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Abstract—This paper develops a stochastic geometry-based
approach for the modeling and analysis of single- and multi-
cluster wireless networks. We first define finite homogeneous
Poisson point processes to model the number and locations of
the transmitters in a confined region as a single-cluster wireless
network. We study the coverage probability for a reference
receiver for two strategies; closest-selection, where the receiver
is served by the closest transmitter among all transmitters, and
uniform-selection, where the serving transmitter is selected ran-
domly with uniform distribution. Second, using Matern cluster
processes, we extend our model and analysis to multi-cluster
wireless networks. Here, two types of receivers are modeled,
namely closed- and open-access receivers. Closed-access receivers
are distributed around the cluster centers of the transmitters
according to a symmetric normal distribution and can be served
only by the transmitters of their corresponding clusters. Open-
access receivers, on the other hand, are placed independently of
the transmitters and can be served by all transmitters. In all
cases, the link distance distribution and the Laplace transform
(LT) of the interference are derived. We also derive closed-form
lower bounds on the LT of the interference for single-cluster
wireless networks. The impact of different parameters on the
performance is also investigated.

Index Terms—Stochastic geometry, clustered wireless net-
works, Poisson point process, Matern cluster process.

I. INTRODUCTION

Single-cluster wireless networks are composed of a num-
ber of nodes distributed inside a finite region. This spatial
setup is an appropriate model for, e.g., various millimeter
wave communications use-case scenarios, indoor and ad hoc
networks, as promising candidate technologies for the next
generation of wireless networks [2]-[3]. This setup is also
useful in situations where there is a range limit for backhaul
links in connecting transmitters to a core network, e.g., cloud
radio access networks [4]. On the other hand, the increasing
randomness and irregularity in the locations of nodes in a
wireless network has led to a growing interest in the use of
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stochastic geometry and Poisson point processes (PPPs) for
accurate, flexible, and tractable spatial modeling and analysis
[5]-[10].

In comparison to wireless networks on infinite regions
that are mostly modeled by the infinite homogeneous PPP
(HPPP) [11, Def. 2.8], the modeling and performance analysis
of single-cluster wireless networks is more challenging and
requires different approaches. The main challenge is that a
finite point process is not statistically similar from different
locations, and therefore, the system performance depends
on the receiver location even after averaging over the point
process.

The stochastic geometry-based modeling and analysis of
single-cluster wireless networks modeled as a binomial point
process (BPP) [11, Def. 2.11] has been well studied [12]-[22].
In the BPP model, a fixed and finite number of nodes are
distributed independently and uniformly inside a finite region.
Most prior works focus on a setup where the reference receiver
is placed at the center of a circular network region [12]-[16].
Also considering a circular region, [17] has recently developed
a comprehensive framework for the performance characteri-
zations of an arbitrarily-located reference receiver inside the
region under different transmitter selection strategies. Con-
sidering transmitters at a non-zero fixed altitude, disk-shaped
networks of unmanned aerial vehicles are analyzed in [18].
There are also a few studies that present outage probability
characterizations of a fixed link inside an arbitrarily-shaped
finite region [19]-[22].

In spite of the usefulness of HPPP for modeling and analysis
of coverage-centric and uniform deployments of nodes [5]-
[11], it cannot accurately model user-centric and content-
centric deployments, where the nodes may be deployed at
places with high user density [23]-[26]. In such deployments,
it is important to take into account non-uniformity as well
as the correlation that may exist between the locations of the
transmitters and receivers. Accordingly, the Third Generation
Partnership Project (3GPP) has considered clustered models in
[26]-[27]. Models based on Poisson cluster processes (PCPs)
[11, Sec. 3.4] have recently been studied for heterogeneous
[23]-[24] and device-to-device (D2D) networks [25]. In these
works, the network follows a Thomas cluster process (TCP)
[11, Def. 3.5]. Furthermore, [24] considers a Matern cluster
process (MCP) [11, Def. 3.6]. Other PCP models are also
proposed and analyzed for heterogeneous networks in [28]-
[29]. In [30], clustered ad hoc networks are modeled using
the MCP and the TCP, and the performance of a fixed
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link is analyzed. The nearest-neighbor and contact distance
distributions for the MCP are derived in [31].

In this paper, we develop tractable models for single- and
multi-cluster wireless networks. We define a finite homoge-
neous Poisson point process (FHPPP) to model nodes in a
finite region and then develop a framework for the analysis of
single-cluster wireless networks under two different strategies.
The first approach is referred to as closest-selection where
a reference receiver is served by the closest transmitter in
the network. In the second approach, which we refer to as
uniform-selection, a uniformly randomly selected transmitter
is connected to the receiver. These strategies cover a broad
range of requirements of wireless networks. For instance, the
closest-selection approach is suitable for cellular networks,
while the uniform-selection scheme is relevant to ad hoc
networks.

To model multi-cluster wireless networks consisting of
different single-cluster wireless networks, we consider an
MCP of transmitters. We consider two types of receivers, i)
closed-access receivers, which are located around the cluster
centers of transmitters with a symmetric normal distribution
and are allowed to be served only by the transmitters of their
corresponding clusters according to the closest- or uniform-
selection strategy, and ii) open-access receivers, which can be
served by all transmitters according to the closest-selection
strategy.

We derive exact expressions for the coverage probability
of a reference receiver in single- and multi-cluster wireless
networks for the different selection strategies and types of
receivers. For each selection strategy and type of receiver in
single- and multi-cluster wireless networks, we characterize
the Laplace transform (LT) of the interference. Moreover, as a
key step for the coverage probability analysis, the distributions
of the distance from the reference receiver to its serving
transmitter are derived. We also derive tight closed-form
lower bounds on the LT of the interference in the case of
single-cluster wireless networks, which are convenient for the
coverage probability analysis.

We investigate the impact of different parameters of the
system models on the performance in terms of the coverage
probability and spectral efficiency, and we show that in most
cases, a higher path loss exponent leads to a better perfor-
mance. However, at relatively high distances of the reference
receiver to the center of single-cluster wireless networks, a
higher path loss has a degrading effect on the performance.
Our analysis reveals that there exist an optimal distance for
the location of the reference receiver from the center of the
network and an optimal deployment intensity that maximize
the coverage probability. An optimal distance is also observed
for the spectral efficiency. Our evaluation also shows that, for a
broad range of parameter settings, our proposed lower bounds
tightly mimic the exact results on the coverage probability.

Our work is different from the state-of-the-art literature, e.g.,
[11]-[25], [28]-[31], from three perspectives. First, different
from the BPP, which models a fixed number of nodes in a
region, we consider an FHPPP, which is suitable for finite
regions with a random number of nodes, and we allow for
arbitrary receiver locations over R2. Accordingly, we study

single-cluster wireless networks and derive tractable results
using the properties of the PPP. Second, we comprehensively
study multi-cluster wireless networks using the MCP. We also
derive the contact distribution function of the MCP in a form
that is significantly simpler than the one in [31, Thm. 1].
Third, we propose open-access and closed-access receivers
and different transmitter selection strategies. In this work,
we do not consider the maximum instantaneous signal-to-
interference-and-noise ratio (SINR) as a selection strategy that
is previously proposed and analyzed in [24] for heterogeneous
networks modeled by an MCP.

The rest of the paper is organized as follows. Section II
describes the system models. Section III describes the trans-
mitter selection strategies and presents the analytical results for
the coverage probability of single-cluster wireless networks,
including characterizations for the serving distance distribu-
tions, and the LT of the interference and its corresponding
lower bounds. Section IV presents the analytical results for
the coverage probability of multi-cluster wireless networks and
derives the related serving distance distributions and the LT
of the interferences. Section V presents the numerical results.
Finally, Section VI concludes the paper.

II. SYSTEM MODEL

In this section, we provide a mathematical model of the
system, including the spatial distribution of the nodes for
single- and multi-cluster wireless networks and the channel
model.

A. Spatial Model for Single-Cluster Wireless Networks

Definition 1: We define the FHPPP as Φ = P ∩ A, where
P is an HPPP of intensity λ and A ⊂ R2.

