieving the 100x data rate increase. Moreover,
the very short wavelength makes it possible to adopt rela-
tively large antenna arrays in mobile terminals. Unlike the
conventional sub-6 GHz systems, mm-wave signals have been
confirmed to have some unique propagation characteristics,
such as the huge propagation losses and the susceptibility
to blockages [3]. Thus, on the one hand, beamforming is
generally employed to achieve substantial array gains and
synthesize highly directional beams; on the other hand, the
communication distance is relatively short, despite the beam-
forming.

In addition to mm-wave communication, D2D commu-
nication is another key enabler of next-generation wireless
networks that has recently received widespread attention, with
the goal of reducing the traffic load of base stations (BSs),
increasing the spectral efficiency, and improving the quality
of experience (QoE) at the cell-edge users [4–7]. From the
above discussions, mm-wave and beamforming can easily be
integrated with D2D communication for interference reduc-
tion and further improved spectrum utilization. However, this
emerging technology is still in its infancy, and it is unclear
what benefits and challenges it will bring. It is clear that
mm-wave D2D communication is more complicated than sub-
6 GHz D2D and mm-wave cellular communications. Firstly,
the narrow beam width of mm-wave and the relatively low
antenna height (compared with that of BSs) render the mm-
wave D2D communication even more vulnerable to blockages.
Secondly (and more importantly), different from the cellular
BSs that are usually equipped with homogeneous antenna
arrays (namely the same number of antennas), the devices
have their inherent diverse properties and random locations,
which means devices in the network cannot be expected to
be equipped with the same number of antennas and located
in a well-planned manner. In mm-wave networks, since the
signal and interference power are closely related to the an-
gles of departure/arrival (AoDs/AoAs) and transmission beam
widths, the heterogeneity of the antenna arrays yields more
complex interference environments and poses a challenge
for the performance analysis. Therefore, in this paper, we
will present a comprehensive investigation of the interference
characteristics and link performance for heterogeneous mm-
wave D2D networks and obtain useful insights for the further
development of mm-wave D2D communications.
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B. Related Work

Motivated by the mathematical flexibility of the Poisson
point process (PPP)-based abstraction, several researchers have
recently turned their attention to the study of the performance
of mm-wave networks with the aid of stochastic geometry
[8–13]. Because of the distinguishing features of mm-wave
networks, such as the propagation environment and the use of
highly directional antenna arrays at the transceivers, models
for networks operating in the sub-6 GHz band are not directly
applicable to analyze mm-wave networks. Thus, it is necessary
to develop a mathematical framework specifically tailored to
the salient features of mm-wave channels and transmission
schemes.

To maintain analytical tractability, the actual beamforming
patterns were usually approximated by a sectored model in
earlier work, i.e., the antenna pattern was simplified as a flat-
top pattern [9–12]. In essence, the flat-top antenna pattern
quantizes the continuously varying antenna array gains in
a binary manner. Although this significantly simplifies the
analytical results, the oversimplified pattern leads to devia-
tions from the actual performance [13]. The impact of this
deviation was reduced to a certain extent by the assumption of
homogeneous directional antenna arrays with exactly the same
number of antennas and antenna model at all nodes. Without
this assumption, the performance gap is even larger, as will be
revealed in this paper. In fact, with the rapid development of
radio access technologies, the network nodes can be expected
to be diverse in terms of the number of antennas, beamwidth,
and multi-antenna transmission schemes, especially for D2D
networks composed of different kinds of devices. For instance,
[14] proposed a hybrid antenna composed of two modules
(2 × 2 and 8 × 8 MIMO configurations) for future multi-
mode smartphone applications. Very recently, a multi-lobe
approximation for the actual antenna pattern was proposed
in [15], which is an extended version of the flat-top antenna
pattern from the binary version to an M-ary quantization.
Though a finer approximation is provided, the relationship
between the antenna pattern and the number of antennas
is not explicitly given, which means it is not possible to
characterize the effect of heterogeneity of antenna arrays on
the performance.

Although mm-wave devices offer several potential advan-
tages for D2D networks, there has been limited application
of stochastic geometry to study the potential performance
of mm-wave D2D networks incorporating key features of
the mm-wave band. The primary related works are [9] and
[13]: the former approximated the directional beamforming
by a sectored model with the assumption of homogeneous
antenna arrays and blockage effects but considered a finite
number of interferers in a finite network region; while the
latter proposed two more accurate antenna pattern models
with the same assumption in [9]. In contrast, our prior work
in [16] used stochastic geometry to provide a fine-grained
performance analysis of mm-wave D2D networks in terms of
the meta distribution, and it also considered the simplified flat-
top antenna pattern with uniform antenna array.

In summary, to the best of our knowledge, the effect

of the heterogeneity of the antenna arrays on the potential
performance of mm-wave D2D networks has not been studied
in conjunction with accurate approximations for the actual
antenna pattern. In this work, we will fill this gap with new
analytical results of the interference characteristics and SINR
performance in a stochastic geometry framework.

C. Contributions
The main objective of this paper is to carry out a compre-

hensive investigation on the impact of the node/device diver-
sity on the interference characteristics and link performance
in mm-wave D2D networks. The main contributions of this
work are summarized as follows.

• We first develop a tractable model and general mathemati-
cal framework with Nakagami fading for the performance
analysis in mm-wave D2D networks by using the K-tier
homogeneous independent Poisson point process (HIP)
model [17, Def. 2] to capture the node locations, and
different tiers correspond to different kinds of devices
that may differ in terms of the density, antenna array size,
transmit power, etc. The blockage effect is reflected by
a general LOS ball blockage model [18], and the cosine
antenna pattern [13], confirmed to be an accurate as well
as tractable approximation for the actual antenna pattern,
is adopted.

• To show the interference characteristics in the mm-
wave D2D network, we give closed-form expressions
for the mean and variance of the interference. Based on
the maximum likelihood estimation method, we further
provide an approximation for the interference distribution
by a mixture of the inverse gamma and the log-normal
distributions.

• Based on the general framework, analytical expressions
for the SINR and rate distributions of the mm-wave D2D
network are provided. To make the analytical results more
tractable for practical evaluation, two efficient approaches
are taken: one is to bound the performance, and the other
one is to get approximate performance results. Numerical
results show the tightness of the bound and the accuracy
of the approximations.

• With the highly tractable analytical results, the impacts
of the distinguishing mm-wave features, the coexistence
of devices with different number of antennas, and the
density of devices on each performance metric are inves-
tigated numerically. The results highlight the significance
of adopting an accurate model for the antenna pattern and
provide useful insights on how to efficiently operate D2D
communication in mm-wave bands.

D. Organization
The rest of the paper is organized as follows: Sec. II

introduces the system model with antenna pattern gain and
blockage effect. Sec. III derives the mean and variance of the
interference and provides an approximation of the interference
distribution. Sec. IV analyzes the SINR and rate distributions
as well as the impact of heterogeneous antenna arrays with
exact analytical results, asymptotics, bounds, and approxima-
tions, and Sec. V offers the concluding remarks.
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Fig. 1. A sample mm-wave D2D network where transmitters are modeled as
a PPP with two types of antenna arrays, i.e., N1 = 4 and N2 = 64. The
different beam lengths and widths correspond to the antenna gains of different
array sizes.

