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Abstract—Heterogeneous cellular networks (HCNs) constitute
a necessary step in the evolution of cellular networks. In this
paper, we apply the signal-to-interference ratio (SIR) meta
distribution framework for a refined SIR performance analysis
of HCNs, focusing on K-tier heterogeneous cellular networks
based on the homogeneous independent Poisson point process
(HIP) model, with range expansion bias (offloading bias) in
each tier. Expressions for the b-th moment of the conditional
success probability for both the entire network and each tier are
derived, based on which the exact meta distributions and the beta
approximations are evaluated and compared. Key performance
metrics including the mean success probability, the variance of
the conditional success probability, the mean local delay and
the asymptotic SIR gains of each tier are obtained. The results
show that the biases are detrimental to the overall mean success
probability of the whole network and that the b-th moment
curve of the conditional success probability of each tier can be
tightly approximated by the horizontal shifted versions of the first
moment curve of the single-tier PPP network. We also provide
lower bounds for the region of the active probabilities of the base
stations to keep the mean local delay of each tier finite.

Index Terms—Stochastic geometry, Poisson point process, het-
erogeneous cellular network, SIR, coverage, meta distribution,
offloading.

I. INTRODUCTION

A. Motivation

Heterogeneous cellular networks (HCNs), consisting of var-
ious types of base stations such as macro, pico and femto,
are a necessary step in the evolution of cellular networks to
meet the explosive demand in mobile data traffic growth and
various emerging applications [1]. For seamless coverage, it
is essential to understand the signal-to-interference ratio (SIR)
distribution, especially at high deployment densities, which
makes the network interference-limited. In the literature, the
mathematical analysis for the SIR distribution in conventional
single-tier cellular network and HCNs mainly relies on the
application of Poisson point process (PPP) theory in stochastic
geometry [2]–[10], which has been shown to be a powerful
tool in recent years.
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However, the conventional SIR analysis for the HCNs is
restricted to the mean success probability ps(θ) , P(SIR > θ),
defined as the complementary cumulative distribution function
(CCDF) of the SIR evaluated at the typical link. Such a
performance metric is merely a macroscopic quantity by
averaging the conditional success probability (link reliability)
Ps(θ) , P(SIR > θ | Φ) over the underlying point process Φ,
hence it provides no information about the difference between
links. In contrast, the network operators’ concerns for the real
deployment of HCNs are questions such as “How are the link
reliabilities distributed among users in different tiers and/or in
the whole network?”, or “How will the offloading affect the
SIR performance of different tiers?”, or “What is the reliability
level that the ‘5% user’1 can achieve in each tier?”

To obtain such fine-grained information on the SIR per-
formance, the meta distribution concept was introduced in
[11], which characterizes the distribution of the conditional
success probabilities of the individual links given the point
process. The lack of study of the meta distribution for HCNs
with offloading biasing among different tiers motivates our
study in this paper. We shall see that the meta distribution of
SIR is a framework that facilitates the analysis for a series
of performance metrics including the variances of the link
reliability, the mean local delay and the asymptotic gains for
HCNs.

B. Related Work

For the SIR-related analysis based on stochastic geometry
in HCNs, the most commonly used model is the homogeneous
independent Poisson (HIP) model, where BSs of each tier
follow a homogeneous independent Poisson point process [12,
Def. 2]. [4] utilized the HIP model with the (biased) nearest-
BS association and considered offloading between different
tiers, where offloading was implemented by biasing the trans-
mit power of different tiers. In [5], coordinated multipoint joint
transmission (CoMP) in HCN was analyzed and it was shown,
as a special case (namely no-CoMP), that the result for a single
tier in [3] also holds for arbitrary tiers.

Instead of the (biased) nearest-BS association adopted in the
above-mentioned works, there is also the line of work using
the maximum instantaneous SINR association, such as [6]–
[10]. [6] studied the coverage (success) probability and the
average rate of the HIP model for the SINR thresholds greater

1The “5% user” refers to the user whose performance ranks at the 5th-
percentile.
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than 0 dB under both open and closed access. [7] utilized the
HIP model and determined the coverage probability from the
joint CCDF of the SINR at the typical user with the SINR
thresholds extended to all regime. [8] and [9] extended the
SINR threshold to less than 0 dB and established exact results
for the maximum instantaneous SINR association rule with
arbitrary shadowing in HCNs by the K-coverage probability.
As for the fading model, it should be noted that different from
[6], where only Rayleigh fading is considered, it has been
shown that the same result applies to arbitrary fading in [10].

As for modeling the HCNs with more general point pro-
cesses, [13] proposed two models for the two-tier HCN with
the inter-tier independence modeled by combining the PPP
and the Poisson hole process, and the intra-tier independence
taken into account by combining the PPP and Matern cluster
process respectively, yielding more accurate results for the
outage probability and the area spectral efficiency. In [14], for
HCNs consisting of general point processes as each tier with
unbiased association, the authors studied the SIR distribution
by using the shifted versions of the PPP SIR distributions as
approximations.

Most of these above-discussed works related to the SIR
analysis in HCNs only analyze the mean success probability
without delving into the SIR performance at the individual
link level. To overcome this limitation, we need to develop
the meta distribution framework for the HCNs.

The meta distribution has been applied to different scenarios
since it was formally formulated in [11], where the analysis
of single-tier Poisson bipolar networks with ALOHA channel
access and the downlink of Poisson cellular networks laid the
foundation of the concept. It was applied to study D2D com-
munication underlaid with the downlink of Poisson cellular
networks [15], uplink and downlink Poisson cellular networks
with fractional power control [16], D2D communications with
interference cancellation [17], millimeter-wave D2D networks
[18], the spatial outage capacity [19], and downlink coordi-
nated multi-point transmission/reception (CoMP) in cellular
networks [20]. These studies revealed some interesting new
insights that are of significance to the deployment of real
networks.

C. Contributions

In this paper, we develop an SIR meta distribution analysis
framework for the HIP downlink model under Rayleigh fading.
We show that this framework enables a comprehensive under-
standing of a series of key performance metrics and network
design problems. Specifically,

• We derive exact analytical expressions of the b-th moment
of the conditional success probability for both the overall
typical user and the typical user in each tier.

• We show that the beta distribution is an excellent approx-
imation for the exact meta distribution of both the entire
network and each tier.

• We reveal that both the b-th moment and the variance of
the conditional success probability for each tier can be
efficiently approximated by horizontally shifting the mean
success probability curve of the single-tier PPP according

TABLE I
LIST OF SYMBOLS

Symbol Definition
Φi PPP to constitute the i-th tier
λi Intensity of BSs in the i-th tier
Pi Transmission power of the i-th tier
Bi Range expansion bias of the i-th tier
Ψ Point process to constitute the HCN
α Path loss exponent

ν(o) Serving BS of the typical user at the origin
ι(x) Tier index of BS x
h Small scale fading channel gain
θ SIR threshold for success transmission

Ps(θ) Conditional success probability
Mb b-th moment of Ps(θ)
G0 Asymptotic SIR gain at θ → 0
G∞ Asymptotic SIR gain at θ → ∞
pi BS active probability for the i-th tier

to the asymptotic SIR gains, whose expressions are given
explicitly.