We consider a single-cluster wireless network as shown in
Fig. 1, where the locations of active transmitters are modeled
as an FHPPP. The transmitters are assumed to transmit at the
same power. For simplicity and in harmony with, e.g., [12]-
[18], we let A = b(xo, D), where b(xo, D) represents a disk
centered at xo with radius D. However, our theoretical results
can be extended to arbitrary regions A.

Receivers can be located everywhere in R2. With no loss
of generality, we conduct the analysis at a reference receiver
located at the origin o. We further define d = ∥xo∥.

The proposed setup well models a wireless network con-
fined in a finite region, such as indoor and ad hoc networks.

B. Spatial Model for Multi-Cluster Wireless Networks

An MCP is defined as follows [11, Def. 3.6].
Definition 2: An MCP Φ is a union of offspring points that

are located around parent points. The parent point process is an
HPPP Φp with intensity λp, and the offspring point processes
(one per parent) are conditionally independent. The offspring
points of x ∈ Φp form an FHPPP Φx with intensity λ over
the disk b(x, D).

We consider a multi-cluster wireless network as shown in
Fig. 2, where the locations of active transmitters are modeled
as an MCP.
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Fig. 1: An illustration of the system model for single-cluster wireless
networks.

Fig. 2: An illustration of the system model for a finite piece of multi-
cluster wireless networks.

We consider two types of receivers. The first type, referred
to as closed-access receivers, can be served by only a single
cluster of transmitters. A closed-access receiver is distributed
according to a symmetric normal distribution with variance σ2

c
around the parent point of its corresponding cluster. Therefore,
assuming a closed-access receiver at y and its parent point at
x, ∥x − y∥ is Rayleigh distributed with probability density
function (PDF)

f∥x−y∥ (v) =
v

σ2
c
exp

(
− v2

2σ2
c

)
. (1)

This type of receiver is also considered for multi-cluster
networks modeled by the TCP in [23], [25]. The second type,
referred to as open-access receivers, considers receivers that
are placed independently of the transmitters and can be served
by all transmitters.

The proposed setup well models various use-case scenarios
as follows:

1) Clustered Small-Cell Base Stations (BSs): The trend in
cellular networks is to deploy small-cell BSs at the places
with high user density, referred to as user-centric networks
[23]-[24], [32], as also proposed in 3GPP [26]-[27]. In this
way, according to our setup, users who are likely to be close
to a cluster of small-cell BSs can be modeled as closed-access
receivers, such as users at a stadium or a mall. The open-access
receivers can model users who are distributed homogeneously
and independently of the small-cell BS locations, such as
pedestrians or cars.

2) Cloud BSs: A cloud BS is a distributed multiple-antenna
system formed by a number of single-antenna terminals [33].
In this application, the closed-access receivers can be modeled
as the users who have a license to use a certain BS, while the

open-access receivers can model users with flexibility to access
all BSs.

3) Clustered Access Networks: A large building may have a
number of WiFi access points as an access network to meet its
users’ demands. The closed-access receivers model the users
who are in a building and use its access network. On the other
hand, the open-access receivers are users who can handoff
between access networks of different buildings.

4) Clustered D2D Networks: A device typically has nearby
devices in a finite region as a cluster in a content-centric net-
work, which can have direct communications with each other.
The closest- or uniform-selection strategy can be considered
for cellular or ad hoc access to contents distributed over the
devices, respectively.

C. Channel Model

We assume single-slope power-law path loss and small-scale
Rayleigh fading. Thus, the received power at the reference
receiver from a transmitter located at y is hy∥y∥−α, where the
(common) transmit power is set to 1 with no loss of generality
and α is the path loss exponent. The sequence {hy} consists
of i.i.d. exponential random variables with mean 1.1

III. SINGLE-CLUSTER WIRELESS NETWORKS

In this section, we concentrate on single-cluster wireless
networks. To allocate a transmitter to a reference receiver, we
propose selection strategies in Subsection III.A. Then, distance
distributions and coverage probabilities for the selection strate-
gies are derived in Subsections III.B and III.C, respectively.
However, the resulting expressions for the coverage probabil-
ities are not very easy to use. Hence, we derive a closed-form
lower bound for the coverage probability of each strategy in
Subsection III.D.

A. Selection Strategies

1) Closest-selection. Here, a reference receiver is served
by the transmitter that provides the maximum received power
averaged over the fading. In our model, this leads to the
closest-selection strategy, i.e.,

xc = arg min
y∈{Φ|n(Φ)>0}

∥y∥, (2)

where n(·) denotes the number of elements in a set. Suitable
for networks with infrastructure such as downlink cellular
networks, this strategy implies that a receiver is served by
the transmitter whose Voronoi cell it resides in [5]-[25].

2) Uniform-selection. Here, the serving transmitter is se-
lected randomly with uniform distribution among all transmit-
ters. This leads to

xu = Unif {Φ | n(Φ) > 0} , (3)

where Unif {·} denotes the uniform-selection operation.
Uniform-selection models random allocation of receivers to

1In some situations, more complicated path loss models, such as the multi-
slope model considered in [34], are more accurate. Their study does not pose
significant additional difficulties but the results would become unwieldy and
less insightful. Hence they are beyond the scope of our paper.
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TABLE I: Summary of Notation

Notation Description
Φ Spatial point process of transmitters modeled by FHPPP for single-cluster networks and MCP for multi-cluster networks
λ Intensity of transmitters in a single cluster
Φp; λp Parent point process of cluster centers modeled by HPPP; intensity of Φp

hy; α; β; σ2 Channel power gain of a transmitter located at y under Rayleigh fading; path loss exponent; SINR threshold; noise power
D Radius of the region of a single cluster
d Distance of a reference receiver from the center of the region in single-cluster networks
σ2

c Variance of the normal distribution of the distance of a closed-access receiver from the center of its cluster
Rc; Ru Distance of a reference receiver/closed-access receiver to its serving transmitter according to closest- or uniform-selection strategy in single-cluster/multi-cluster networks
Rt Distance of an open-access receiver to its serving transmitter in multi-cluster networks

φ0 sin−1
(

D
d

)
φ1(r) cos−1

(
r2+d2−D2

2dr

)
R1(θ) d cos (θ) +

√
D2 − d2sin2 (θ)

R̂1(θ) d cos (θ)−
√

D2 − d2sin2 (θ)

transmitters, which may be the case in networks without
infrastructure, e.g., ad hoc networks and D2D networks [17],
[25]. It is also suitable for applications where the content
of interest for a receiver can be available at each transmitter
among all transmitters with equal probability, such as caching
networks.

The SINR of a reference receiver at the origin can be
expressed as

SINRq =
hxq∥xq∥−α

σ2 + Iq
, q = {c, u} , (4)

where xq is the location of the serving transmitter, Iq =∑
y∈Φ\{xq} hy∥y∥−α denotes the interference, and σ2 is the

noise power. To distinguish between the strategies, q = c
and u represent the case of closest- and uniform-selection
strategies, respectively. For notational simplicity, let us also
define Rq = ∥xq∥.

B. Serving Distance Distribution

Considering the closest- and uniform-selection strategies, in
this subsection, we derive the distributions of the distance from
the reference receiver to its serving transmitter. These distance
distributions will be used later in the coverage probability
analysis.

Let us first define φ0 = sin−1
(
D
d

)
, φ1(r) =

cos−1
(

r2+d2−D2

2dr

)
, R1(θ) = d cos (θ) +

√
D2 − d2sin2 (θ)

and R̂1(θ) = d cos (θ) −
√
D2 − d2sin2 (θ), and present a

lemma on the intersection area of two circles.
Lemma 1: Consider two circles with radii D and r with

centers separated by distance d. The area of their intersection
is given by [35, Eq. (12.76)]

Bd(r) = D2cos−1

(
D2 + d2 − r2

2dD

)
+ r2φ1(r)

−1

2

√[
(r + d)

2 −D2
] [

D2 − (r − d)
2
]
. (5)

Considering the closest-selection strategy, the distance from
the reference receiver to its nearest transmitter Rc is larger than
r if and only if at least one transmitter exists inside A and

Fig. 3: An illustration of the intersection in the case d ≤ D for
Subplot (a): D−d ≤ Rc < D+d and Subplot (b): 0 ≤ Rc < D−d,
and in the case d > D for Subplot (c): d−D ≤ Rc < d+D.

there is no transmitter located within b(o, r) ∩ A. Letting Cr
denote the intersection, we have

P (Rc > r) =
P(n(Φ ∩ Cr) = 0 and n(Φ) > 0)

P(n(Φ) > 0)

(a)
=

P(n(Φ ∩ Cr) = 0)P(n(Φ \ Cr) > 0)

P(n(Φ) > 0)

(b)
=

exp (−λ |Cr|) (1− exp(−λ(πD2 − |Cr|)))
1− exp(−λπD2)

=
exp (−λ |Cr|)− exp(−λπD2)

1− exp(−λπD2)
, (6)

where | · | denotes the area of a region. (a) follows from the
fact that the numbers of points of a PPP in disjoint regions
are independent, and (b) is because Rc ≤ D + d. Note when
the intersection is the entire A, i.e., |Cr| = πD2, (6) is zero.