II. SYSTEM MODEL

A. Network Model

It is assumed that the transmitters belonging to the k-th
tier are distributed uniformly in the two-dimensional Euclidean
space R2 according to a homogeneous PPP Φk of density
λk, equipped with Nk antennas and operating at a constant
transmit power µk. For all j ̸= i, Φj and Φi are independent.
The ALOHA channel access scheme is adopted, i.e., in each
time slot, D2D transmitters in Φk independently transmit with
probability qk. Accordingly, the distribution of the devices in
mm-wave D2D networks is defined as Φ =

∪K
k=1 Φk with

density λ =
∑K

k=1 λk. Each transmitter is assumed to have a
dedicated receiver at distance r0 in a random orientation, i.e.,
the D2D users form a K-tier Poisson bipolar network [19, Def.
5.8]. Without loss of generality, we consider a receiver at the
origin that attempts to receive from an additional transmitter
located at (r0, 0). Due to Slivnyak’s theorem [19, Thm. 8.10],
this receiver becomes the typical receiver under expectation
over the (overall) PPP. To analyze the typical D2D receiver
belonging to the k-th tier, we further condition on that receiver
at the origin to belong to the k-th tier with parameters (such
as transmit power, number of antennas, etc.) chosen from that
tier. Fig. 1 gives an example of a two-tier mm-wave D2D
network with two types of transmitters differing in the number
of transmitting antennas.

B. Directional Beamforming Model

We assume that the transmitters belonging to k-th tier are
equipped with a uniform linear array (ULA) composed of Nk

antenna elements to perform directional beamforming and that
their corresponding receivers have a single antenna1. It is also
assumed that the transmitter knows the direction to the receiver
so that it can point its AoD at its receiver perfectly to obtain

1We make this assumption for analytical tractability. The generalization
to Nk antennas at the receiver is straightforward, by reforming the desired
and interfering signals with the receiving array gains and modifying the
mathematical derivation of the interference Laplace transform in Sec. IV.

the maximum power gain. For the k-th tier, the array gain
function of the actual antenna pattern is expressed as [20]

Gk,act(φ) =
sin2(πNkφ)

Nk sin
2(πφ)

, (1)

where φ = dt

ϱ cosϕ is the cosine direction corresponding to
the AoD ϕ of the transmit signal, which is termed as the
spatial AoD, with dt and ϱ representing the antenna spacing
and wavelength, respectively. dt is usually set to be half-
wavelength to enhance the directionality of the beam and avoid
grating lobes; φ is assumed to be uniformly distributed in
[−0.5, 0.5], and thus the spatial AoD from an interferer to the
typical receiver is also uniformly distributed in [−0.5, 0.5], as
proven in [13]. Although this function has a relatively simple
expression, it does not lend itself to further analysis due to the
sine functions in both the numerator and denominator.

Recently, an accurate approximation termed cosine antenna
pattern was proposed in [13], which is shown to constitute a
desirable trade-off between accuracy and tractability in the
performance analysis of mm-wave networks. This antenna
pattern approximation is based on the cosine function with
the antenna gain function (for the k-th tier)

Gk(φ) =

{
Nk cos

2
(
πNk

2 φ
)

if |φ| ≤ 1/Nk

0 otherwise,
(2)

For the commonly used flat-top antenna pattern, the array
gains within the half-power beamwidth (HPBW) are assumed
to be the maximum power gain, and the array gains corre-
sponding to the remaining AoDs are approximated to be the
first minor maximum gain of the actual antenna pattern. Thus,
the antenna gain function for the k-th tier can be approximately
expressed as

Gk,flat(φ) =

{
Gk,m if |φ| ≤ wk,m

Gk,s otherwise, (3)

where wk,m is chosen as the HPBW, i.e. Gk,act(wk,m) =
Nk/2, Gk,m = Nk and Gk,s = Gk,act

(
3

2Nk

)
. Although this

simple approximation is highly tractable, it causes significant
deviations from the actual performance, especially when there
are differences in the number of antennas among different
devices in the network. To cope with this inaccuracy, we
further consider a normalized flat-top antenna pattern with
the antenna gain function for the k-th tier as follows

Gk,norm(φ) =

{
Gk,m if |φ| ≤ wk,m
1−2wk,mGk,m

1−2wk,m
otherwise, (4)

where the side lobe gain is modified to make the integral of
antenna gain function over the range of the spatial AoD equal
to 1 (as in (1)).

Next, we compare the cosine antenna pattern, the non-
normalized and normalized flat-top antenna pattern, as well as
the actual antenna pattern. From the actual antenna pattern,
shown in Fig. 2, we can observe that the first side lobe
gain of N = 64 is within 1 dB of the main lobe gain of
N = 4 but restricted to quite a small range of AoDs, which
means the side lobe leakage causes high interference to other
devices in a very narrow range of directions. For the flat-
top pattern, the array gains corresponding to all the directions



4

0 0.05 0.1 0.15 0.2
−10

−5

0

5

10

15

20

Spatial AoD

A
rr

ay
 G

ai
n 

(d
B

)

 

 
Normalized Flat−top Antenna Pattern
Flat−top Antenna Pattern
Cosine Antenna Pattern
Actual Antenna Pattern

N = 4
N = 64

Fig. 2. Visualization of four different antenna patterns for N = 4 and N =
64.

outside the main lobe are assumed to be equal to the first side
lobe gain of the actual pattern. Obviously, this approximation
leads to deviation from the actual antenna pattern because it
exaggerates the effect of side lobe leakage. The larger the
number of antennas, the greater the deviations. It is even worse
for networks where different kinds of devices are likely to be
equipped with different numbers of antennas. Although the
side lobe gain of the normalized flat-top antenna pattern is
significantly reduced via the gain normalization, both the non-
normalized and normalized flat-top antenna patterns cannot
reflect the roll-off characteristics for the main lobe of the
actual pattern, which, however, is perfectly approximated by
the cosine antenna pattern.

To further illustrate the importance and necessity of adopt-
ing accurate approximations for the antenna pattern more
visually, we also compare the four antenna patterns in terms
of the link success probability P(SINR > θ) in Fig. 3,
where SINR is the signal-to-interference-plus-noise ratio, as
defined in Sec. II-D. Specifically, Fig. 3(a) compares the
performance of a device equipped with 4 antennas in a
single-tier and two-tier network, respectively. The single-tier
network is homogeneous, where all devices are equipped with
4 antennas, i.e., N = 4 and λ = 0.1; while the two-tier
network is heterogeneous, where devices equipped with 4 and
64 antennas coexist in a network with the same density, i.e.,
N1 = 4, N2 = 64 and λ = 0.1 (λ1 = λ2). It is seen that
both the cosine antenna pattern and the normalized antenna
pattern provide good approximations of the actual performance
in both networks. To be specific, the curves of cosine pattern
always provide an upper bound on that of the actual one while
the curves of the normalized flat-top pattern have intersection
points with that of the actual one. However, for the (non-
normalized) flat-top antenna pattern, due to the fatal yet faux
interference caused by the unsuitable modeling of the side
lobe gain, its performance approximation is obviously deviated
from the actual performance and the trend of the performance
change from one-tier to two-tier is even opposite to that of the
other three antenna patterns. These observations demonstrate
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Fig. 3. Comparisons of success probabilities using three different antenna
patterns in single-tier and two-tier networks, respectively. The network pa-
rameters are listed in Table I.

that the parameters for the flat-top pattern need to be carefully
chosen in order to approximate the actual antenna pattern
accurately.