• We rigorously study the effects of the offloading biases
on both the entire network and each tier in terms of
the first moment and variance of the conditional success
probability.

• We extend the model to include random base station
activity by ALOHA and derive analytical expressions of
the b-th moment of the conditional success probability
for both the overall typical user and the typical user in
each tier.

• We derive lower bounds of the region of ALOHA
probabilities so that the mean local delay remains finite
under the effect of random base station activity.

D. Organization

The rest of the paper is organized as follows: Section II
introduces the system model and the concept of the SIR meta
distribution in HCNs. Section III develops the general frame-
work for the analysis of HCNs using the meta distribution,
wherein we derive exact analytical expressions of the b-th
moment of the conditional success probability, both for the
entire network and for each individual tier, and discuss various
key performance metrics and some network design problems
related to offloading. Section III-D extends the SIR meta
distribution to the analysis of random base station activity.
Section V concludes the paper.

Notations: The mean of the random variable X is denoted
by E[X]. The probability of event A is denoted by P(A). The
Gaussian hypergeometric function is denoted by 2F1(., .; .; .).
The meanings of the main symbols employed in this paper is
listed in Table I.

II. SYSTEM MODEL

A. SIR Model

We consider a general K-tier heterogeneous cellular net-
work model, where BSs of each tier follow a homogeneous
independent Poisson point process Φi with intensity λi. This is
the so-called homogeneous independent Poisson (HIP) model
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[12, Def. 2]. For the BSs of the i-th tier, the transmit
power is Pi, and the range expansion bias is Bi. For BS
x ∈ Ψ =

∪
i∈[K]

Φi, ι(x) ∈ [K], denotes its tier number, and

[K] = {1, 2, ...K}. We assume the standard power-law path
loss model with exponent α > 2, and define δ = 2/α. The
downlink association rule is the biased nearest-BS association,
i.e., for the typical user at the origin o, its serving BS ν(o) is
drawn from all BSs according to

ν(o) = argmax
x∈Ψ

{Pι(x)Bι(x)∥x∥−α}, (1)

where ι(x) is the tier index of BS x.
The power fading coefficient associated with BS x ∈ Ψ

is denoted by hx, which is exponentially distributed with
E(hx) = 1 (Rayleigh fading). Rj is the distance from the
typical user to the nearest BS in Φj . First we focus on the
fully loaded case on a certain resource block (RB), i.e., all
BSs are always active on the RB in consideration.

Letting x0 = ν(o), for the typical user at the origin, the
received signal-to-interference ratio (SIR) is given by

SIRo =
Pι(x0)hx0∥x0∥−α∑

x∈Ψ\{x0}
Pι(x)hx∥x∥−α

. (2)

B. Meta Distribution and Fine-grained Information for HCNs

The SIR meta distribution for single-tier cellular networks
is the two-parameter function defined as [11]

F̄ (θ, t) , F̄Ps(t) = P(Ps(θ) > t), θ ∈ R+, t ∈ [0, 1], (3)

which is the CCDF of the conditional success probability (link
reliability) Ps. The b-th moment of the meta distribution is
denoted by Mb(θ) , E(Ps(θ)

b).
Mb is of great importance for the analysis of the network

performance, since many relevant metrics are special cases, as
explained in the following.

• M1 is the standard success probability (or coverage
probability) used in many stochastic geometry studies,
it is the spatial average of all links in the point process.

• M−1 is usually called the mean local delay. To see this,
let L denote the number of transmission attempts needed
until a packet is successfully received (decoded) over a
wireless link and assume that the fading over different
transmission intervals is independent. Then given the
point process, L is geometrically distributed with param-
eter Ps, i.e., P (L = k | Φ) = (1 − Ps)

k−1Ps, k ∈ N,
then

E [L] = E [E [L | Φ]] = E
[
1

Ps

]
= M−1.

• The variance M2 − M2
1 is a metric characterizing the

concentration of the link reliabilities of the individual
links in the network, hence it reflects the fairness among
the users.

These metrics are particularly important information to the
operators for the optimization of the networks.

In the context of HCNs, we consider two types of SIR meta
distributions, one is for the overall network (i.e., the overall

typical user) and the other is specific to the i-th tier, obtained
by conditioning on the typical user connecting to that tier. In
the following, we use the label (i) for the quantities related
to the i-th tier meta distributions.

III. SIR META DISTRIBUTION FRAMEWORK

In this section we derive the general analytical expression
for the b-th moment of the meta distribution in the HIP model
with biasing.

A. Moments of the Conditional Success Probability

First, we state a lemma about the conditional and average
access probabilities for the typical user connecting to the given
i-th tier, which is a slight reformulation of [4, Lemma 1].
Hence the proof is omitted.

Lemma 1 (Access probability) Defining ι(x0) , ι(ν(o)),
the conditional access probability for the typical user con-
necting to the i-th tier given Ri is

P(ι(x0) = i | Ri) =
∏
j ̸=i

e−λjπ(P̂ijB̂ij)
δR2

i , (4)

and the access probability that the typical user is associated
with the i-th tier is

p(i)a , P(ι(x0) = i) =
1∑

j∈[K]

λ̂ij(P̂ijB̂ij)δ
, (5)

where λ̂ij = λj/λi, P̂ij = Pj/Pi and B̂ij = Bj/Bi.

Next we present the first main result on the moments of the
conditional success probability.

Theorem 1 (Moments for the K-tier HCNs) For the over-
all typical user in the K-tier HIP model with range expansion,
the b-th moment of the conditional success probability is given
by

Mb =
∑
i

1∑
j

λ̂ij(P̂ijB̂ij)δ 2F1(b,−δ; 1− δ;−θB̂−1
ij )

, (6)

where i, j ∈ [K], λ̂ij = λj/λi, P̂ij = Pj/Pi and B̂ij =
Bj/Bi.

Proof: See Appendix A.

Corollary 1 (Moments without range expansion) For the
overall typical user, the b-th moment Mb with no range
expansion in any tier, i.e., Bi = 1 for i ∈ [K], is given by

Mb =
1

2F1(b,−δ; 1− δ;−θ)
, b ∈ C. (7)

Proof: This can be easily obtained by setting Bi = 1 for
i ∈ [K] in (6).