According to Fig. 3, which shows illustrations of the inter-
section, there are two different cases as follows.

Case 1: If d ≤ D, then

|Cr| =

 πr2 0 ≤ r < D − d,
Bd(r) D − d ≤ r < D + d,
πD2 r ≥ D + d,

(7)

where Bd(r) is given in (5).
Case 2: If d > D, then

|Cr| =

 0 0 ≤ r < d−D,
Bd(r) d−D ≤ r < D + d,
πD2 r ≥ D + d.

(8)

Considering the uniform-selection strategy, on the other
hand, the distance from the reference receiver to a randomly
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chosen transmitter, i.e., Ru, is less than r if and only if there is
a transmitter and the transmitter is located within b(o, r)∩A.
Thus, as each transmitter is distributed independently and
uniformly within A, we have the following cases.

Case 1: If d ≤ D, then

P (Ru ≤ r) =


r2

D2 0 ≤ r < D − d,
Bd(r)
πD2 D − d ≤ r < D + d,
1 r ≥ D + d.

(9)

Case 2: If d > D, then

P (Ru ≤ r) =


0 0 ≤ r < d−D,
Bd(r)
πD2 d−D ≤ r < D + d,
1 r ≥ D + d.

(10)

C. Coverage Probability

In this subsection, the distance distribution results obtained
in (6)-(8) and (9)-(10) are used to derive the coverage
probability of the reference receiver for the two transmitter
selection strategies. As a key step in the coverage probability
derivation of each strategy, we obtain the LT of the interference
(Theorems 1 and 2). For notational simplicity, we define
F(s, x) = x2

2F1

(
1, 2

α ; 1 +
2
α ;−

1
sx

α
)

where 2F1(a, b; c; t)
denotes the Gauss hypergeometric function [36].

1) Closest-Selection Strategy:
Theorem 1: Conditioned on Rc, the LT of the interference

under the closest-selection strategy is

Ld
Ic
(s|Rc) =


Ad(s) if d ≤ D and 0 ≤ Rc < D − d,
Bd(s) if d ≤ D and D − d ≤ Rc < D + d

or d > D and
√
d2 −D2 ≤ Rc < d+D,

Cd(s) if d > D and d−D ≤ Rc <
√
d2 −D2,

(11)

where Ad(s), Bd(s) and Cd(s) are defined as

Ad(s) = exp

(
πλF(s,Rc)− λ

∫ π

0

F(s,R1(θ))dθ

)
, (12)

Bd(s) =

exp

(
φ1(Rc)λF(s,Rc)− λ

∫ φ1(Rc)

0

F(s,R1(θ))dθ

)
, (13)

Cd(s) = Bd(s)×

exp

(
−λ

∫ φ0

φ1(Rc)

{
F(s,R1(θ))−F(s, R̂1(θ))

}
dθ

)
, (14)

and φ0, φ1, R1 and R̂1 are defined in Subsection III.B.
Proof: See Appendix A.

Using the conditional LT of the interference derived in Theo-
rem 1, we can express the coverage probability of the reference
receiver for the closest-selection strategy as

P c
C(β) = P(n(Φ) > 0)P(SINRc > β | n(Φ) > 0), (15)

where β is the minimum required SINR for a coverage.
Note that the coverage probability is zero when there is no
transmitter, and the SINRc is only meaningfully defined when

there is a transmitter. Then, from (4) and averaging over the
serving distance Rc, we have

P c
C(β) = (1− exp(−λπD2))×∫ ∞

0

P
(
hxcr

−α

σ2 + Ic
> β

)
fd
Rc

(r) dr. (16)

where fd
Rc

is the PDF of Rc obtained from (6). The conditional
coverage probability given a link distance r can be expressed
as

P
(
hxcr

−α

σ2 + Ic
> β

)
= P

(
hxc > βrα

(
σ2 + Ic

))
(a)
= E

{
exp

(
−βrα

(
σ2 + Ic

))}
= exp

(
−βσ2rα

)
Ld
Ic
(βrα|r) , (17)

where (a) follows from hxc ∼ exp(1). Finally, according to
the cases considered in Subsection III.B and with Ld

Ic
given

in (11), the coverage probability is obtained as

P c
C(β) =

∫D−d

0
2πλr exp(−λπr2) exp

(
−βσ2rα

)
Ld
Ic
(βrα|r) dr

+
∫D+d

D−d
λ∂Bd(r)

∂r exp(−λBd(r)) exp
(
−βσ2rα

)
×Ld

Ic
(βrα|r) dr if d ≤ D,∫D+d

d−D
λ∂Bd(r)

∂r exp(−λBd(r)) exp
(
−βσ2rα

)
×Ld

Ic
(βrα|r) dr if d > D.

(18)

When the reference receiver is located at the center of A, i.e.,
d = 0, the coverage probability (18) simplifies to

P c
C(β) =

∫ D

0

2πλr exp(−λπr2) exp
(
−βσ2rα

)
×

exp
(
πλ {F(βrα, r)−F(βrα, D)}

)
dr. (19)

Also, in the case of infinite wireless networks, i.e., D → ∞,
the coverage probability (18) simplifies to the result in [9,
Thm. 2].

It is notable that the coverage probability for d = 0 (or
D → ∞) is not a lower or upper bound for that of an
arbitrary receiver in single-cluster networks. This is because
there is a tradeoff as these specific cases have two oppos-
ing effects on the coverage probability: i) distances (or the
number) of interfering transmitters decrease (or increases),
which increases the interference power, and ii) the distance of
the serving transmitter decreases, which increases the desired
signal power.

2) Uniform-Selection Strategy:
Theorem 2: The LT of the interference under the uniform-

selection strategy is

Ld
Iu
(s) =

{
Ed(s) if d ≤ D,
F d(s) if d > D,

(20)

where Ed(s) and F d(s) are defined as

Ed(s) =
πD2 exp(−λπD2)

1− exp(−λπD2)
×

exp
(∫D−d

0
2πλx

1+sx−α dx+
∫D+d

D−d
λ

1+sx−α

∂Bd(x)
∂x dx

)
− 1∫D−d

0
2πx

1+sx−α dx+
∫D+d

D−d
1

1+sx−α

∂Bd(x)
∂x dx

, (21)
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F d(s) =
πD2 exp(−λπD2)

1− exp(−λπD2)

exp
(∫D+d

d−D

λ
∂Bd(x)

∂x

1+sx−α dx
)
− 1∫D+d

d−D
1

1+sx−α

∂Bd(x)
∂x dx

. (22)

Proof: See Appendix B.
Here the LT of the interference is independent of the serv-
ing distance Ru. Using Theorem 2 and following the same
approach as in (16)-(18), the coverage probability for the
uniform-selection strategy can be expressed as

P u
C(β) =

(1− e−λπD2

)
{∫D−d

0
2r
D2 exp

(
−βσ2rα

)
Ld
Iu
(βrα) dr

+
∫D+d

D−d
1

πD2

∂Bd(r)
∂r exp

(
−βσ2rα

)
Ld
Iu
(βrα) dr

}
if d ≤ D,

(1− e−λπD2

)
∫D+d

d−D
1

πD2

∂Bd(r)
∂r exp

(
−βσ2rα

)
×Ld

Iu
(βrα) dr if d > D.