In summary, both the cosine and the normalized flat-top
antenna patterns provide good approximations in terms of the
success probability. However, from the view of the antenna
pattern itself, the flat-top antenna pattern is inferior to the
cosine antenna pattern due to its binary quantization of the
array gains which cannot reflect the roll-off characteristics of
the main lobe well. The roll-off characteristics, in fact, is quite
critical for mm-wave communications. For example, when
beam misalignment is considered or when the angle of beam is
slightly adjusted to cause significantly less interference at the
nearby other receivers, the desired signal power may not be
the maximum power gain but some smaller gain on the roll-off
curve. Clearly, any flat-top pattern would be highly inaccurate
in such cases, while the cosine pattern would still do quite well
since its main lobe matches the actual one extremely well and
its first null is at the right angle. Thus, taking both accuracy
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TABLE I. Symbols and descriptions

Symbol Description Default value
K The number of tiers differ in antenna array size 3

Φi, λi The i-th tier mm-wave device PPP and density N/A, 0.1/m2

µi The transmit power for the i-th tier device 20 dB
Ni The number of antennas for the i-th tier device N/A
W mm-wave bandwidth 2GHz

r0 The link distance between D2D users 2m

d0 The parameter of bounded path loss law 1m

qi The transmit probability for the i-th tier device in each time slot 1

pL/pN The probability of a link being LOS/NLOS 0.2/0.8

αi,L/αi,N The path loss exponent of the LOS/NLOS link for the i-th tier device 2.5/4

Mi,L/Mi,N The Nakagami parameter of the LOS/NLOS link for the i-th tier device 4/2

R The radius of the generalized LOS ball 200m

θ The SINR threshold N/A

and tractability into consideration, the cosine antenna pattern
is adopted in the following analysis, which makes it possible
to investigate the impact of heterogeneous antenna arrays on
the interference environment and link performance.

C. Blockage and Propagation Model

The signal path can be either LOS/unblocked or
NLOS/blocked, each with a different path loss exponent.
The generalized LOS ball model [18] is adopted to capture
the blockage effect in mm-wave communication, which was
verified to be as accurate as the empirical 3GPP blockage
model by experiments in [8]. Specifically, the LOS probability
of the signal path between two nodes with separation d is

PLOS(d) = pL1(d < R), (5)

where 1(·) is the indicator function, R is the maximum length
of a LOS channel, and pL ∈ [0, 1] is the LOS probability if
d ≤ R. Let αk,L and αk,N denote the path loss exponents of
LOS and NLOS paths belonging to the k-th tier, respectively.
Typical values for mm-wave path loss exponents can be found
in [21] with approximated ranges of αk,L ∈ [1.9, 2.5] and
αk,N ∈ [2.5, 4.7].

D. Signal-to-interference-plus-noise Ratio (SINR)

We assume that the desired link between the transmitter-
receiver pair is in the LOS condition with deterministic path
loss r

−αk,L

0 given that the typical receiver belongs to the k-
th tier. In fact, if the receiver was associated with a NLOS
transmitter, the link would quite likely be in outage due to
the severe propagation loss and high noise power at mm-wave
bands as well as the fact that the interferers can be arbitrarily
close to the receiver. Different path loss exponents are applied
to the cases of LOS and NLOS paths. We denote by ℓk(x)
the random path loss function associated with the interfering
transmitter location x ∈ Φk, given by

ℓk(x) =

{
(max{d0, |x|})−αk,L w.p. PLOS(|x|)
(max{d0, |x|})−αk,N w.p. 1−PLOS(|x|),

(6)

where all ℓk(x)x∈Φk
are independent. In addition to the

distance-dependent path loss, we assume independent Nak-
agami fading for each path, which is a sensible model given

the LOS-dependent mm-wave scenarios. Different Nakagami
fading parameters Mk,L and Mk,N are assumed for LOS and
NLOS paths in the k-th tier, where Mk,L and Mk,N are positive
integers. The power fading coefficient between node x ∈ Φk

and the origin is denoted by hx, which follows a gamma
distribution Gamma(M, 1

M ) with M ∈ {Mk,L, Mk,N}, and
all hx are mutually independent and also independent of the
point process. For the typical receiver, the interferers outside
the LOS ball are NLOS and thus can be ignored due to the
severe path loss over the large distance (at least R). As a result,
the analysis for the network originally composed of multiple
PPPs reduces to the analysis of a finite network region, and the
relevant transmitters, denoted as Φ̂k, correspond to the PPP in
a disk of radius R centered at the origin. Based on this model,
the interference from tier k at the origin is

Ik =
∑

x∈Φ̂k

µkGk(φx)hxℓk(x)Bk(x), (7)

where Gk(φx) is the directional antenna gain function with
spatial AoD φx following Eq. (2), and Bk(x) is a Bernoulli
variable with parameter qk to indicate whether x transmits
a message to its receiver. Due to the incorporation of the
blockages, the LOS transmitters belonging to the k-th tier with
LOS propagation to the typical receiver form a PPP Φ̂k,L with
density pLλk, while Φ̂k,N with density pNλk is the transmitter
set with NLOS propagation, where pL + pN = 1 such that
Φ̂k = Φ̂k,L ∪ Φ̂k,N. Then, the interference from tier k can be
rewritten as

Ik = Ik,L + Ik,N

=
∑

s∈{L,N}

∑
x∈Φ̂k,s

µkGk(φx)hxℓk(x)Bk(x). (8)

Without loss of generality, the noise power is set to one.
Conditioning on that the typical receiver belongs to the k-
th tier, the corresponding receiver SINR, denoted as SINRk,
is then given by

SINRk,
Sk

1+
∑

i∈[K]

Ii
=

µkNkhx0r
−αk,L

0

1+
∑

i∈[K]

∑
x∈Φ̂i

µiGi(φx)hxℓi(x)Bi(x)
, (9)

where [K] , {1, 2, ...,K}.
The main symbols and parameters are summarized in Table

I with default values for the following numerical results.



6

III. ANALYSIS OF THE INTERFERENCE CHARACTERISTICS

In this section, we derive the mean and variance of the
interference for the mm-wave D2D networks and also provide
approximations of the interference distribution using a mix-
ture of the inverse gamma and log-normal distributions. The
mixture approximation will then be applied in the following
section to analyze the SINR and rate distributions.