Remark 1 The b-th moment of the meta distribution of the
overall typical user in a HIP-based K-tier downlink HCN
without range expansion in any tier is the same as that in a
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single-tier network [11, Thm. 2]. Hence the meta distribution
is the same. This shows that the multi-tier architecture does not
improve the performance of the 5% user (or, more generally,
the fairness between the users).

Corollary 2 (Moments for the typical user in the i-th tier)
Conditioned on the typical user connecting to the i-th tier,
the b-th moment of the meta distribution is given by

Mb|(i) =

∑
j λ̂ij(P̂ijB̂ij)

δ∑
j λ̂ij(P̂ijB̂ij)δ 2F1(b,−δ; 1− δ;−θB̂−1

ij )
, (8)

where λ̂ij = λj/λi, P̂ij = Pj/Pi and B̂ij = Bj/Bi.

Proof: This follows directly from the proof of Thm. 1.

Corollary 3 (Mean local delay) For the typical user in the
i-th tier, the mean local delay is given by

M−1|(i) =
(1− δ)

∑
j λ̂ij(P̂ijB̂ij)

δ∑
j λ̂ij(P̂ijB̂ij)δ(1− δ − δθB̂−1

ij )
. (9)

Proof: The mean local delay is the -1-st moment of the
conditional success probability in Cor. 2. Using the identity
2F1(−1, b; c; z) ≡ 1− bz

c , (9) is obtained.
The mean local delay M−1|(i) has a phase transition at θc|(i)

as given in (10) when it is seen as a function of the SIR
threshold with the other parameters fixed, which means the
mean local delay is finite for θ < θc|(i) and is infinite for
θ ≥ θc|(i). By setting the denominator in (9) to zero, we obtain

θc|(i) =
(1− δ)

∑
j λ̂ij(P̂ijB̂ij)

δ

δ
∑

j λ̂ij(P̂ij)δ(B̂ij)δ−1
. (10)

B. Calculation and Approximation of the Meta Distribution

According to the Gil-Pelaez theorem [21], for a general
variable X > 0 with characteristic function φX(t) , EejtX ,
j ,

√
−1, t ∈ R, the CCDF of X is given by

F̄X(x) =
1

2
+

1

π

∫ ∞

0

ℑ(e−jt log xφX(jt))

t
dt, (11)

where ℑ(z) denotes the imaginary parts of z ∈ C.
Letting X , logPs(θ) (or X , logPs|(i)(θ)), we have

φX(t) = Mjt (or φX(t) = Mjt|(i)), setting b = jt in (7) (or
(8)). Hence, the meta distribution of the conditional success
probability for the whole network (and the specific i-th tier)
can be calculated.

The calculation of the exact meta distribution via the Gil-
Pelaez theorem usually involves many calculations of imag-
inary moments, which prohibits direct insights into the meta
distributions and its applications in mapping to other perfor-
mance metrics like the ergodic data rate [18], etc. An efficient
approximation of the meta distribution F̄ (θ, t) is obtained by
using the beta distribution through matching the first moment
M1 and second moment M2, which has been verified in [11],
[15]–[18] for various network scenarios. Specifically,

F̄ (θ, t) ≈ 1− Ix

( βM1

1−M1
, β
)
, x ∈ [0, 1], (12)

x
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(a) A two-tier HCN
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Fig. 1. The exact meta distributions and beta approximations for the overall
network and for each tier of (a) a two-tier HCN and (b) a three-tier HCN with
θ = 0 dB, α = 4, λ1 = 1, λ2 = 5, λ3 = 10, P1 = 1, P2 = 0.2, P3 =
0.05, B1 = 0 dB, B2 = 10 dB and B3 = 20 dB. The solid lines correspond
to the exact results and the dashed lines are the beta approximations.

where β = (M1−M2)(1−M1)
M2−M2

1
, Ix(., .) is the regularized incom-

plete beta function.

It is worth noting that recently, as shown in [22], the
(approximate) meta distribution can also be directly obtained
from the moments by a simple linear transform, which is a
more convenient way for efficient calculations.

Fig. 1(a) shows the meta distributions for a two-tier HCN,
and Fig. 1(b) shows the meta distributions for a three-tier
network, where the first two tiers are identical to the pre-
vious network. First we can see that the beta approximations
are excellent for multi-tier HCNs with biases. Moreover, by
comparing the two figures, we can observe the influence by
increasing the number of tiers from two to three, i.e., the
coverage performance of the existing tiers benefit from the
offloading provided by the newly deployed tier, while the
performance of the latter is below the average of the whole
network.
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C. Asymptotic SIR Gains

As shown in [12], [23], [24], the CCDFs F̄SIR(θ) of the SIR
at the typical user in all general single-tier nearest-associated
networks resemble merely horizontally shifted versions in the
SIR threshold θ (in dB) of each other, as long as they have the
same diversity gain. The horizontal gap (or the “SIR gain”)
relative to a reference network model at the target success
probability pt is given by

Gp(pt) ,
F̄−1
SIR(pt)

F̄−1
SIRref

(pt)
, (13)

where F̄−1
SIR is the inverse function of F̄SIR(θ).

Usually it is more convenient to write Gp(pt) as a function
of θ by G(θ) = θ′/θ, where θ′ is given by F̄SIR(θ

′) =
F̄SIRref

(θ) = pt.
The asymptotic SIR gain at the high-reliability regime is

defined by
G0 , lim

θ→0
G(θ). (14)

Similarly, the asymptotic SIR gain at the low-reliability
regime is defined as

G∞ , lim
θ→∞

G(θ). (15)

Usually, the most sensible reference network model is
the homogeneous PPP. If G0 (or G∞) exists, then a rather
convenient way to estimate ps(θ) of the network in focus is
by using G0 (or G∞) as the scaling factor G for θ, i.e.,

ps(θ) ≈ ps,PPP(θ/G). (16)

G(θ) in dB quantifies the horizontal gap between ps(θ) and
ps,PPP(θ) for θ in dB.

Next, we extend the above-mentioned SIR asymptotic gain
in single-tier networks to HCNs based on the HIP model.

Definition 1 (Asymptotic SIR gains in HCNs) For the HC-
N model in this paper, the asymptotic SIR gains of the b-th
moment of the conditional success probability for each tier,
at both the high-reliability and low-reliability regimes, with
the standard success probability of the single-tier PPP as the
reference, are, respectively, given by

G
(i)
0,b = lim

θ→0

M−1
b|(i)(ps,PPP(θ))

θ
, (17)

and

G
(i)
∞,b = lim

θ→∞

M−1
b|(i)(ps,PPP(θ))

θ
. (18)

where M−1
b|(i) is the inverse function of Mb|(i) and ps,PPP(θ) =

M1 in (7).

We will show that, remarkably, the horizontal shift is appli-
cable to each tier in the HCN. Before deriving the asymptotic
gains, we first state a lemma about the asymptotics of the
hypergeometric function 2F1.