(23)

Here, when d = 0, the coverage probability (23) simplifies
to

P u
C(β) =

∫ D

0

2r exp
(
−βσ2rα

)
×

exp(−λπF(βrα, D))− exp(−λπD2)

D2 −F(βrα, D)
dr. (24)

D. Lower Bounds on Coverage Probability

Since the results derived for the LT of the interference in
Theorems 1 and 2 require intensive numerical computations,
we derive tight lower bounds on the LT of the interference
that lead to more tractable and useful analytical results. Then,
using the bounds in (18) and (23), lower bounds on coverage
probability can also be obtained. The tightness of the bounds
will be verified with numerical results (Fig. 8).

To obtain the lower bounds, we outer bound the region A
by a region that permits closed-form bounds on the LT of the
interference. Note that using a larger region leads to an upper
bound on the interference and, in turn, a lower bound on its
LT.

The outer region for the cases with d ≤ D and d > D
is shown in Fig. 4. Placing the center of the sectors at the
reference receiver in case d ≤ D, two covering half-circles
with radii d + D and

√
D2 − d2 are considered. Also, in

the case d > D, we consider the sector with radii d + D
and d − D and the front angle 2φ0 entangled between the
two tangent lines. However, for the closest-selection strategy
in the case d > D, we can achieve a tighter bound by
the following regions for A\b(o, Rc), which is the region
including interfering transmitters. In the case Rc >

√
d2 −D2,

the sector with the front angle equal to twice the intersection
angle, i.e., 2φ1(Rc), and radii Rc and D+ d is considered. In
the case Rc <

√
d2 −D2, we consider two sectors with the

front angle 2φ0 and radii Rc and R1(φ1(Rc)) and with the
front angle 2φ1(Rc) and radii R1(φ1(Rc)) and D + d.

In the following corollaries, we present the lower bounds
on the LT of the interference for both strategies.

(a) d ≤ D (b) d > D

Fig. 4: Outer bounds of A in the two cases d ≤ D and d > D.

Corollary 1: With closest-selection, the LT of the interfer-
ence given the serving distance Rc is lower bounded by

Ld
Icb

(s|Rc) =
Âd(s) if d ≤ D and 0 < Rc ≤

√
D2 − d2,

B̂d(s) if d ≤ D and
√
D2 − d2 ≤ Rc < D + d,

Ĉd(s) if d > D and d−D ≤ Rc <
√
d2 −D2,

D̂d(s) if d > D and
√
d2 −D2 ≤ Rc < D + d.

(25)

where Âd(s), B̂d(s), Ĉd(s), and D̂d(s) are defined as

Âd(s) = exp

(
πλ

{
F(s,Rc)−

1

2
F(s, d+D)−

1

2
F(s,

√
D2 − d2)

})
, (26)

B̂d(s) = exp
(π
2
λ
{
F(s,Rc)−F(s, d+D)

})
, (27)

Ĉd(s) = exp

(
λ
{
φ0F(s,Rc) + (φ1(Rc)− φ0)×

F(s,R1(φ1(Rc)))− φ1(Rc)F(s, d+D)
})

, (28)

D̂d(s) = exp
(
λφ1(Rc)

{
F(s,Rc)−F(s, d+D)

})
. (29)

Proof: The proof follows the same approach as in Ap-
pendix A, except that the disk is replaced with the regions
given in Fig. 4.

Corollary 2: With uniform-selection, the LT of the inter-
ference is lower bounded by

Ld
Iub

(s) =

{
Êd(s) if d ≤ D,

F̂ d(s) if d > D.
(30)

where Êd(s) and F̂ d(s) are defined as

Êd(s) =

e−
λπ
2 {F(s,

√
D2−d2)+F(s,D+d)} − e−λπD(D+d)

(1− e−λπD(D+d))
(
1− F(s,

√
D2−d2)+F(s,D+d)
2D(D+d)

) , (31)

F̂ d(s) =
e−λφ0{F(s,d+D)−F(s,d−D)} − e−4λdDφ0

(1− e−4λdDφ0)
(
1− F(s,d+D)−F(s,d−D)

4dD

) . (32)

Proof: The proof follows the same approach as in Ap-
pendix B, except that the disk is replaced with the regions
given in Fig. 4.
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IV. MULTI-CLUSTER WIRELESS NETWORKS

In this section, we extend our analysis to multi-cluster
wireless networks. Closed-access and open-access receivers
are investigated in Subsections IV.A and IV.B, respectively.

A. Closed-Access Receivers

For the analysis, we consider the reference closed-access
receiver at the origin and add a cluster Φxo with intensity
λ over the disk b(xo, D), where ∥xo∥ has PDF given in
(1), to the network. Thanks to Slivnyak’s theorem [11, Thm.
8.10], this additional cluster and its receiver become the
representative cluster and receiver under expectation over Φ.
This means this link’s performance corresponds to the average
performance of all links in any realization of the network.
Therefore, the serving transmitter under the closest-selection
strategy is

xc = arg min
y∈{Φxo |n(Φxo )>0}

∥y∥, (33)

while with the uniform-selection strategy, the serving trans-
mitter is found by

xu = Unif {Φxo | n(Φxo) > 0} . (34)

Then, the SINR at the origin with distance ∥x∥ relative to the
serving transmitter is

SINR =
hx∥x∥−α

σ2 + Iintra + Iinter
, (35)

where Iintra =
∑

y∈Φxo\{x}
hy∥y∥−α denotes the intra-cluster

interference caused by the transmitters inside the representa-
tive cluster, and Iinter =

∑
y∈Φ

hy∥y∥−α represents the inter-

cluster interference caused by the transmitters outside the
representative cluster.

Given the distance between the receiver and the center
of the representative cluster, i.e., ∥xo∥, the distributions of
the distances Rc = ∥xc∥ and Ru = ∥xu∥ are derived in
Subsection III.B for the closest- and uniform-selection strate-
gies, respectively. Also, the LT of the intra-cluster interference
conditioned on ∥xo∥, defined as the function L∥xo∥

Iintra
, is given

by Theorems 1 and 2 for the closest-selection and uniform-
selection strategies, relatively. The LT of the inter-cluster
interference is characterized in the following theorem.

Theorem 3: The LT of the inter-cluster interference Iinter
is

LIinter(s) = exp

(
−2πλp

( D∫
0

{
1− exp (−λf(s, u))

}
udu

+

∞∫
D

{
1− exp (−λg(s, u))

}
udu

))
, (36)

where f(s, u) and g(s, u) are defined as

f(s, u) =

∫ π

0

F(s,R2(u, θ))dθ, (37)

g(s, u) =

∫ φ2(u)

0

{
F(s,R2(u, θ))−F(s, R̂2(u, θ))

}
dθ, (38)

where φ2(u) = sin−1
(
D
u

)
, R2(u, θ) = u cos (θ) +√

D2 − u2sin2 (θ) and R̂2(u, θ) = u cos (θ) −√
D2 − u2sin2 (θ).

Proof: See Appendix C.
A general formula for the inter-cluster interference of PCP-
modeled networks is derived in [23, Lemma 10]. Our approach
in Appendix C leads to the more tractable result (36) for
networks modeled by the MCP.