A. The Mean and Variance of the Interference

Theorem 1. In the K-tier Poisson mm-wave D2D communi-
cation network, the mean interference is

E(I)=
∑
i∈[K]

πλiqiµi

∑
s∈{L,N}

ps(αi,sd
2−αi,s

0 −2R2−αi,s)

αi,s − 2
, (10)

and the variance of the interference is

V(I)=
∑
i∈[K]

3

2
πλiqiµ

2
iNi

∑
s∈{L,N}

ps
Mi,s+1

Mi,s

αi,sd
2−2αi,s

0 −R2−2αi,s

2(αi,s − 1)
.

(11)
Proof: See Appendix A.

Remark 1. The expression of the mean interference also
applies to general (non-Poisson) heterogeneous networks mod-
eled by multi-tier stationary point processes due to the linear-
ity of the expectation operator. It even holds with inter-tier
dependence.

Theorem 1 leads to some important observations: (1) The
mean interference of a multi-tier mm-wave D2D network is
independent of the size of the directional antenna array Ni,
i ∈ [K], because the spatial AoD of the interfering signal
relative to the typical receiver is randomly distributed and
thus the mean interference is constant after averaging over
all the directions; (2) Different from the mean, the variance
depends on the number of antennas in each tier; (3) Both
mean and variance of the interference are proportional to the
LOS probability. The intuition behind these observations is
that although a larger antenna array forms a narrower beam,
which significantly reduces the spread of the interference,
once a victim node is affected by this directional transmission
beam, the interference suffered is highly detrimental. Thus,
after averaging the interference from multiple tiers of trans-
mitters, the mean interference is constant and solely dependent
upon the propagation loss while the transmitter density is
kept constant. However, the introduction of the heterogeneous
antenna arrays has an obvious impact on the variance of
the interference, implying large spatial fluctuations of the
interference. This phenomenon demonstrates the impact of
heterogeneous antenna arrays on the interference distribution
and hence the individual link performance.

Fig. 4 illustrates the mean and variance of the aggregate
interference for different densities and transmit probabilities,
where K = 3, λ = 0.3, N1 = 4, N2 = 16, N3 = 64,
and the transmit power is set to 1. It is observed that both
mean and variance are proportional to the LOS probability
in the mm-wave propagation model. However, compared to
the node density and transmit probability, the LOS probability
has a much smaller effect on the variance of the interference.
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(b) λ1 = λ2 = λ3 = 0.1

Fig. 4. The mean and variance of the interference for different densities and
transmit probabilities, where K = 3, λ = 0.3, N1 = 4, N2 = 16, N3 = 64
and µk = 1, k ∈ [K].

Moreover, as shown in Fig. 4(a), due to the fixed λ and the
same transmit probability in each tier, the active transmitter
density

∑
i∈[K]

λiqi is fixed, thus the mean interference stays

the same though the densities in different tiers are configured
differently. In contrast, Fig. 4(b) considers the case that the
transmit probability in each tier is different, leading to the
variations of the active transmitter density. In this case, the
mean interference for different active transmitter densities is
no longer the same, which shows that the transmit probability
has an effect on the mean interference, as expected.

B. Approximation of the Interference Distribution

In previous works, three known probability density func-
tions (PDFs), namely the gamma distribution, the inverse
Gaussian distribution, and the inverse gamma distribution are
examined for modeling the interference distribution [22, 23].
Both the gamma and inverse Gaussian distributions are shown
to be suitable for Poisson point process networks while the
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inverse gamma distribution is shown to be suitable for Ginibre
point process networks, which exhibit repulsion. However,
due to the distinguishing channel characteristics of mm-wave
communications, such as the distance-dependent path loss with
different exponents for LOS and NLOS paths and the sensitiv-
ity to blockages leading to severe shadowing effects, the inter-
ference characteristics in mm-wave communication networks
are rather different from those in conventional networks. For
example, in mm-wave networks, we find that it is impossible
to use merely one standard PDF to fit the actual interference
distribution well since the blockage effect introduces a large
variation in the interference power and causes a medium to
heavy tail, as shown in Fig. 5. Therefore, in this paper, we
introduce a new interference power model—a mixture of the
inverse gamma and log-normal distributions—to capture the
interference characteristics in mm-wave D2D networks and
adopt maximum likelihood estimation (MLE) to estimate the
parameters of each of the two standard PDFs. A similar
mixture model was presented in [24], but with a mixture of
the inverse Gaussian and inverse Weibull distributions.

Specifically, the inverse gamma distribution and log-normal
distribution are, respectively, given as follows:

(1) Inverse gamma distribution:
fIG(x) = νax−a−1 exp(−ν/x)/Γ(a) with mean ν/(a− 1)

and variance ν2/((a− 1)2(a− 2));
(2) Log-normal distribution:
fLN(x)=

1
xδ

√
2π

exp
(
−(ln x−κ)2

2δ2

)
with mean exp(κ+δ2/2)

and variance (exp(δ2)− 1) exp(2κ+ δ2);
By combining the two distributions, we obtain the mixture

model: fMIX(x) = ζfIG(x) + (1 − ζ)fLN(x) with ζ ∈ [0, 1].
Here fMIX(x) has five unknown parameters, i.e., ν, a, κ, δ, ζ,
which can be obtained by using the mle function in Matlab
with the sample data from Monte Carlo simulations.

In Fig. 5, we have plotted the PDFs of the interference using
Monte Carlo simulation and the three fitted distributions using
MLE methods under different network parameter configura-
tions, where N1 = 4, N2 = 16, N3 = 64. For the single-
tier case, N = N1 = 16. Although both individual inverse
gamma distribution and log-normal distribution give good
fits for the interference distribution in sub-6 GHz networks
with Rayleigh fading, neither of them is suitable for the
approximation of the interference in mm-wave D2D networks
with Nakagami fading, whether in the conventional single-tier
case or the more general multi-tier case, shown in Fig. 5. The
main reason lies in the blockage effect in mm-wave bands,
namely the coexistence of different path loss characteristics for
LOS and NLOS propagations in mm-wave networks, distinct
from conventional networks. In contrast, our proposed mixture
distribution outperforms both the individual inverse gamma
and log-normal distributions, matching the actual interference
distribution extremely well in all three cases. This result aligns
with our expectation since the blockage effect causes the in-
terference in the mm-wave networks to be also a combination
of the interference from LOS and NLOS transmitters.

We can also see the fitting details of the three distributions
from Table II, where two comparisons are given: one is for
the mean and the variance between the MLE-based fitted PDFs
(see [23, Footnote 4] for a description of the MLE method) and
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Simulation Results

Inverse Gamma w. ν=0.21, a=1.26

LogNormal w. κ=−1.35, δ=1.17
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(a) Single-tier network with λ = 0.3.
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Simulation Results

Inverse Gamma w. ν=1.11, a=1.49

LogNormal w. κ =0.08, δ=1.00

LogNormal & Inverse Gamma w. ζ=0.71
       ν = 1.48, a=1.44, κ=−0.73, δ=0.38

(b) Three-tier network with λ = 0.3 and λi = λi+1.
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(c) Three-tier network with λ = 0.3 and λi = 5λi+1.