Lemma 2 For b ∈ C,

2F1(b,−δ; 1− δ;−z) ∼ 1 + bz
δ

1− δ
, z → 0, (19)

and
2F1(b,−δ; 1− δ;−z) ∼ zδT (b), z → ∞, (20)

where T (b) =
∫∞
0

(1− (1 + r−
1
δ )−b)dr.

Proof: For z → 0, (19) simply follows from the definition
(i.e., the series expression) of the hypergeometric function

2F1(a, b; c; z) ,
∞∑

n=0

(a)n(b)n
(c)n

zn

n! , for |z| < 1 and (q)m ,
Γ(q+m)
Γ(q) is the Pochhammer function (rising factorial).
When z → ∞, we express the hypergeometric function as

2F1(−b,−δ; 1− δ;−z) = 1 + 2

∫ 1

0

(
1− 1

(1 + zrα)b

)
r−3dr

= 1 + zδ2

∫ z
1
α

0

(
1− 1

(1 + rα)b

)
r−3dr

= 1 + zδ
∫ ∞

z− 1
δ

(
1− 1

(1 + r−
1
δ )b

)
dr

= 1 + zδ
(
T (b)− f(z)

)
, (21)

where f(z) =
∫ z−1/δ

0

(
1 − 1

(1+r−1/δ)b

)
dr. The first step is

according to [11, eq. (23)]; the second step follows from the
variable substitution z

1
α r → r and δ = 2/α; the third step

follows from the variable substitution r → r−
1
2 .

Since f(z) = o(1) as z → ∞, only the term T (b) matters
asymptotically after multiplication with zδ , i.e., zδ(T (b) −
o(1)) ∼ zδT (b), and we obtain (20).

Corollary 4 (Asymptotic SIR gains relative to PPP)
Conditioned on the typical user connecting to the i-th tier,
the asymptotic SIR gains of the b-th moment of the meta
distribution relative to M1 of the single-tier homogeneous
PPP are given by

G
(i)
0,b =

∑
j λ̂ijP̂

δ
ijB̂

δ
ij

b
∑

j λ̂ijP̂ δ
ijB̂

δ−1
ij

, (22)

and

G
(i)
∞,b =

(T (1)
T (b)

∑
j λ̂ijP̂

δ
ijB̂

δ
ij∑

j λ̂ijP̂ δ
ij

) 1
δ

, (23)

where b ∈ C, λ̂ij = λj/λi, P̂ij = Pj/Pi and B̂ij = Bj/Bi.

Proof: To determine G
(i)
0,b, we need to evaluate the limit

of Mb|(i)(θ) at θ → 0. Applying (19) in (8),

Mb|(i)(θ) ∼
∑

j λ̂ijP̂
δ
ijB̂

δ
ij∑

j λ̂ijP̂ δ
ijB̂

δ
ij

(
1 + bθB̂−1

ij
δ

1−δ

)
=

1

1 + δ
1−δ

θ

G
(i)
0,b

∼ 1− δ

1− δ

θ

G
(i)
0,b

. (24)

Since for the PPP,

M1,PPP(θ) =
1

2F1(1,−δ, 1− δ;−θ)
∼ 1− θδ

1− δ
, (25)
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it is clear that G(i)
0,b is exactly the asymptotic gain for θ → 0.

To determine G
(i)
∞,b, applying (20) in (7) and (8), we have

M1,PPP(θ) ∼ θ−δT−1(1), (26)

Mb|(i)(θ) ∼
( ∑

j λ̂ijP̂
δ
ij∑

j λ̂ijP̂ δ
ijB̂

δ
ij

T (b)θδ
)−1

. (27)

G
(i)
∞,b is then obtained by comparing (26) and (27).

Remark 2 In Cor. 4, the reference model in use is the first
moment of the conditional success probability of the single-
tier PPP. Another possibility is to use the b-th moment of the
conditional success probability of the single-tier PPP as the
reference model; in this case, the two asymptotic gains in (22)
and (23) become G′(i)

0,b and G′(i)
∞,b, which are constants as

shown in (28) and (29), respectively.

G′(i)
0,b =

∑
j λ̂ijP̂

δ
ijB̂

δ
ij∑

j λ̂ijP̂ δ
ijB̂

δ−1
ij

, (28)

G′(i)
∞,b =

(∑
j λ̂ijP̂

δ
ijB̂

δ
ij∑

j λ̂ijP̂ δ
ij

) 1
δ

. (29)

From this it is easy to infer that the variances V (i)(θ) of
each tier are also shifted versions of each other, as shown in
Fig. 5 in Sec. IV.

D. Base Station Activity

In this section, we model the random activities of interfering
base stations in each tier by the ALOHA model, i.e., the
interfering BSs of tier i are active only with probability pi.
The activities of different base stations are independent. We
first derive the general b-th moment for the typical user of
each individual tier and the whole network and then a lower
bound of the activity probabilities that result in finite mean
local delay.

Theorem 2 Given that the typical user connects to the i-
th tier with the serving BS always being active, and the
interfering BSs in tier j ∈ [K] are active independently with
probability pj , the b-th moment of the meta distribution can
be expressed as (30), where p = (p1, p2, ...pK), λ̂ij = λj/λi,
P̂ij = Pj/Pi, and B̂ij = Bj/Bi.

Proof: See Appendix B.
As expected, letting K = 1, (30) retrieves the single-tier

result in [11, Thm. 3]; also, letting K = 2 and assuming the
two tiers share the same parameters, the result of each tier is
also the same as the-single tier result.

Theorem 3 For the overall typical (active) user with the
interfering BSs in tier j ∈ [K] are active independently with
probability pj , the b-th moment of the meta distribution can
be expressed as (31), where p = (p1, p2, ...pK), λ̂ij = λj/λi,
P̂ij = Pj/Pi, and B̂ij = Bj/Bi.

From (30), the mean local delay of the typical user con-
necting to the i-th tier is given by

M−1|(i)(p) =
1

Di(p)
, p ∈ Si, (32)

where

Di(p) = 1− piθδ

1− δ
2F1(1, 1− δ; 2− δ;−θ(1− pi))

+
∑
j ̸=i

λj

λi

(PjBj

PiBi

)δ(
1− pjθδ

1− δ

· 2F1

(
1, 1− δ; 2− δ;−θBi(1− pj)

Bj

))
, (33)

and Si is the region for p in which the mean local delay is
finite for the i-th tier, defined by

Si , {(p1, p2, ...pK) ∈ [0, 1]K : Di(p) > 0}. (34)

The boundary of the region for the finite mean local delay
for the i-th tier is then defined as

∂Si , {(p1, p2, ...pK) ∈ [0, 1]K : Di(p) = 0}. (35)

The region of all tiers is then given by the intersection

S ,
∩

i∈[K]

Si. (36)

A simple but reasonable inference from (32) and (33) is that
for small p, the mean local delay is finite since the interference
is low and most of the users in each tier have a high conditional
success probability, as p grows higher, the interference gets
severe, and with p increasing to some critical threshold, Di(p)
will go to zero, resulting in the infinite mean local delay.