Using the expressions for the intra- and inter-cluster inter-
ferences, the coverage probability under the closest-selection
strategy is calculated by deconditioning as

P ca-c
C (β) = P(n(Φxo) > 0)P(SINRc > β | n(Φxo) > 0)

=
(
1− e−λπD2

)∫ ∞

0

∫ ∞

0

P
(

hxr
−α

σ2 + Iintra + Iinter
> β

)
×fv

Rc
(r) f∥xo∥ (v) drdv, (39)

where the conditional coverage probability is expressed as

P
(

hxr
−α

σ2 + Iintra + Iinter
> β

)
=

exp
(
−βσ2rα

)
Lv
Ic
(βrα|r)LIinter (βr

α) . (40)

Then, according to the cases in Subsections III.B and C, (39)
is given by

P ca-c
C (β) =

D∫
0

D−v∫
0

2πλre−λπr2 exp
(
−βσ2rα

)
Lv
Ic
(βrα|r)

×LIinter (βr
α) f∥xo∥ (v) drdv +

D∫
0

D+v∫
D−v

λ
∂Bv(r)

∂r
e−λBv(r)

× exp
(
−βσ2rα

)
Lv
Ic
(βrα|r)LIinter (βr

α) f∥xo∥ (v) drdv

+

∞∫
D

D+v∫
v−D

λ
∂Bv(r)

∂r
e−λBv(r) exp

(
−βσ2rα

)
Lv
Ic
(βrα|r)

×LIinter (βr
α) f∥xo∥ (v) drdv. (41)

Finally, the coverage probability with the uniform-selection
strategy can be derived with the same procedure as in (39)-
(41). It is given by

P ca-u
C (β) = (1− e−λπD2

)×{ D∫
0

D−v∫
0

2r

D2
exp

(
−βσ2rα

)
Lv
Iu
(βrα)LIinter (βr

α)

×f∥xo∥ (v) drdv +

D∫
0

D+v∫
D−v

1

πD2

∂Bv(r)

∂r
exp

(
−βσ2rα

)
×

Lv
Iu
(βrα)LIinter (βr

α) f∥xo∥ (v) drdv +

∞∫
D

D+v∫
v−D

1

πD2

∂Bv(r)

∂r

× exp
(
−βσ2rα

)
Lv
Iu
(βrα)LIinter (βr

α) f∥xo∥ (v) drdv

}
. (42)
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B. Open-Access Receivers

Here, we only consider the closest-selection strategy. Note
that there is no uniform-selection strategy in this case, since
the number of transmitters is infinite. Therefore, the serving
transmitter is

xt = argmin
y∈Φ

∥y∥. (43)

The distribution of the distance Rt = ∥xt∥ from the reference
open-access receiver at the origin to its serving transmitter is
given in the following theorem.

Theorem 4: The cumulative distribution function (CDF) of
Rt is

FRt(r) =

1− exp

(
−2πλp

{(
1− exp

(
−λπr2

)) (D−r)2

2

+
∫D+r

D−r
(1− exp (−λBu(r)))udu

})
if 0 ≤ r < D,

1− exp

(
−2πλp

{(
1− exp

(
−λπD2

)) (r−D)2

2

+
∫D+r

r−D
(1− exp (−λBu(r)))udu

})
if r ≥ D.

(44)

Proof: See Appendix D.
Note that the contact distribution function of the MCP is also
derived in [31] using the probability generating functional
(PGFL) of PCPs in [11, Cor. 4.13]. However, our new ap-
proach in Appendix D is more tractable and leads to the result
(44), which is much easier to numerically evaluate than [31,
Thm. 1], since (44) has fewer integrals over smaller intervals.

By taking the derivative of FRt(r), using Leibniz integral
rule, and some simplifications, the PDF of Rt can be obtained
as

fRt (r) =

2πλp

{
πλre−λπr2(D − r)2 +

∫D+r

D−r
λ∂Bu(r)

∂r e−λBu(r)udu

}
× exp

(
−2πλp

{(
1− exp

(
−λπr2

)) (D−r)2

2

+
∫D+r

D−r
(1− exp (−λBu(r)))udu

})
if 0 ≤ r < D,

2πλp

{∫D+r

r−D
λ∂Bu(r)

∂r e−λBu(r)udu

}
× exp

(
−2πλp

{(
1− exp

(
−λπD2

)) (r−D)2

2

+
∫D+r

r−D
(1− exp (−λBu(r)))udu

})
if r ≥ D.

(45)

The SINR at the reference open-access receiver located at the
origin is

SINRt =
hxtRt

−α

σ2 + It
, (46)

where It =
∑

y∈Φ\{xt}
hy∥y∥−α denotes the total interference.

The LT of It conditioned on the serving distance Rt is
characterized in the following theorem.

Theorem 5: Conditioned on Rt, the LT of the total inter-
ference It is

LIt(s|Rt) =

exp

(
−2πλp

{∫D−Rt

0
{1−Au(s)}udu

+
∫√D2+R2

t
D−Rt

{1−Bu(s)}udu+
∫D+Rt√

D2+R2
t
{1− Cu(s)}udu

+
∫∞
D+Rt

{1− exp (−λg(s, u))}udu
})

if 0 ≤ Rt < D,

exp

(
−2πλp

{∫√D2+R2
t

Rt−D
{1−Bu(s)}udu

+
∫D+Rt√

D2+R2
t
{1− Cu(s)}udu

+
∫∞
D+Rt

{1− exp (−λg(s, u))}udu
})

if Rt ≥ D,

(47)

where Au(s), Bu(s) and Cu(s) are defined for a u in (12),
(13) and (14), respectively. Also, g(s, u) is given in (38).

Proof: See Appendix E.
Using Theorem 5 and (45) and the same procedure as in
Subsection III.C, the coverage probability of the reference
open-access receiver in multi-cluster wireless networks is
found as

P oa
C (β) =

∫ ∞

0

exp
(
−βσ2rα

)
LIt (βr

α|r) fRt(r)dr. (48)

Letting D → ∞ and λ → 0 such that m = λπD2 is held
constant, fRt(r) in (45) simplifies to

fRt(r) = lim
D→∞

2πλp

{
m

D2
re−

m
D2 r2(D − r)2

+

D+r∫
D−r

m

πD2

∂Bu(r)

∂r
e−

m
πD2 Bu(r)udu

}

× exp

(
−2πλp

{(
1− exp

(
− m

D2
r2
)) (D − r)2

2

+

D+r∫
D−r

(
1− exp

(
− m

πD2
Bu(r)

))
udu

})
=

2πλpmr exp

(
−2πλp lim

D→∞

(
1− e−

m
D2 r2

) (D − r)2

2

)
(a)
= 2πλpmr exp

(
−πλpmr2

)
, (49)

where (a) is obtained using 1 − e−x ∼ x for x → 0. Also,
LIt(s|Rt) in (47) simplifies to

LIt(s|Rt) = lim
D→∞

exp

(
−2πλp

{∫ D−Rt

0

{1−Au(s)}udu

+

∫ √
D2+R2

t

D−Rt

{1−Bu(s)}udu+

∫ D+Rt

√
D2+R2

t

{1− Cu(s)}udu

+

∫ ∞

D+Rt

{1− exp (−λg(s, u))}udu
})

=

lim
D→∞

exp

(
−2πλp

{∫ D−Rt

0

{
1− exp

(
m

D2
F(s,Rt

− m

πD2

∫ π

0

F(s,R1(θ))dθ

)}
udu

)
(b)
=
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lim
D→∞

exp

(
−πλp

{
1− exp

(
m

D2
F(s,Rt)−

m

D2
F(s,D)

)}
×(D −Rt)

2

)
(c)
= exp

(
−πλpm

{
F(s,∞)−F(s,Rt)

})
,(50)

where (b) follows from R1(θ) ∼ D for D → ∞ and (c) uses
1−e−x ∼ x for x → 0. The results (49) and (50) are equal to
the closest-distance distribution and the LT of the interference
for an HPPP with intensity λpm, respectively [9]. This is in
agreement with [24, Prop. 1] which states that a PCP weakly
converges to a PPP as the cluster radius goes to infinity.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we provide numerical results for specific
scenarios of single- and multi-cluster wireless networks. In ad-
dition, we discuss the results and provide key design insights.

A. Single-Cluster Wireless Networks

We consider a scenario of single-cluster wireless networks
in which the transmitters are distributed according to an
FHPPP with intensity λ = 0.01 m−2 in a disk with radius
D = 15 m and evaluate the coverage probability results
derived in Subsection III.C. Also, we evaluate the spectral
efficiency, defined as τ = E {log(1 + SINR)}. The variance
of the additive white Gaussian noise is set to σ2 = 0.00001.
We further define the normalized (relative) distance δ = d

D . In
the following, we study the impact of the path loss exponent,
the deployment intensity, and the distance of the receiver from
the center of the disk on the coverage probability and the
spectral efficiency. We also investigate the tightness of the
bounds derived in Subsection III.D.