Fig. 5. Empirical PDF of the interference for the mm-wave D2D networks
and the corresponding fits.
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TABLE II. Details of interference fitting

Single-tier
Empirical InvGamma LogNormal Mix Model

Mean 0.80 0.80 0.52 0.82
Variance 6.7 N/A 0.79 12.1

Log-likelihood MLE −8.31×103 −2.31×104 −5.3×103

TMM −1.38×105 −3.15×104 N/A
Three-tier with λi = λi+1

Empirical InvGamma LogNormal Mix Model
Mean 2.42 2.29 1.80 2.56

Variance 139.6 N/A 5.7 N/A

Log-likelihood MLE −1.41×105 −1.51×105 −1.40×105

TMM −1.74×105 −1.84×105 N/A
Three-tier with λi = 5λi+1

Empirical InvGamma LogNormal Mix Model
Mean 2.40 2.62 2.26 2.40

Variance 16.7 N/A 5.32 20.0

Log-likelihood MLE −1.67×105 −1.71×105 −1.66×105

TMM −1.70×105 −1.97×105 N/A

the simulation results; the other is for the log-likelihood values
for the MLE and the so-called two-moment matching (TMM),
i.e., setting the mean and the variance of the known distribution
to be equal to that of the interference. Since the mixture
model has five unknown parameters, the TMM method is
unsuitable. Compared with the individual inverse gamma and
log-normal distributions, the mixture distribution provides not
only the closest approximation (the maximum log-likelihood)
to the interference distribution but also the closest variance and
similar mean, especially when diverse antenna arrays coexist in
a network (i.e., the heterogeneous cases). In addition, since the
mixture distribution is a weighted sum of two standard PDFs,
it is still very tractable though the complexity is increased
slightly.

IV. SINR AND RATE ANALYSIS OF GENERAL MM-WAVE
D2D NETWORKS

In this section, we first derive the exact results of the SINR
and rate distributions in the proposed model for a general mm-
wave D2D network with heterogeneous antenna arrays. Then
we use two different approaches to simplify the exact results
for more efficient calculations: one is to give upper bounds on
both the SINR and rate distributions; the other is to provide
accurate approximations for the exact results using the fitted
interference distribution in Sec. III-B.

A. SINR Distribution

We define the complementary cumulative distribution func-
tion (CCDF) of the SINR as

P (θ) = P(SINR > θ), (12)

where θ is target SINR threshold. In other works, (12) is
referred to as the link success probability [16, 25], which can
be thought of equivalently as the probability that the typical
user achieves a target SINR θ, or the fraction of users who
achieve an SINR of θ in any time slot in any realization of
the PPP.

As mentioned in Sec. II-D, we assume that the desired link
is in the LOS condition, i.e., r0 ≤ R. Our analytical framework

can be easily extended to the general case where the desired
signal link is either LOS or NLOS. Given that the desired
link is NLOS, the analytical procedure will be the same as
the LOS case we consider in this paper. And then, the overall
performance can be obtained by using the total probability
law, i.e., the SINR CCDF can be expressed as

P (θ) = PL(θ)pL + PN(θ)pN, (13)

where PL and PN are the conditional CCDFs on the event that
the desired link is LOS and NLOS, respectively.

Our first result in this section is an exact expression for
the success probability conditioning on the typical receiver
belonging to tier k.

Theorem 2. Letting ϵk =
Mk,Lr

αk,L
0

µkNk
, the link success prob-

ability of the typical active device belonging to the k-th tier
equipped with Nk antennas, denoted by Pk(θ), is given by

Pk(θ) =

Mk,L−1∑
m=0

(−u)m

m!
L(m)(u)|u=θϵk , (14)

where L(u) = exp(η(u)), the superscript ‘(m)’ stands for the
m-th derivative of L(u), and

η(u)=−u−
∑
i∈[K]

∑
s∈{L, N}

psλiqi
2

Ni

(
πR2

−
R∫
0

π
2∫

0

M
Mi,s

i,s 4rdxdr(
Mi,s+uµiNi cos2xmax{r, d0}−αi,s

)Mi,s

)
. (15)

L(m)(u) is given recursively by

L(m)(u) =
m−1∑
n=0

(
m−1

n

)
η(m−n)(u)L(n)(u), (16)

where the n-th derivative of η(u) follows

η(n)(u)=−1(n = 1)+
∑
i∈[K]

∑
s∈{L, N}

psλiqi
8Γ(Mi,s+n)M

Mi,s

i,s

NiΓ(Mi,s)
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×
R∫
0

π
2∫

0

(−µiNi cos
2 xmax{r, d0}−αi,s)nrdxdr(

Mi,s+uµiNi cos2 xmax{r, d0}−αi,s
)Mi,s+n

.(17)

Proof: See Appendix B.

From Theorem 2, we obtain a simple relationship between
the link success probabilities for different devices when the
fading model is the same in all tiers:

Corollary 1. When Mk,L = ML, k ∈ [K], letting Ak =
µkNk/r

αk,L

0 and

Pbase(θ) =

ML−1∑
m=0

(−u)m

m!
L(m)(u)|u=θML , (18)

we have Pk(θ) = Pbase(θ/Ak), which means the link success
probabilities for different kinds of devices can be characterized
by a horizontal shift (in dB) of the baseline curve (18).

The following corollary gives the asymptotic behavior of the
SINR distribution of the typical active receiver, which provides
a simple yet effective way to quantify how close the SINR
distributions are.

Corollary 2. For the typical active device equipped with
Nk antennas, the asymptotic behavior for the link success
probability is

Pk(θ) ∼ 1− θMk,L
(−ϵk)

Mk,L

Γ(Mk,L + 1)
L(Mk,L)(0), θ → 0. (19)

Proof: For the typical active device equipped with Nk

antennas, the link success probability Pk(θ) is expressed as

Pk(θ)= P

(
µkNkhx0

r
−αk,L

0

1 + I
> θ

)

= 1−E

[
γ̃

(
Mk,L, θϵk(1+I)

)]
∼ 1− 1

Γ(Mk,L)Mk,L
E
[(
θϵk(1+I)

)Mk,L
]
, θ→0

∼ 1−θMk,L
ϵ
Mk,L

k

Γ(Mk,L+1)
E
[
(1+I)Mk,L

]
, θ→0, (20)

where γ̃(x, y) = γ(x, y)/Γ(x) is the normalized lower incom-
plete gamma function, and

E
[
(1 + I)Mk,L

]
= (−1)Mk,LL(Mk,L)(u)|u=0. (21)

From (19), we know that the asymptote of the outage
probability for the k-th tier device is expressed as

1− Pk(θ) ∼ ξθMk,L , θ → 0, (22)

where Mk,L is the asymptotic slope and the pre-constant
ξ = (−ϵk)

Mk,L

Γ(Mk,L+1)L
(Mk,L)(0) characterizes the horizontal gap

between the SINR distributions for the devices in different tiers
if they have the same asymptotic slope Mk,L. Such horizontal
gaps quantify the effect of the parameters, such as the transmit
power, path loss exponent, antenna array size, etc., on the
SINR performance.