It is hard to exactly characterize Si, next we provide a lower
bound ∂Ši of Si to shed light on the effect of the base station
activity probabilities p. By noticing that

2F1(1, 1− δ; 2− δ;−z)
(a)
= (1 + z)−1

2F1

(
1, 1; 2− δ;

z

1 + z

)
(b)
= (1 + z)−1

∞∑
m=0

(1)m(1)m
(2− δ)m

um

m!

= (1 + z)−1
∞∑

m=0

(1)m
(2− δ)m

um

< (1 + z)−1
(
1 +

u

2− δ
+

u2

2− δ
+ ...

)
= (1 + z)−1

(
1 +

1

2− δ

u

1− u

)
= (1 + z)−1

(
1 +

1

2− δ
z
)
, (37)

where (a) is by the Euler’s transformation; (b) is by the
series form of the Gaussian hypergeometric function 2F1 and
(q)m ≡ Γ(q+m)

Γ(q) is the Pochhammer function (rising factorial).
The boundary is given by

∂Ši = {(p1, p2, ...pK) ∈ [0, 1]K : Ďi(p) = 0}, (38)
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Mb|(i)(p) =

∑
j λ̂ij(P̂ijB̂ij)

δ∑
j

λ̂ij(P̂ijB̂ij)δ
(
1−

∞∑
k=1

(
b
k

)
(−pjθB̂

−1
ij )k δ

k−δ 2F1(k, k − δ; k − δ + 1;−θB̂−1
ij )
) (30)

Mb(p) =
∑
i

1∑
j

λ̂ij(P̂ijB̂ij)δ
(
1−

∞∑
k=1

(
b
k

)
(−pjθB̂

−1
ij )k δ

k−δ 2F1(k, k − δ; k − δ + 1;−θB̂−1
ij )
) (31)

where

Ďi(p) =
∑
j

λj

λi

(
PjBj

PiBi

)δ(
1− pjθδ

1− δ

(
1+θ

Bi

Bj
(1−pj)

)−1(
1+

θBi(1− pj)

(2− δ)Bj

))
.

(39)

IV. APPLICATIONS IN TWO-TIER HCNS

In this section, we apply the meta distribution framework
developed in Sec. III to the two-tier HIP model and show
the corresponding numerical results. Since the performances
are affected only by the ratios between the densities, transmit
powers and biases of the two tiers, we assume P1 = λ1 =
B1 = 1 without loss of generality.

A. Moments
Defining fb(x) , 2F1(b,−δ; 1− δ;−x), we obtain the first

moment and variance for each tier from Cor. 2,

M1|(1) =
1 + λ2(P2B2)

δ

f1(θ) + λ2(P2B2)δ f1(θB
−1
2 )

, (40)

M1|(2) =
1 + λ−1

2 (P2B2)
−δ

f1(θ) + λ−1
2 (P2B2)−δ f1(θB2)

, (41)

V(1) =
1 + λ2(P2B2)

δ

f2(θ) + λ2(P2B2)δ f2(θB
−1
2 )

−
( 1 + λ2(P2B2)

δ

f1(θ) + λ2(P2B2)δ f1(θB
−1
2 )

)2
, (42)

V(2) =
1 + λ−1

2 (P2B2)
−δ

f2(θ) + λ−1
2 (P2B2)−δ f2(θB2)

−
( 1 + λ−1

2 (P2B2)
−δ

f1(θ) + λ−1
2 (P2B2)−δ f1(θB2)

)2
. (43)

Fig. 2 and Fig. 3 show M1 and V of each tier in a two-tier
HCN. We can see that if there is no bias (i.e., B1 = B2 = 1),
the curves of M1 and V of both tiers coincide, which implies
that the two tiers have the same SIR statistics regardless of
their different densities and powers. However, the inequality
in range expansion bias results in the separation between these
two tiers in terms of M1 and V . Specifically, since biasing
means offloading, we can draw the conclusion that offloading
from one tier to the other will always benefit M1 of the former,
while harming the latter, for any given θ.

B. Horizontal Shifting via Asymptotic SIR Gains
For the two-tier HCN example (the same one for Fig. 1(a)),

the asymptotic SIR gain for M1 of each tier is respectively

θ (dB)
-30 -20 -10 0 10 20 30

M
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Macro, B2 = 1
Pico, B2 = 1
Macro, B2 = 0.1
Pico, B2 = 0.1
Macro, B2 = 10
Pico, B2 = 10

Fig. 2. M1 of the typical user in each tier versus θ with α = 4, P2 = 0.2

and λ2 = 5. In this case, for B2 = 1, p
(1)
a = 0.5 and p

(2)
a = 0.5; for

B2 = 0.1, p(1)a = 0.59 and p
(2)
a = 0.41; for B2 = 10, p(1)a = 0.12 and

p
(2)
a = 0.88.

θ (dB)
-30 -20 -10 0 10 20 30

V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14
Macro, B2 = 1
Pico, B2 = 1
Macro, B2 = 0.1
Pico, B2 = 0.1
Macro, B2 = 10
Pico, B2 = 10

Fig. 3. V of the typical user in each tier versus θ with α = 4, P2 = 0.2

and λ2 = 5. In this case, for B2 = 1, p
(1)
a = 0.5 and p

(2)
a = 0.5; for

B2 = 0.1, p(1)a = 0.59 and p
(2)
a = 0.41; for B2 = 10, p(1)a = 0.12 and

p
(2)
a = 0.88.

given by G
(1)
0,1 =

1+λ2P
δ
2 Bδ

2

1+λ2P δ
2 Bδ−1

2

and G
(2)
0,1 =

1+λ−1
2 P−δ

2 B−δ
2

1+λ−1
2 P−δ

2 B1−δ
2

.
Numerically, for the case B2 = 10 dB shown in Fig. 2 and
Fig. 3, G

(1)
0,1 = 6.75 dB, G

(2)
0,1 = −3.25 dB, G

(1)
0,2 = 3.74

dB, G
(2)
0,2 = −6.27 dB, G

(1)
∞,1 = 9.94 dB, G

(2)
∞,1 = −2.06

dB, G(1)
∞,2 = 4.42 dB and G

(2)
∞,2 = −5.58 dB. Fig. 4 shows
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θ dB
-30 -20 -10 0 10 20 30

M
b

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

M1 of PPP

Exact result

Shifted by G
(i)
0,b

Shifted by G
(i)
∞,b

Tier-2

Tier-1

b = 2

b = 1

Fig. 4. Illustration for the asymptotic gain of Mb in each tier of a two-tier
HCN relative to M1 of a single-tier PPP. In this case, α = 4, P2 = 0.2 and
λ2 = 5, B2 = 10 dB. The solid lines correspond to the exact results and the
dashed lines are the shifted versions of M1 of the single-tier PPP by G

(i)
0,b

and G
(i)
∞,b, i = 1, 2, respectively.