Effect of path loss exponent: The coverage probability as a
function of the minimum required SINR β is plotted in Fig. 5
for the closest- and uniform-selection strategies, considering
δ = 2

3 and 4
3 and α = 2 and 3. It is observed that the

coverage probability is improved when the path loss exponent
is higher. However, with the uniform-selection, a higher path
loss exponent has a degrading effect when β is lower than
−5 dB. That is because the SINR exhibits a tradeoff as α
increases. The power of both the desired and the interfering
signals decrease, which can lead to an increase or decrease
in the SINR, depending on β and the other parameters. At a
target coverage probability of 0.8, the (horizontal) gap between
uniform- and closest-selection is about 15 dB for α = 2 and
20 dB for α = 3 in the case δ = 2

3 and 8 dB for α = 2 and
12 dB for α = 3 in the case δ = 4

3 .
Effect of receiver distance from the center: The coverage

probability as a function of the normalized distance δ is studied
in Fig. 6 for both selection strategies, α = 4 and β = −5 and
0 dB. It is observed that, depending on β, there is an optimal
value for the distance of the receiver, about 2D for uniform-
selection at β = −5 dB and 0.8D for other cases, in terms
of the coverage probability. This is due to the fact that the
SINR has a tradeoff since the power of both the desired and
the interfering signals decrease as the distance of the receiver
to the center of the disk increases. It is also observed that the
uniform-selection strategy at β = −5 dB follows a different

trend and has a different optimum distance in comparison with
the other curves. That is because of the tradeoff between the
signal and interference powers, hence we cannot necessarily
expect a single local maximum.

Effect of deployment intensity: The coverage probability as
a function of the intensity λ is plotted in Fig. 7 for both
selection strategies, considering δ = 2

3 and 4
3 and α = 4

and β = −5 dB. An optimal value for the intensity, about
0.004 for closest-selection and 0.003 for uniform-selection, is
observed in terms of the coverage probability. That is because,
for small λ, the probability of having a transmitter dominates
the coverage probability, while for large λ, the interference
power is the dominant factor.

Tightness of the bounds: The tightness of the bounds on
coverage probability derived in Subsection III.D is evaluated
in Fig. 8 for the different selection strategies and α = 4 and
δ = 2

3 and 4
3 . As observed, the bounds tightly approximate the

performance in a broad range of SINR thresholds β and for
different positions of the receiver inside or outside the disk.

Spectral efficiency: The spectral efficiency as a function of
δ is shown in Fig. 9 for both selection strategies and α = 2,
3, and 4. We analytically obtain the spectral efficiency from
the coverage probability as, e.g., [9, Thm. 3]2

τ q =

∫ ∞

0

P(log (1 + SINRq) > t) dt

=

∫ ∞

0

1

ln2
P q
C (t)

t+ 1
dt bits/channel use, q = {c, u} . (51)

As observed, closest-selection achieves a much higher spec-
tral efficiency than uniform-selection for different receiver
distances. Also, there is a crossing point, whereby the spectral
efficiency improves as α increases before reaching a distance
for the receiver location outside the disk. Then, at higher
distances, the reverse happens. This is intuitive, because at
smaller distances, the power of the interfering signals, which
decreases with a higher path loss exponent, is the dominant
factor on the SINR. On the other hand, at higher distances,
the power of the desired signal, which increases with a
smaller path loss exponent, dominates. Also, there may be an
optimal value for the distance of the receiver in terms of the
spectral efficiency. This is the result of the coverage probability
behavior with the distance.

B. Multi-Cluster Wireless Networks

Here, we consider a multi-cluster wireless network where
transmitters form an MCP with intensity λ = 0.01 m−2 inside
the disks, with cluster radius D = 15 m, whose centers (parent
points) follow an HPPP with intensity λp = 0.0004 m−2.
Closed-access receivers are normally distributed with variance
σ2

c around the cluster centers. We further define the normalized
standard deviation δc =

σc
D . In the following, the effects of the

path loss exponent and variance of the normal distribution of

2Note that this is an upper bound on the actual spectral efficiency, since
this formulation assumes that the transmitter knows all the fading coefficients
between all other transmitters and the receiver, which would be a very
generous assumption. A tighter lower bound could be found using the
approach described in [37].
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Fig. 5: Coverage probability as a function of the SINR threshold β
with δ = 2

3
and 4

3
. c and u denote closest- and uniform-selection,

respectively.
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Fig. 7: Coverage probability as a function of intensity λ with α = 4
and β = −5 dB.

closed-access receivers are assessed based on the theoretical
results derived in Subsections IV.A and IV.B.

Effect of path loss exponent: In Fig. 10, the coverage
probability as a function of β is plotted for the closest-
and uniform-selection strategies in the case of closed-access
receivers with δc = 2

3 . In this figure, the case of open-
access receivers with the closest-selection strategy is also
considered. Here, the results are presented for α = 2 and 3.
As observed, for practical values of the SINR threshold, the
coverage probability is improved when the path loss exponent
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Fig. 8: On the tightness of the coverage probability lower bounds,
α = 4. Ex and LB denote the exact result and the lower bound,
respectively.
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Fig. 9: Spectral efficiency as a function of normalized distance δ.
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Fig. 10: Coverage probability of the closed-access (CA) and open-
access (OA) receiver as a function of threshold β with δc =

2
3

.

is higher.
Effect of variance of the normal distribution: The coverage

probability as a function of the normalized standard deviation
δc is shown in Fig. 11. Here, the results are presented for the
closed-access receivers, considering α = 4 and β = −5 and 0
dB. It is observed that the coverage probability decreases as
the standard deviation (or variance) of the normal distribution
increases. This is intuitive because the probability of the event
that the receiver is located farther from the representative
transmitters increases with σc.
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Fig. 11: Coverage probability of the closed-access receiver as a
function of normalized standard deviation δc with α = 4.

VI. CONCLUSION

In this paper, we developed a comprehensive tractable
framework for the modeling and analysis of single- and multi-
cluster wireless networks. Suitable for different wireless appli-
cations, we considered two strategies for a reference receiver
to select a serving transmitter over a single-cluster wireless
network: closest-selection and uniform-selection. Considering
two types of receivers—closed-access receivers and open-
access receivers—we then extended our modeling to multi-
cluster wireless networks that are composed of distributed
single-cluster wireless networks.

Using tools from stochastic geometry, we derived exact
expressions for the coverage probability in the cases with
different transmitter selection strategies and types of receivers
in single- and multi-cluster wireless networks. We also pro-
posed tight closed-form expressions bounding the coverage
probability in the case of single-cluster wireless networks. Our
analysis revealed that a higher path loss exponent leads to
a better performance except when the receiver is far from
its cluster of transmitters, relative to the cluster radius. In
addition, there exist an optimal location for the receiver and an
optimal deployment intensity. Also, the closest-selection strat-
egy significantly outperforms the uniform-selection strategy,
for example there can be 20 dB gap between the strategies at
a target coverage probability 0.8.

APPENDIX A
PROOF OF THEOREM 1

The LT of the interference, given the serving distance Rc,
is calculated as

Ld
Ic
(s|Rc) =

E
{
exp

(
−s
∑

y∈Φ\{xc}
hy∥y∥−α

)
| n(Φ) > 0

}
= E

{ ∏
y∈Φ\{xc}

exp
(
−shy∥y∥−α

)
| n(Φ) > 0

}
(a)
= E

{ ∏
y∈Φ\{xc}

1

1 + s∥y∥−α | n(Φ) > 0

}

(b)
= exp

(
−λ

∫
A\b(o,Rc)

(
1− 1

1 + s∥y∥−α

)
dy

)
, (52)

where (a) is obtained by hy ∼ exp(1) and (b) follows
from the PGFL of the PPP [11, Thm. 4.9] and the fact that
interfering nodes are farther away than Rc. Having a non-
empty intersection between A and b(o, Rc), to compute (52),
there are two types for d < D (Case 1) and two types for
d > D (Case 2) to convert from Cartesian to polar coordinates.
In fact, each type denotes a special form of A\b(o, Rc) that
can be represented by polar coordinates uniquely.

Case 1: We have two different types for the case d < D as
follows.