Note that both the two above corollaries characterize gaps
between SINR distributions: Corollary 1 is a shifting result for
all values of θ for the case when the Nakagami parameter is
the same in all tiers; while Corollary 2 gives an asymptotic
shifting result for arbitrary Nakagami parameters as θ → 0.

According to the proposed model, devices in different tiers
differ in the number of antennas and follow multiple mutually
independent homogeneous PPPs. Therefore, the total SINR
distribution of the mm-wave D2D network can be computed
using the law of total probability as follows.

Corollary 3. For the overall active user, the link success
probability is

P (θ) =
∑

k∈[K]

λkqk∑
i∈[K] λiqi

Pk(θ). (23)

Proof: Let us consider the point process of all active
receivers (those who have active transmitters) and focus on
the typical receiver of this point process. Based on Theorem
2, which gives the link success probability conditioned on
this typical receiver belonging to the k-th tier, the overall link
success probability is obtained as

P (θ) =
∑

k∈[K]

P(x ∈ Φ̂k)Pk(θ), (24)

where P(x ∈ Φ̂k) is the probability that the typical receiver
belongs to the k-th tier. Since P(x ∈ Φ̂k) =

λkqk∑
i∈[K] λiqi

, we
obtain (23).

Note that though the Laplace transform of the aggregate
interference can be easily evaluated by numerical integration,
the corresponding n-th derivative needs tedious and extensive
computations, which makes the exact calculation inefficient.
Thus, in the following two subsections, we will simplify
the exact results by means of bounding and approximating,
respectively.

1) Bounds on SINR Distribution: Using bounds of the
incomplete gamma functions, we obtain upper and lower
bounds for the link success probability as follows.

Theorem 3. Let βk = [Γ(1 +Mk,L)]
−1/Mk,L and

P̂k(θ) =

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1L(u)

∣∣
u=mθβkϵk

. (25)

For K-tier Poisson mm-wave D2D communication networks,
the link success probability of the active device belonging to
the k-th tier Pk(θ) is upper bounded by P̂k(θ), while a lower
bound on Pk(θ), denoted by P̌k(θ), is achieved by setting
βk = 1 in (25), i.e.,

P̌k(θ) =

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1L(u)

∣∣
u=mθϵk

. (26)

Proof: It is known from [26] that

1−[1−exp(−x)]M ≤ Γ̃(M,x) ≤ 1−[1−exp(−βx)]M , (27)

where β = [Γ(1+M)]−1/M , Γ̃(M,x) = Γ(M,x)/Γ(M), and
the equality holds only if M = 1. Based on this inequality,
the lower and upper bounds on the link success probability
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are obtained as follows. Letting βk = [Γ(1 +Mk,L)]
−1/Mk,L

and P̂k(θ) be the upper bound on Pk(θ), we have

P̂k(θ)=1−E
[(

1− exp
(
− θβkϵk(1 + I)

))Mk,L
]

=

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1E

[
exp

(
−mθβkϵk(1+I)

)]
=

Mk,L∑
m=1

(
Mk,L

m

)
(−1)m+1L(u)

∣∣
u=mθβkϵk

. (28)

By substituting (15) into (28), we obtain the upper bound
for the link success probability. From (27), the lower bound for
the link success probability P̌k(θ) is then obtained by setting
βk = 1 in (28).

Remark 2. Compared with the exact results for the SINR
distribution, both bounds give much simpler expressions with-
out requiring the derivatives for L(u) at u ̸= 0, where
L(u) is the product of multiple exponential functions with
integral expressions in the exponents. Thus the effort for the
computation of the SINR distribution is significantly reduced.

In order to provide a simple and rigorous quantitative result
on the tightness of the bounds, we also analyze the asymptotic
behavior of the lower and upper bounds as θ → 0 in the
following corollary.

Corollary 4. For the typical active device equipped with Nk

antennas, the asymptotic behavior for the bounds of the link
success probability is

P̂k(θ)∼ 1− θMk,L
(−ϵk)

Mk,L

Γ(Mk,L + 1)
L(Mk,L)(0), θ → 0,(29)

P̌k(θ)∼ 1− θMk,L(−ϵk)
Mk,LL(Mk,L)(0), θ → 0. (30)

Proof: For the typical active device equipped with Nk

antennas, the upper bound for the link success probability
P̂k(θ) is expressed as

P̂k(θ)= 1− E

[(
1− exp

(
− θβkϵk(1 + I)

))Mk,L
]

∼ 1− E
[(
θβkϵk(1 + I)

)Mk,L
]
, θ → 0

∼ 1− θMk,L(βkϵk)
Mk,LE(1 + I)Mk,L , θ → 0

∼ 1− θMk,L
(−ϵk)

Mk,L

Γ(Mk,L + 1)
L(Mk,L)(0), θ → 0. (31)

The asymptotic behavior of the lower bound P̌k(θ) is obtained
analogously by setting βk = 1.

Remark 3. The asymptotic behavior of the upper bound is the
same as that of the exact result, which validates the efficiency
and accuracy of the upper bound. Moreover, as θ → 0, the
asymptotic slope of log(1 − Pk(θ)) is the Nakagami fading
parameter Mk,L, and we have Pk(θ) ∼ P̂k(θ) ∼ P̌k(θ/ϑ)
where ϑ = Γ(Mk,L +1)1/Mk,L . These are validated in Fig. 6,
where the asymptotic slope is 4 since Mk,L = 4.

Similar to the exact results, we can obtain bounds for the
overall link success probability by Corollary 3.
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Fig. 6. The asymptotic SINR CDF for each tier with K = 3, Mk,L = 4,
k ∈ [K], N1 = 16, N2 = 64, and N3 = 256.

2) Approximation by Interference Distribution: Based on
the fitted interference distribution in Sec. III-B, we obtain an
approximation of the link success probability for the k-th tier,
given by

P̃k(θ) ,
∫ ∞

0

Γ̃
(
Mk,L, θϵk(1 + x)

)
fMIX(x)dx. (32)

P̃k(θ) is the approximative success probability since

Pk(θ)=E

[
Γ̃

(
Mk,L, θϵk(1 + I)

)]

=

∫ ∞

0

Γ̃
(
Mk,L, θϵk(1 + x)

)
fI(x)dx

≈
∫ ∞

0

Γ̃
(
Mk,L, θϵk(1 + x)

)
fMIX(x)dx

= P̃k(θ). (33)

Note that P̃k(θ) can be easily evaluated by numerical integra-
tion and thus significantly improves the evaluation efficiency
without calculating the derivatives once fMIX(x) is known.
Similar to the exact results, we can obtain the approximation
for the overall link success probability by Corollary 3.

Fig. 7 illustrates the link success probability as a function
of θ for different configurations of antenna arrays in a 3-
tier mm-wave D2D network. It can be seen that the upper
bound (25) derived for the success probability is tight and the
approximation using the fitted mixture model of interference
distribution matches extremely well. The lower bound (26),
though it is not very tight, the horizontal gap between the
bounds and the exact curve is nearly constant, with the upper
bound less than 0.5 dB and the lower bound about 2.2 dB
away. Moreover, it is also observed that the configuration with
larger antenna arrays performs better in terms of the link suc-
cess probability, since larger antenna arrays produce narrower
transmission beams, which limit the interference signal to a
certain direction, causing less interference to the receivers.
Comparing the curves corresponding to the combinations of
antenna arrays [4, 64, 256] and [16, 64, 256], there is a critical
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arrays with K = 3.