θ (dB)
-30 -20 -10 0 10 20 30

V
ar

ia
nc

e

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

V (θ) of PPP

Exact result

Shifted by G
(i)
0,b

Shifted by G
(i)
∞,b

Tier-1Tier-2

Fig. 5. Illustration for the asymptotic gain of V (i)(θ) of a two-tier HCN
relative to the variance of a single-tier PPP. In this case, α = 4, P2 = 0.2
and λ2 = 5, B2 = 10 dB. The solid lines correspond to the exact results
and the dashed lines are the shifted versions of V (θ) of the single-tier PPP
by the asymptotic gains G

(i)
0,b and G

(i)
∞,b, i = 1, 2, respectively.

the comparison between the exact b-th moment curves and
the shifted versions of the M1 of a single-tier PPP as the
reference model and Fig. 5 shows the comparison between the
exact variance curves and the shifted versions of the variance
of a single-tier PPP as the reference model. We can see that
the shifted versions by using the asymptotic gain are excellent
approximations for the exact results.

C. Effects of Biasing

In this section, we study the effects of range expansion
biases on the coverage performance of each individual tier
and the whole network.

Sometimes, it is convenient and of significance to consider
the asymptotic performance of the range expansion biases.

Corollary 5 For B2 → ∞, which means that tier 1 is closed-
access, we have

(a) M1|(1) ∼ 1, M1|(2) ∼ λ2P
δ
2 sinc δ

F (δ, θ)λ2P δ
2 sinc δ + θδ

; further,

for θ → ∞, M1|(2) ∼
λ2P

δ
2 sinc δ

θδ(1 + λ2P δ
2 )

;

(b) V(1) → 0, V(2) ∼ 1

F (δ, θ) + 3−2δ
(2−δ)λ2P δ

2 sinc δ
θδ

−( λ2P
δ
2 sinc δ

F (δ, θ)λ2P δ
2 sinc δ + θδ

)2
; further, for θ → ∞, V(2) ∼

λ2P
δ
2 sinc δ

θδ(1 + δ)(1 + λ2P δ
2 )

− λ2
2P

2δ
2 sinc2 δ

θ2δ(1 + λ2P δ
2 )

2
,

where F (δ, θ) = 2F1(1,−δ; 1− δ;−θ).

Proof: These results are easily obtained by using (20) in
Lemma 2 by noting that T (1) = 1

sinc δ , T (2) = 1+δ
sinc δ and the

identity 2F1(a, b; c; 0) ≡ 1.

Corollary 6 B2 > 1 ⇔ M1|(1) > M1|(2).

Proof: Since f1(x) is monotonically increasing, we have
f1(θB2) > f1(θ) > f1(θB

−1
2 ) for B2 > 1. Then from (40)

and (41) we have M1|(1) >
1

1+f1(θ)
while M1|(2) <

1
1+f1(θ)

.

In words, offloading from one tier to the other will harm
the average success probability of the latter tier.

As for the overall typical user, according to Thm. 1, its first
moment and variance of the conditional success probability
are, respectively, given by

M1(B2) =
1

f1(θ) + λ2(P2B2)δf1(θB
−1
2 )

+
1

f1(θ) + λ−1
2 (P2B2)−δf1(θB2)

, (44)

V (B2) =
1

f2(θ) + λ2(P2B2)δf2(θB
−1
2 )

+
1

f2(θ) + λ−1
2 (P2B2)−δf2(θB2)

−

(
1

f1(θ) + λ2(P2B2)δf1(θB
−1
2 )

+
1

f1(θ) + λ−1
2 (P2B2)−δf1(θB2)

)2

. (45)

We can prove that ∂M1

∂B2

∣∣∣
B2=1

= 0, ∂V
∂B2

∣∣∣
B2=1

= 0, which

means B2 = 1 is an extreme point. Also, ∂2M1

∂B2
2

∣∣∣
B2=1

≤ 0,
hence B2 = 1 is the maximal point of M1 (see that shown
in Fig. 6 ). For the second derivative of V at B2 = 1, it is
not easy to judge its sign across different values of B2 since
it is related to the value of θ. But we can observe this from
the analytical curves shown in Fig. 7 that B2 = 1 is the local
minimum.
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θ = 0 dB
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Fig. 6. Analytical results for M1 of the typical user of the entire network
versus B2 with α = 4, P2 = 0.2 and λ2 = 4.

B2 (dB)
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V
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0.12

0.14

0.16
θ = 0 dB
θ = 10 dB
θ = 20 dB
θ = −10 dB

Fig. 7. Analytical results for V of the typical user of the entire network
versus B2 with α = 4, P2 = 0.2 and λ2 = 4.

Based on the above analysis, for the M1 of the overall users
in a general K-tier HCN, we have the following corollary.

Corollary 7 For the K-tier HIP model, setting all bias terms
Bi to the same value (i.e., no biasing) maximizes M1(θ) of
the overall typical user for all θ > 0.

Proof: For an arbitrary realization of the point process
Ψ, determine the local-average SIR, which is equal to (2) but
without the fading coefficients (see [25, Eqn. (11)]) for all
users for Bi = 1, i ∈ [K] (no biasing). This is by definition
the best local-average SIR that each user can achieve. Con-
sequently, if for any tier i, Bi ̸= 1, there will be some users
whose local-average SIR will decrease since they are no longer
associated with the strongest-on-average BS. This implies that
M1 decreases.

Remark 3 For a general K-tier HCN with range expansion

θ (dB)
-30 -20 -10 0 10 20 30

V

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

Exact, B2 = 60 dB

Asymp, Cor. 3(3)

Fig. 8. Asymptotic V of the typical user in the pico tier versus θ with
α = 4, P2 = 0.2 and λ2 = 5.

θ (dB)
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M
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact, B2 = 30 dB
Asymp, Cor. 3(1)

Fig. 9. Asymptotic M1 of the typical user in the pico tier versus θ with
α = 4, P2 = 0.2 and λ2 = 5.

bias Bi in the i-th tier, it is not easy to determine whether
Bi > 1 is harmful to the coverage performance in terms
of M1 for the i-th tier than the case with Bi = 1. Since
what plays the decisive role are the ratios between Bi and
the bias values of the other tiers, which, in essence, reflect
the offloading relationship among different tiers. In particular,
Bi/Bj < 1 means offloading from the i-th tier to the j-th
tier and vice versa. Hence, for a two-tier case, if some of the
users in the first tier are offloaded to the second tier, then the
latter definitely suffers a loss in M1; however, for a three-tier
case, if some of the users in the first tier are offloaded to the
second tier, but some users belong to the second tier are also
offloaded to the third tier, then the M1 of the second tier may
improve.
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θ (dB)
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0.14
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Asymp, Cor. 3(3)

Fig. 10. Asymptotic V of the typical user in the pico tier versus θ with
α = 4, P2 = 0.2 and λ2 = 5.