Type 1: If A ∩ b(o, Rc) = b(o, Rc) as given in Fig. 3(b),
i.e., 0 ≤ Rc < D − d, then

Ld
Ic
(s|Rc) = exp

(
−λ

2π∫
0

R1(θ)∫
0

(
1− 1

1 + sx−α

)
xdxdθ

+λ

2π∫
0

Rc∫
0

(
1− 1

1 + sx−α

)
xdxdθ

)
. (53)

This can be simplified to

Ld
Ic
(s|Rc) = exp

(
2πλ

∫ Rc

0

x

1 + xα

s

dx

−λ

∫ 2π

0

∫ R1(θ)

0

x

1 + xα

s

dxdθ

)
(c)
= exp

(
πλF(s,Rc)− λ

∫ π

0

F(s,R1(θ))dθ

)
, (54)

where (c) follows from replacing xα with u and calculating
the corresponding integral based on the formula [36, (3.194.1)]
which uses the Gauss hypergeometric function 2F1.

Type 2: If A ∩ b(o, Rc) ̸= b(o, Rc) as given in Fig. 3(a),
i.e., D − d ≤ Rc < D + d, then

Ld
Ic
(s|Rc) = exp

(
−λ

∫ φ1(Rc)

−φ1(Rc)

∫ R1(θ)

Rc

(
1− 1

1 + sx−α

)
×xdxdθ

)
= exp

(
−λ

∫ φ1(Rc)

0

{
F(s,R1(θ))

−F(s,Rc)
}
dθ

)
. (55)

Case 2: As observed from Fig. 3(c) for the case d > D,
we have two different types of the LT of the interference
depending on whether or not, at an angle, the lower boundary
of A within the two tangent lines crossing the origin is
included in the boundary of A\b(o, Rc).

Type 1: Since the intersection angle φ1(r) at r =
√
d2 −D2

is equal to the angle of the tangent lines φ0, if d−D < Rc <√
d2 −D2, we have

Ld
Ic
(s|Rc) =

exp

(
−λ

{∫ −φ1(Rc)

−φ0

∫ R1(θ)

R̂1(θ)

(
1− 1

1 + sx−α

)
×xdxdθ +

∫ φ1(Rc)

−φ1(Rc)

∫ R1(θ)

Rc

(
1− 1

1 + sx−α

)
xdxdθ
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+

∫ φ0

φ1(Rc)

∫ R1(θ)

R̂1(θ)

(
1− 1

1 + sx−α

)
xdxdθ

})

= exp

(
−λ

φ0∫
φ1(Rc)

{
F(s,R1(θ))−F(s, R̂1(θ))

}
dθ

−λ

φ1(Rc)∫
0

{
F(s,R1(θ))−F(s,Rc)

}
dθ

)
. (56)

Type 2: If
√
d2 −D2 < Rc < d+D, then

Ld
Ic
(s|Rc) =

exp

(
−λ

∫ φ1(Rc)

−φ1(Rc)

∫ R1(θ)

Rc

(
1− 1

1 + sx−α

)
xdxdθ

)

= exp

(
−λ

∫ φ1(Rc)

0

{
F(s,R1(θ))−F(s,Rc)

}
dθ

)
. (57)

APPENDIX B
PROOF OF THEOREM 2

The LT of the interference is

Ld
Iu
(s) =

E
{
exp

(
−s
∑

y∈Φ\{xu}
hy∥y∥−α

)
| n(Φ) > 0

}
= E

{ ∏
y∈Φ\{xu}

exp
(
−shy∥y∥−α

)
| n(Φ) > 0

}
(a)
= E

{ ∏
y∈Φ\{xu}

1

1 + s∥y∥−α | n(Φ) > 0

}
(b)
= E

{(∫ ∞

0

1

1 + sx−α
fRu(x)dx

)n(Φ)−1

| n(Φ) > 0

}

(c)
=

∞∑
k=1

exp(−λπD2)(λπD2)k

k!(1− exp(−λπD2))

(∫ ∞

0

1

1 + sx−α
fRu(x)dx

)k−1

(d)
=

1

(1− exp(−λπD2))
∫∞
0

1
1+sx−α fRu(x)dx

×( ∞∑
k=0

exp(−λπD2)(λπD2)k

k!

(∫ ∞

0

1

1 + sx−α
fRu(x)dx

)k

− exp(−λπD2)

)
(e)
=

exp(−λπD2)

(1− exp(−λπD2))
∞∫
0

1
1+sx−α fRu(x)dx

×

(
exp

(
λπD2

∞∫
0

1

1 + sx−α
fRu(x)dx

)
− 1

)
, (58)

where fd
Ru

is the PDF of Ru obtained from the distributions
in (9)-(10) and (a) is found by hy ∼ exp(1). Also, (b)
follows from the fact that conditioned on n(Φ), Φ is a BPP
where the distance ∥y∥ of each point is i.i.d. with distribution
fd
Ru

[11], (c) follows from P(n(Φ) = k | n(Φ) > 0) =
exp(−λπD2)(λπD2)k

k!(1−exp(−λπD2)) , (d) is obtained by adding then subtracting
exp(−λπD2), and (e) is found by the moment-generating
function (MGF) of a Poisson random variable with mean

λπD2 [11] and some simplifications. According to (9)-(10),
there are two cases to compute the integral:

Case 1: If d ≤ D, then∫ ∞

0

1

1 + sx−α
fRu(x)dx =

∫ D−d

0

1

1 + sx−α

2x

D2
dx

+

∫ D+d

D−d

1

1 + sx−α

1

πD2

∂Bd(x)

∂x
dx. (59)

Case 2: If d > D, then∫ ∞

0

1

1 + sx−α
fRu(x)dx

=

∫ D+d

d−D

1

1 + sx−α

1

πD2

∂Bd(x)

∂x
dx. (60)

APPENDIX C
PROOF OF THEOREM 3

The LT of the inter-cluster interference is

LIinter(s) = E

{
exp

(
−s

∑
x∈Φp

∑
y∈Φx

hy∥y∥−α

)}

= E

{ ∏
x∈Φp

∏
y∈Φx

exp
(
−shy∥y∥−α

)}
(a)
= E

{ ∏
x∈Φp

∏
y∈Φx

1

1 + s∥y∥−α

}

(b)
= E

 ∏
x∈Φp

∏
z∈Φo

1

1 + s∥z+ x∥−α


(c)
= E

 ∏
x∈Φp

exp

(
−λ

∫
b(o,D)

(
1− 1

1 + s∥z+ x∥−α

)
dz

)
(d)
= exp

(
−λp

∫
R2

{
1− exp

(
−λ×∫

b(o,D)

(
1− 1

1 + s∥z+ x∥−α

)
dz

)}
dx

)
, (61)

where (a) follows from hy ∼ exp(1), and (b) comes from the
fact that y ∈ Φx can be written as y = z + x, where z is
taken from the FHPPP Φo with intensity λ over b(o, D) and
x ∈ Φp. Also, both (c) and (d) follow from the PGFL of the
PPP [11]. In order to convert the inner integral from Cartesian
to polar coordinates, there are two cases:

Case 1: If ∥x∥ ≤ D, then

f(s, ∥x∥) =
∫
b(o,D)

(
1− 1

1 + s∥z+ x∥−α

)
dz

=

∫ 2π

0

∫ R2(∥x∥,θ)

0

(
1− 1

1 + sx−α

)
xdxdθ

=

∫ π

0

F(s,R2(∥x∥, θ))dθ, (62)

where R2(∥x∥, θ) =
√
D2 − ∥x∥2sin2 (θ) + ∥x∥ cos (θ).
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Case 2: If ∥x∥ > D, then

g(s, ∥x∥) =
∫
b(o,D)

(
1− 1

1 + s∥z+ x∥−α

)
dz

=

φ2(∥x∥)∫
−φ2(∥x∥)

R2(∥x∥,θ)∫
R̂2(∥x∥,θ)

(
1− 1

1 + sx−α

)
xdxdθ

=

∫ φ2(∥x∥)

0

{
F(s,R2(∥x∥, θ))−F(s, R̂2(∥x∥, θ))

}
dθ, (63)

where φ2(∥x∥) = sin−1
(

D
∥x∥

)
and R̂2(∥x∥, θ) =

∥x∥ cos (θ)−
√
D2 − ∥x∥2sin2 (θ). Therefore, converting the

outer integral from Cartesian to polar coordinates, the final
result can be obtained.