Fig. 8. The success probability for different LOS probabilities with
K = 3.
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Fig. 9. The success probability for different density ratios for K = 3. Fig. 10. Effect of transmit probability on link success probability for
K = 3.

point at θ = 10 dB, where the link success probability
with [4, 64, 256] is quite close to but smaller than that with
[16, 64, 256]. This is because when the SINR threshold is large,
the successful transmissions mostly occur at the transmitters
with larger antenna arrays (e.g., N3 = 256). In this case, the
desired signal between two cases is almost at the same level
while the interference suffered in the case of N = [4 64 256]
is more severe than that in the case of N = [16 64 256].

Fig. 8 shows the impact of the LOS probability pL on the
link success probability in a 3-tier mm-wave D2D network,
where N1 = 4, N2 = 16, and N3 = 64. It is observed
that the link success probability deteriorates with the increase
of pL. The reason is that a high LOS probability means
the propagation environment suffers from less blockage and,
accordingly, the interfering signals experience less propagation
loss than in the blocked case. As a result, the aggregate
interference at receivers will become more severe, thereby
decreasing the link success probability.

Fig. 9 shows the relationship between the density ratios
in different tiers and the link success probability in a 3-tier

mm-wave D2D network where λ = 0.3, N1 = 4, N2 = 16
and N3 = 64. We can see that the best performance in
the three cases is achieved when the tier with the largest
antenna array N3 = 64 is configured with the biggest density,
i.e., λ3 = 0.1. The reason is that larger antenna arrays can
form narrower beams, which usually give better desired signal
strength and cause less interference, and thus the overall
performance improves when more devices are configured with
larger antenna arrays.

Fig. 10 investigates the impact of the transmit probabilities
on the link success probability in a 3-tier mm-wave D2D
network where λ = 0.3, N1 = 4, N2 = 16 and N3 = 64.
It is seen that devices with a larger antenna array and transmit
probability can achieve better performance. Actually, since the
link success probability represents an average over all the
links in a single realization if the point process is ergodic,
it is determined by the active transmitter density λiqi in each
tier, where i ∈ [K]. Thus, keeping the density constant and
changing the transmit probability in each tier is equivalent to
keeping the transmit probability constant while changing the
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Fig. 11. Rate distribution for different numbers of tiers K. Fig. 12. 5% rates as a function of the overall density λ.

density in terms of the success probability given fixed overall
transmitter density.

B. Rate Distribution

In addition to the transmission reliability (i.e., the success
probability), the data rate, characterized by the rate distribution
T (τ) = P(T > τ), is another important performance metric
since it directly affects the perceived user experience. T
represents the (random) data rate per active user, in units of
either bits per second (bps) or bps/Hz if the bandwidth W
is normalized. According to the Shannon capacity formula
T = W log2(1 + SINR) and the SINR distribution derived in
the previous subsection, the rate distribution of the typical ac-
tive user belonging to the k-th tier can be computed straightfor-
wardly through P(W log2(1+SINRk) > τ) = Pk(2

τ/W −1).
Similar to the calculation of the overall SINR distribution in
(23), we obtain the rate distribution of the typical user as

T (τ) =
∑

k∈[K]

λkqk∑
i∈[K] λiqi

Pk(2
τ/W − 1). (34)

Then, bounds and an approximation of the rate distribution
can be obtained by replacing Pk(2

τ/W − 1) by P̂k(2
τ/W − 1)

and P̃k(2
τ/W − 1), respectively.

The rate distribution is shown in Fig. 11 for different
numbers of tiers, which, equivalently, can be explained as
different degrees of diversification in antenna arrays. For each
curve, the total density λ = 0.3, and the densities of different
tiers are equal if K > 1. The simulation and the fitted
approximation are based on the actual antenna pattern while
the bound is based on the cosine antenna pattern. It is observed
that the upper bound is tight for the simulation result and the
approximation using the fitted mixture model of interference
distribution matches well, which further verifies the effective-
ness of the cosine antenna pattern approximation in terms of
the rate distribution. In addition, with the gradual introduction
of devices equipped with large antenna arrays, e.g., from the
single-tier network composed of solely 4-antenna devices to
the three-tier network where devices equipped with 4, 16,
64 antennas coexist, the rate gain is significantly improved.

Specifically, we find that at least 70% and 85% of the users
achieve a rate of 1 Gbps after introducing the 16-antenna
and 64-antenna devices, respectively, which demonstrates the
advantages of the multi-antenna techniques for mm-wave D2D
communications.

Fig. 12 evaluates the performance of the devices achieving
the worst 5% rate with the increase of density λ, where we
define the 5% rate as the rate τ with T (τ) = 0.95. It is
shown that both the upper bound and the approximation match
the simulation result well. Moreover, the 5% rate decreases
sharply as the density start to increase and gently when
λ > 0.1. Since we focus on the point-to-point rate, increasing
the density means increasing the concurrent transmitters and
hence the aggregate interference in the network. For different
combinations of antenna arrays, the maximum density that
maintains the 5% rate at more than 1 Gbps is different,
where this 1 Gbps can be referred as a QoS requirement. For
N = [4, 64, 256], the maximum density under this requirement
is about 0.16 m−2 while for N = 4, it is less than 0.05 m−2.
These observations indicate the importance of adopting large
antenna arrays in mm-wave communications to drastically re-
duce the interference to those receivers most strongly affected
by the interference, but the overall density should be controlled
in a certain range (i.e., less than the maximum density given
a rate requirement).

V. CONCLUSIONS

In this paper, we proposed a general and tractable frame-
work for the performance analysis in mm-wave D2D network
where devices are diversified in their directional antenna
arrays. We first investigated the interactions between beams
formed by the transmitters with different numbers of antennas.
Interestingly, we found that the first side lobe gain of a
larger antenna array can be close to the main lobe gain of a
smaller one merely in a limited spatial direction. Considering
both accuracy and tractability, the cosine antenna pattern was
adopted as the antenna model. It turns out that the mean
interference is independent of the size of directional antenna
array while the variance is not; and both the mean and variance
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are proportional to the LOS probability. Using the maximum
likelihood estimation, we also provided approximations of the
interference distribution using the inverse gamma distribution,
the log-normal distribution and their combinations. Through
comparison with Monte Carlo simulations, we observed that
our proposed mixture model outperforms the individual inverse
gamma and log-normal distributions, matching the actual
interference extremely well.

Furthermore, using this framework, we derived the SINR
and rate distributions of the typical receiver. To improve
the evaluation efficiency, we also provided tight bounds and
approximations with good accuracy to simplify the exact
results. It was observed that the introduction of large antenna
arrays in mm-wave networks bring immense benefits in terms
of both reliability (success probability) and effectiveness (rate),
especially for the worst 5% users, which can not only improve
the desired signal but also significantly reduce the interference.