D. Lower Bounds of the Mean Local Delay with Random BS
Activity

Specifically, for a two-tier HIP model, we have the follow-
ing corollary.

Corollary 8 For a two-tier HCN, given all the other param-
eters,

(1) if B1 = B2, then S = S1 = S2;
(2) if Bi > Bj , then S = Sj , i, j ∈ {1, 2};
(3) if θ < 1−δ

δ , then S = S1 = S2 = [0, 1]2.

Proof: For a two-tier HCN, we have

D1(p1, p2)

= 1− p1θδ

1− δ
2F1(1, 1− δ; 2− δ;−θ(1− p1))︸ ︷︷ ︸

A1

+
λ2

λ1

(P2B2

P1B1

)δ

·
(
1− p2θδ

1− δ
2F1

(
1, 1− δ; 2− δ;−θ(1− p2)

B1

B2

)
︸ ︷︷ ︸

G2

)
,

(46)

D2(p1, p2)

= 1− p2θδ

1− δ
2F1(1, 1− δ; 2− δ;−θ(1− p2))︸ ︷︷ ︸

G1

+
λ1

λ2

(P1B1

P2B2

)δ

·
(
1− p1θδ

1− δ
2F1

(
1, 1− δ; 2− δ;−θ(1− p1)

B2

B1

)
︸ ︷︷ ︸

A2

)
.

(47)

(1) For B1 = B2, let g(x) = 1− xθδ
1−δ 2F1(1, 1−δ; 2−δ;−θ(1−

x)), c = λ2

λ1

(
P2

P1

)δ
, then D1(p1, p2) = g(p1) + cg(p2),

D2(p1, p2) = D1(p1,p2)
c , since c > 0, it is obvious that

D1(p1, p2) and D2(p1, p2) always get negative at the same

p2

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

p
1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Exact Bound
Lower Bound

θ = 20 dB

θ = 5 dB

θ = 2 dB

θ = 10 dB

Fig. 11. The exact boundary ∂S1 and its lower bound ∂Š1 of a two-tier
HCN with α = 4, λ2/λ1 = 25, P1/P2 = 200 and B2/B1 = 10. In this
case, S = S1.

(p1, p2). Hence S1 and S2 share the same boundary and
thus S1 = S2.

(2) Without loss of generality, we assume B2 > B1. Let d =
B2

B1
> 1, then D1(p1, p2) = A1 + cdδG2, D2(p1, p2) =

A2+cdδG1

cdδ . Since 2F1(1, 1−δ; 2−δ;−z) is a monotonically
decreasing function of z for z ≥ 0, which is easy to be
proved by its first-order derivative, for given p1, p2, we
have A1 < A2, G1 > G2, hence as p1 and (or) p2 increase,
D1(p1, p2) will decrease to zero first, resulting in S1 ⊂ S2.

(3) Let p1 = p2 = 1, then Ďi(1, 1) =
(
1 +∑

j ̸=i
λj

λi

(PjBj

PiBi

)δ)(
1 − θ δ

1−δ

)
, Ďi(1, 1) > 0 requires

θ < 1−δ
δ .

In Fig. 11, the exact boundary ∂S1 and its lower bound ∂Š1

of a two-tier HCN are shown. As we see, the lower bound
becomes tighter as θ decreases. In this case, according to
Cor. 8(2), S = S1. We also observe that as θ decreases, S
grows towards [0, 1]2, as expected.

V. CONCLUSIONS

In this paper, we developed the SIR meta distribution
framework for the analysis of HIP-based K-tier HCNs with
offloading biases and Rayleigh fading and performed a system-
atic study for a series of key performance metrics, revealing
fine-grained information on the per-user performance. We first
derived the b-th moment of the conditional success probability
for both the entire network and each single tier. Based on
the b-th moment, the exact meta distribution as well as a
simple yet accurate approximation based on beta distribution is
provided. We derived the asymptotic gains and found that for
any specific tier, the b-th moment as well as the variance of the
conditional success probability is approximately a horizontal
shifted version of that in a single-tier PPP, and hence horizontal
shifted versions of each other.

About the effect of the offloading biases, we proved that M1

of the whole network is always harmed by any biasing; for
multi-tier (more than 3) HIP-based HCNs, users of certain tiers
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will benefit while the others suffer, depending on the ratios of
the biases between different tiers. The effect on the per-tier
success probability can be quantified using a horizontal shift
of the SIR distribution.

The b-th moment of the conditional success probability un-
der the independent ALOHA-like random base station activi-
ties was also addressed. The region of the activity probabilities
in which the mean local delay of each tier remains finite is
characterized by a lower bound, which was shown to be quite
accurate compared to the exact one.

Overall, the SIR meta distribution framework offers several
new and interesting insights in the performance of HCNs,
which helps us understand the HCNs better and hence benefits
the real network design and optimization.

APPENDIX

A. Proof of Theorem 1

Proof: Let Mb|(i) denote the conditional b-th moment of
the SIR meta distribution given that the typical user at the
origin connects to the i-th tier. Then we have

Mb =
∑
i∈[K]

p(i)a ·Mb|(i). (48)

Next, we derive the conditional b-th moment Mb|(i).
Given Ri and that the typical user at the origin connects to

the i-th tier, the conditional success probability is given by

P (i)
s (θ)

= P
(

PihoR
−α
i∑

j ̸=i

∑
x∈Φj

PjhxR
−α
x +

∑
x∈Φi\{x(i)

0 }
PihxR

−α
x

> θ

)
,

(49)

where Ri is the distance from the typical user to the nearest BS
x
(i)
0 in the i-th tier, and ho is the fading coefficient associated

with the link from x
(i)
0 to the typical user.

By averaging over the fading, we get the conditional b-th
moment of the conditional success probability, given by

Mb|(i),Ri
=
∏
x∈Φi

1(
1 + θ

(
Ri

Rx

)α)b ∏
j ̸=i

∏
x∈Φj

1(
1 + θP̂ij

(
Ri

Rx

)α)b .
(50)

The notation Mb|(i),Ri
is used to denote that the b-th moment is

conditioned on Ri and the event that the typical user connects
to the i-th tier given Ri, which occurs with the probability
given in (4).