APPENDIX D
PROOF OF THEOREM 4

Let us define Rx = min
y∈Φx

∥y∥, which is the distance from

the reference receiver to its closest transmitter in the cluster
with parent point x ∈ Φp. Then, the CDF of Rt = min

x∈Φp

Rx is

FRt(r) = P (Rt < r) = 1− P
(
min
x∈Φp

Rx > r

)
(a)
= 1− lim

ρ→∞
E
{
P
(
min
x∈Ψρ

Rx > r | n(Ψρ)
)}

(b)
= 1− lim

ρ→∞
E

{
E

{ ∏
x∈Ψρ

P (Rx > r) | n(Ψρ)

}}
(c)
= 1−

lim
ρ→∞

E

{
E

{ ∏
x∈Ψρ

(
P (n(Φx) = 0)P (Rx > r | n(Φx) = 0)

+P (n(Φx) > 0)P (Rx > r | n(Φx) > 0)
)
| n(Ψρ)

}}
(d)
= 1− lim

ρ→∞
E

{
E

{ ∏
x∈Ψρ

exp(−λπD2)

+(1− exp(−λπD2))E(x) | n(Ψρ)

}}
(e)
= 1− lim

ρ→∞
E

{(
1

πρ2

∫
b(o,ρ)

exp(−λπD2)

+(1− exp(−λπD2))E(x)dx
)n(Ψρ)

}
(f)
= 1−

lim
ρ→∞

exp

(
−λpπρ

2

(
1− 1

πρ2

∫
b(o,ρ)

exp
(
−λπD2

)

+
(
1− exp

(
−λπD2

))
E(x)dx

))
(g)
= 1− exp

(
−λp

∫
R2

(
1− exp

(
−λπD2

))
×(1− E(x))dx

)
, (64)

where Ψρ = Φp∩b(o, ρ) and (a) follows from lim
ρ→∞

Ψρ = Φp.

Then, (b) is due to the facts that Rx is a function of x ∈ Ψρ

and Ψρ conditioned on n(Ψρ) is a BPP [11]. Also, (c) is
obtained by conditioning on the existence of a transmitter
inside each cluster, and (d) comes from Subsection III.B,
whereby E(x) is defined as

E(x) = exp (−λ |Cx|)− exp(−λπD2)

1− exp(−λπD2)
, (65)

where |Cx| is the area of the intersection between b(o, r) and
b(x, D). Also, note that
P (Rx > r | n(Φx) = 0) = 1, for 0 < r < ∞. In addition,
(e) follows from the fact that the points x are i.i.d. uniformly
distributed on b(o, ρ), (f) is found by the MGF of the number
of points of Ψρ, which is Poisson with mean λpπρ

2 [11], and
(g) is from lim

ρ→∞
exp(·) = exp( lim

ρ→∞
·) and lim

ρ→∞
b(o, ρ) =

R2.
According to Fig. 3, there are two cases for |Cx|:
Case 1: If ∥x∥ ≤ D, then

|Cx| =

πr2 ∥x∥ < D − r,
B∥x∥(r) ∥x∥ > r −D and ∥x∥ ≥ D − r,
πD2 ∥x∥ ≤ r −D,

(66)

Case 2: If ∥x∥ > D, then

|Cx| =

0 ∥x∥ > r +D,
B∥x∥(r) ∥x∥ > r −D and ∥x∥ ≤ r +D,
πD2 ∥x∥ ≤ r −D,

(67)

where B∥x∥(r) is given in (5). Therefore, converting (64) from
Cartesian to polar coordinates according to (65)-(67), the CDF
of Rt is found as

FRt(r) = 1− exp

(
−2πλp

{∫ D−r

0

(
1− exp(−λπr2)

)
udu

+

∫ D

D−r

(1− exp (−λBu(r)))udu

+

∫ D+r

D

(1− exp (−λBu(r)))udu

+

∫ ∞

D+r

(1− exp (0))udu

})
, (68)

if 0 ≤ r < D,

FRt(r) = 1−

exp

(
−2πλp

{∫ r−D

0

(1− exp(−λπD2)) (1− 0)udu

+

∫ D

r−D

(1− exp (−λBu(r)))udu

+

∫ D+r

D

(1− exp (−λBu(r)))udu

+

∫ ∞

D+r

(1− exp (0))udu

})
, (69)
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if D ≤ r < 2D, and

FRt(r) = 1−

exp

(
−2πλp

{∫ D

0

(1− exp(−λπD2)) (1− 0)udu

+

∫ r−D

D

(1− exp(−λπD2)) (1− 0)udu

+

∫ D+r

r−D

(1− exp (−λBu(r)))udu

+

∫ ∞

D+r

(1− exp (0))udu

})
, (70)

if r ≥ 2D. Here, though derived differently, (69) and (70)
lead to the same expression. The final result can be obtained
by some simplifications.

APPENDIX E
PROOF OF THEOREM 5

The LT of the total interference, conditioned on the serving
distance Rt, is

LIt(s|Rt)
(a)
= E

{
exp

(
−s

∑
y∈Φ\b(o,Rt)

hy∥y∥−α

)}

= E

{ ∏
x∈Φp

∏
y∈Φx\b(o,Rt)

exp
(
−shy∥y∥−α

)}
(b)
= E

{ ∏
x∈Φp

∏
y∈Φx\b(o,Rt)

1

1 + s∥y∥−α

}
(c)
=

E


∏

x∈Φp

exp

−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy




(d)
= exp

(
−λp

∫
R2

{
1− exp

(
−λ×∫

b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)}
dx

)
, (71)

where (a) follows from the fact that all transmitters with
distance more than Rt are interferers, (b) comes from hy ∼
exp(1), and both of (c) and (d) follow from the PGFL [11].
According to Theorems 1 and 3, there are the following cases
for the inner integral.

Case 1: If ∥x∥ ≤ D and ∥x∥ < D −Rt, then

exp

(
−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)
= A∥x∥(s). (72)

Case 2: If ∥x∥ ≤ D and ∥x∥ > Rt −D and ∥x∥ ≥ D−Rt,
then

exp

(
−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)
= B∥x∥(s). (73)

Case 3: If ∥x∥ > D and ∥x∥ >
√
R2

t +D2 and ∥x∥ ≤
Rt +D, then

exp

(
−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)
= C∥x∥(s). (74)

Case 4: If ∥x∥ > D and ∥x∥ > Rt − D and ∥x∥ ≤√
R2

t +D2, then

exp

(
−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)
= B∥x∥(s). (75)

Case 5: If ∥x∥ > Rt +D, then

exp

(
−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)
= exp (−λg(s, ∥x∥)) . (76)

Case 6: If ∥x∥ < Rt −D, then

exp

(
−λ

∫
b(x,D)\b(o,Rt)

(
1− 1

1 + s∥y∥−α

)
dy

)
= 0. (77)

Therefore, converting the outer integral from Cartesian to polar
coordinates according to (72)-(77), the LT can be given by

LIt(s|Rt) = exp

(
−2πλp

(∫ D−Rt

0

{1−Au(s)}udu

+

D∫
D−Rt

{1−Bu(s)}udu+

∫ √
D2+R2

t

D

{1−Bu(s)}udu

+

∫ D+Rt

√
D2+R2

t

{1− Cu(s)}udu

+

∫ ∞

D+Rt

{1− exp (−λg(s, u))}udu
))

, (78)

if 0 ≤ Rt < D,

LIt(s|Rt) = exp

(
−2πλp

(∫ Rt−D

0

{1− exp(0)}udu

+

∫ D

Rt−D

{1−Bu(s)}udu+

√
D2+R2

t∫
D

{1−Bu(s)}udu

+

∫ D+Rt

√
D2+R2

t

{1− Cu(s)}udu

+

∫ ∞

D+Rt

{1− exp (−λg(s, u))}udu
))

, (79)

if D ≤ Rt < 2D, and

LIt(s|Rt) = exp

(
−2πλp

(∫ Rt−D

0

{1− exp(0)}udu

+

√
D2+R2

t∫
Rt−D

{1−Bu(s)}udu+

D+Rt∫
√

D2+R2
t

{1− Cu(s)}udu
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+

∫ ∞

D+Rt

{1− exp (−λg(s, u))}udu
))

, (80)

if Rt ≥ 2D. The final result can be obtained by some
simplifications.
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