In summary, different from the existing works where all
the network nodes are equipped with the same antenna arrays,
more realistically, we focus on the heterogeneity of devices
in a mm-wave D2D network and analyze the impact of
directional antenna arrays on the performance, which provides
valuable engineering insights to help network operators deploy
D2D communication in mm-wave bands.

APPENDIX A
PROOF OF THEOREM 1

Proof: The aggregate interference of the typical receiver
is given by I =

∑
i∈[K]

Ii and we have E(I) =
∑

i∈[K]

E(Ii). The

mean interference from tier i is expressed as

E(Ii)= EΦ̂i

(
E
∑
x∈Φ̂i

µiGi(φx)hxℓi(x)Bi(x) | Φ̂i

)

= qiµiEΦ̂i

( ∑
x∈Φ̂i

ℓi(x)

)∫ 1
Ni

− 1
Ni

Ni cos
2
(πNi

2
φ
)
dφ

(a)
= qiµiλi

(
pL

∫
b(o,R)

(max{|x|, d0})−αi,Ldx

+pN

∫
b(o,R)

(max{|x|, d0})−αi,Ndx

)

= πλiqiµi

∑
s∈{L,N}

ps(αi,sd
2−αi,s

0 − 2R2−αi,s)

αi,s − 2
, (35)

where b(o,R) denotes the disk centered at the origin with
radius R and step (a) uses Campbell’s theorem [19, Thm.
4.1]. Therefore, the mean aggregate interference suffered by
the typical receiver is obtained by substituting (35) into
E(I) =

∑
i∈[K] E(Ii).

Due to the independence of the PPPs Φ̂i, i ∈ [K], and the
blockage model, the variance of the aggregate interference is

V(I) =
∑
i∈[K]

V(Ii) =
∑
i∈[K]

∑
s∈{L,N}

V(Ii,s). (36)

We first calculate the variance of the interference from the
LOS transmitters in the i-th tier, i.e., V(Ii,L), expressed as

V(Ii,L) = E[(Ii,L)2]− (EIi,L)2. (37)

The first term of (37) is given by

E[(Ii,L)2]=E
( ∑

x∈Φ̂i,L

µkGk(φx)hxℓk(x)Bk(x)

)2

=E

( ∑
x∈Φ̂i,L

(
µkGi(φx)hxℓi(x)Bi(x)

)2
+
∑

x,y∈Φ̂i,L

x ̸=y

µ2
kGk(φx)Gk(φy)hxhyℓi(x)ℓi(y)Bi(x)Bi(y)

)

(b)
=qiµ

2
i

Mi,L+1

Mi,L
EΦ̂i,L

∑
x∈Φ̂i,L

ℓ2i (x)

1
Ni∫

− 1
Ni

N2
i cos4

(πNi

2
φ
)
dφ

+p2iµ
2
iEΦ̂i,L

∑
x,y∈Φ̂i,L

x ̸=y

ℓi(x)ℓi(y)

(c)
=qiµ

2
i

Mi,L+1

Mi,L

3

4
Ni2πpLλi

R∫
0

(max{r, d0})−2αi,Lrdr

+p2iµ
2
i (2πpLλi)

2

R∫
0

R∫
0

(max{r1, d0})−αi,L

×(max{r2, d0})−αi,Lr1r2dr1dr2

=
3

2
qiµ

2
i

Mi,L+1

Mi,L
NiπpLλi

R∫
0

(max{r, d0})−2αi,Lrdr

+(EIi,L)2, (38)

where step (b) uses Eh2
x =

1+Mi,L

Mi,L
since hx follows the gamma

distribution Gamma(Mi,L,
1

Mi,L
), and step (c) follows from

Campbell’s theorem and the second-order product density [19,
Def. 6.4] of the PPP. As a result, we have

V(Ii,L)=
3

2
πNiqiλiµ

2
i

Mi,L+1

Mi,L
pL

αi,Ld
2−2αi,L

0 −R2−2αi,L

2(αi,L − 1)
.

(39)
Similarly, we derive the variance of the interference from the
NLOS transmitters in the i-th tier as

V(Ii,N)=
3

2
πNiqiλiµ

2
i

Mi,N+1

Mi,N
pN

αi,Nd
2−2αi,N

0 −R2−2αi,N

2(αi,N − 1)
.

(40)
and the variance of the aggregate interference is obtained by
substituting (39) and (40) into (36).

APPENDIX B
PROOF OF THEOREM 2

Proof: The link success probability of a device belonging
to the k-th tier, denoted by Pk(θ), is expressed as

Pk(θ) = P

(
µkNkhx0r

−αk,L

0

1 + I
> θ

)
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= E

[
Γ̃

(
Mk,L, θϵk(1 + I)

)]

=

Mk,L−1∑
m=0

E

[
e−θϵk(1+I) (θϵk(1 + I))m

m!

]

=

Mk,L−1∑
m=0

(−u)m

m!
L(m)(u)|u=θϵk

where Γ̃(x, y) = Γ(x, y)/Γ(x) is the normalized incomplete
gamma function, L(u) = E[e−u(I+1)] is the Laplace transform
of the interference and noise, and the superscript (m) stands
for the m-th derivative of L(u). Due to the independence of
the K tiers, we have

L(u) = e−u
∏

i∈[K]

∏
s∈{L, N}

LIi,s(u), (41)

where LIi,s(u) follows as

LIi,s(u) =E

[
exp

(
−u
∑

x∈Φ̂i,s

µiGi(φx)hxℓi(x)Bi(x)
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=E
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(
qi(

1+ uµi

Mi,s
Gi(φx)ℓi(x)

)Mi,s
+ 1−qi

)]

=EΦ̂i,s

[ ∏
x∈Φ̂i,s

( 1
Ni∫

− 1
Ni

qidφ(
1+ uµiNi

Mi,s
cos2

(
πNi

2 φ
)
ℓi(x)
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+1− 2qi
Ni
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= exp
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−psλiqi

2

Ni
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−
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π
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.(42)

Letting

η(u) =−u−
∑
i∈[K]

∑
s∈{L, N}

psλiqi
2

Ni

(
πR2

−
R∫
0

π
2∫

0

M
Mi,s

i,s 4rdxdr(
Mi,s+uµiNi cos2 xmax{r, d0}−αi,s

)Mi,s

)
, (43)

we have L(u) = exp(η(u)). Since L(1)(u) = η(1)(u)L(u),
L(m)(u) can be calculated recursively according to the formula
of Leibniz for the higher-order derivative of the product of two
functions, given by

L(m)(u) =
dm−1

du
L(1)(u) =

m−1∑
n=0

(
m−1

n

)
η(m−n)(u)L(n)(u),

(44)
where the n-th derivative of η(u) follows as

η(n)(u)=−1(n = 1)+
∑
i∈[K]

∑
s∈{L, N}

psλiqi
8Γ(Mi,s+n)M

Mi,s

i,s

NiΓ(Mi,s)

×
R∫
0

π
2∫

0

(−µiNi cos
2 xmax{r, d0}−αi,s)nrdxdr(

Mi,s+uµiNi cos2 xmax{r, d0}−αi,s
)Mi,s+n

. (45)
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