By considering the conditional access probability in (4), we
have the b-th moment of the typical user when it is served by
the i-th tier, given by

M
(i)
b = ERi

[
P(ι(x0) = i | Ri)Mb|(i),Ri

]
= ERi

[∏
j ̸=i

e−λjπ(P̂ijB̂ij)
δR2

i

∏
x∈Φi

1

(1 + θRα
i R

−α
x )b

·
∏
j ̸=i

∏
x∈Φj

1

(1 + θP̂ijRα
i R

−α
x )b

]

(a)
= ERi

[∏
j ̸=i

e−λjπ(P̂ijB̂ij)
δR2

i exp

(
− 2λiπ

·
∫ ∞

Ri

[
1− 1

(1 + θRα
i x

−α
i )b

]
xidxi

)
·
∏
j ̸=i

exp

(∫ ∞

R̂j

−2λjπ
[
1− 1(

1 + θP̂ij

(
Ri

xj

)α)b ]xjdxj

)]
(b)
=

∫ ∞

0

2λiπrie
−λiπr

2
i e

−
∑
j ̸=i

λj(P̂ijB̂ij)
δπr2i

· exp
(∫ ∞

ri

−2λiπ
[
1− 1

(1 + θrαi x
−α
i )b

]
xidxi

)
·
∏
j ̸=i

exp

(∫ ∞

r̂j

−2λjπ
[
1− 1(

1 + θP̂ij

(
ri
xj

)α)b ]xjdxj

)
dri

(c)
=

∫ ∞

0

e
−z(1+

∑
j ̸=i

λ̂ij(P̂ijB̂ij)
δ)

exp

(
− 2z

∫ 1

0

(
1

− 1

(1 + θuα
i )

b

)
u−3
i dui

)∏
j ̸=i

exp

(
− 2z

·
∫ (P̂ijB̂ij)

− 1
α

0

(
1− 1

(1 + θP̂ijuα
j )

b

)
u−3
j duj

)
dz

(d)
=

∫ ∞

0

e−ze
−z

∑
j ̸=i

λ̂ij(P̂ijB̂ij)
δ

exp

(
− z

∫ ∞

1

(
1

− 1

(1 + θt
−α/2
i )b

)
dti

)∏
j ̸=i

exp

(
− z(P̂ijB̂ij)

δ

·
∫ ∞

1

(
1− 1

(1 + θB̂−1
ij t

−α/2
j )b

)
dtj

)
dz, (51)

where (a) is by the PGFL of the PPP [26, Chap. 4], (b) is
by averaging over Ri; (c) is by using the variable substitution
ri/xi = ui, ri/xj = uj and λiπr

2
i = z, and (d) is by using

the variable substitution uj = tj(P̂ijB̂ij)
− 1

α .
By using the identity

2F1(b,−δ; 1−δ;−θ) ≡ 1+

∫ ∞

1

(
1− 1

(1 + θs−1/δ)b
)
ds, (52)

we obtain

M
(i)
b =

1∑
j

λ̂ij(P̂ijB̂ij)δ 2F1(b,−δ; 1− δ;−θB̂−1
ij )

. (53)

Using
M

(i)
b = p(i)a ·Mb|(i), (54)

and (48), we obtain (6).

B. Proof of Theorem 2

Proof: The b-th moment of the conditional success prob-
ability of the i-th tier is

M
(i)
b

= ERi

[
P(ι(x0) = i | Ri)Mb|(i),Ri

]
= ERi

[∏
j ̸=i

e−λjπ(P̂ijB̂ij)
δR2

i

∏
x∈Φi

( pi

1 + θRα
i R

−α
x

+ 1− pi

)b
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·
∏
j ̸=i

∏
x∈Φj

( pj

1 + θP̂ijRα
i R

−α
x

+ 1− pj

)b]
(a)
= ERi

[∏
j ̸=i

e−λjπ(P̂ijB̂ij)
δR2

i exp

(∫ ∞

Ri

−2λiπ
[
1−

(
1

− piθR
α
i x

−α
i

1 + θRα
i x

−α
i

)b]
xidxi

)∏
j ̸=i

exp

(∫ ∞

R̂j

−2λjπ

·
[
1−

( pjθP̂ijR
α
i x

−α
j

1 + θP̂ijRα
i x

−α
j

)b]
xjdxj

)]
(b)
=

∫ ∞

0

2λiπrie
−

∑
j

λj(P̂ijB̂ij)
δπr2i

exp

(∫ ∞

ri

−2λiπ

·
[
1−

(
1− piθr

α
i x

−α
i

1 + θrαi x
−α
i

)b]
xidxi

)∏
j ̸=i

exp

(∫ ∞

r̂j

−2λj

· π
[
1−

( pjθP̂ijr
α
i x

−α
j

1 + θP̂ijrαi x
−α
j

)b]
xjdxj

)
dri

(c)
=

∫ ∞

0

e−ze
−z

∑
j ̸=i

λ̂ij(P̂ijB̂ij)
δ

exp

(
− 2z

∫ 1

0

(
1−

(
1

− piθu
α
i

1 + θuα
i

)b)
u−3
i dui

)∏
j ̸=i

exp

(
− 2z

·
∫ (P̂ijB̂ij)

− 1
α

0

λ̂j

(
1−

(
1−

pjθP̂iju
α
j

1 + θP̂ijuα
j

)b)
u−3
j duj

)
dz

(d)
=

∫ ∞

0

e−ze
−z

∑
j ̸=i

λ̂ij(P̂ijB̂ij)
δ

exp

(
− 2z

∫ 1

0

(
1−

(
1

− piθu
α
i

1 + θuα
i

)b)
u−3
i dui

)∏
j ̸=i

exp

(
− zλ̂j(P̂ijB̂ij)

δ

· 2
∫ 1

0

(
1−

(
1−

pjθB̂
−1
ij uα

j

1 + θB̂−1
ij uα

j

)b)
u−3
j duj

)
dz, (55)

where (a) is by the PGFL of the PPP; (b) is by averaging
over Ri; (c) is by using the variable substitution ri/xi = ui,
ri/xj = uj and λiπr

2
i = z, and (d) is by using the variable

substitution uj = u′
j(P̂ijB̂ij)

− 1
α .

Then from [11, Thm. 3], there is∫ 1

0

(
1−

(
1− pθrα

1 + θrα

)b)
r−3dr

≡
∞∑
k=1

(
b

k

)
−(−pθ)k

kα− 2
2F1(k, k − δ; k − δ + 1;−θ). (56)

Hence,

M
(i)
b =

[∑
j

λ̂j(P̂ijB̂ij)
δ
(
1−

∞∑
k=1

(
b

k

)
(−pjθB̂

−1
ij )k

· δ

k − δ
2F1(k, k − δ; k − δ + 1;−θB̂−1

ij )
)]−1

.

(57)
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