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Abstract—The link quality in cellular networks strongly de-
pends on the location of the users relative to the serving and
interfering base stations (BSs). This paper proposes a location-
dependent BS cooperation scheme for general cellular networks,
where BSs are modeled using a stationary point process and
the Voronoi diagram forms the cell structure. The cooperation
scheme is based on the relative average received signal strength
from the three strongest BSs. For the channel model where
Rayleigh fading and power-law path loss are considered, each cell
is partitioned into three regions based on the relative distance to
the three nearest BSs: the cell center region, cell edge region,
and cell corner region. The area fraction of each region is
tuned by the so-called cooperation level γ ∈ [0, 1]. We study
the scheme where users in the above regions receive the non-
coherent joint transmission from one, two, and three nearest BSs,
respectively. As such, the scheme primarily helps users vulnerable
to interference. We analyze the signal-to-interference ratio (SIR)
in Poisson networks and show that a moderate γ jointly improves
the average SIR performance and the network fairness.

Index Terms—Cellular networks, CoMP, base station cooper-
ation, Poisson point process, stochastic geometry, meta distribu-
tion.

I. INTRODUCTION

A. Motivation

The link quality in cellular networks strongly depends on the
location of the users relative to the serving and interfering BSs.
In interference-limited networks, the signal-to-interference-
ratio (SIR) averaged over small-scale fading varies from user
to user depending on their geometric locations. Such a varia-
tion induces unfairness, and users near the cell boundary are
known to be the bottleneck of the network performance [2]–
[4]. BS cooperation, known as coordinated multipoint (CoMP)
in 3GPP, is a technique to mitigate/exploit interference by
coordinating the signal transmission or enabling the joint
transmission/processing among a set of BSs. The design,
analysis and optimization of BS cooperation schemes are of
significant importance, as the gain of coordination comes at
the cost of the backhaul capacity, channel state information
(CSI), synchronization efforts, and, in general, more signaling
overhead [5], [6].

BS cooperation primarily alleviates the signal degradation
due to interference, thus users who are more vulnerable to
interference should be prioritized for receiving cooperation
over the average user; the size of cooperating set should be
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limited for practical systems to balance the cost of data ex-
change through backhual, signalling overhead, synchronization
efforts, and number of BS resources per user. Thus, it is crucial
to exploit cooperation schemes that allocate extra resources
only to users who need them while limiting the number
of cooperating BSs for each user. In this paper, we focus
on a user-centric BS cooperation scheme with non-coherent
joint transmission, where users are grouped by their relative
received signal strengths to three strongest BSs and up to three
BSs are turned into a set of cooperating BSs that jointly serve
users without stringent requirement for implementation.

B. Related Work

BS cooperation schemes mainly focuses on four aspects:
the dependence of cooperation on users’ channel (user-centric
or not), the selection of the set of cooperating BSs (fixed-
size or adaptive), the cooperation mode (BS silencing, point
selection, coherent/non-coherent joint transmission), and its
implementation challenges (limited backhaul, imperfect syn-
chronization, imperfect CSI). [7]–[9] study user-centric BS
cooperation while [10], [11] study BS cooperation where all
users are non-coherently served by n strongest BSs. It is
shown in [10] that users located at the Voronoi vertices benefit
more from cooperation than the typical user. Also, it is shown
in [11] that increasing the size of the cooperation set leads
to a larger variance of the link success probability and thus
reduces fairness. In [7], [8], the authors define the “cooperation
region” such that users receive cooperation only when they
are located in the cooperation region. Both definitions are
based on the relative distances to the serving and the nearest
interfering BS, and different cooperation modes are analyzed.
In [7], BS silencing is activated for users in the cooperation
region. However, it assumes a small-cell scenario where there
are many inactive BSs and is thus less interference-limited.
[8] studies the network where all BSs are always active.
Users within the cooperation region are coherently served
by the two nearest BSs. The scheme, however, relies on the
precise channel phase match within the cooperating BSs. A
transmission scheme that is less sensitive to channel estimation
is analyzed in [9], where the cooperating BSs non-coherently
transmit to the target user without exchanging CSI. The set
of cooperating BSs is defined to be BSs within a disk of a
fixed radius centered at each user. The definition depends on
the selection of the radius and leads to an indefinite size of
the cooperating set, which can boost the system complexity.

BS cooperation in a two-tier network is studied in [12],
where the strongest BSs from each tier jointly serve users who
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suffer from strong interference. The scheme does not consider
the case when both the strongest serving BS and strongest
interfering BS belong to the same tier.

C. Contributions

In this paper, we study a location-dependent BS cooperation
scheme that primarily helps users vulnerable to interference.
Specifically, a user receives the non-coherent joint transmis-
sion from its one, two, or three strongest BSs depending on the
user’s geometrical region. The reason to focus on a maximum
of three cooperating BSs is two-fold: (1) the size of coop-
erating BSs should be limited for practical implementation;
(2) from a geometric point of view, a worst-case user lying
on the Voronoi vertex has exactly three equidistant nearest
BSs almost surely for most stationary point processes in R2

(excluding lattices).
Throughout the paper, we assume all BSs are always active.

Each uses the full frequency band and serves users with
orthogonal resource blocks (RBs). The main contributions are:
• We mathematically define the cell center region, cell edge

region, and cell corner region for any stationary BS point
process in R2 based on the relative distances of the three
nearest BSs. While this paper focuses on Rayleigh fading
and power-law path loss, the user grouping method is
based on the relative average received signal strength
from the three strongest BSs, which applies to general
channel models and heterogeneous networks.

• We study a location-dependent BS cooperation scheme
where users in the cell center region, cell edge region, and
cell corner region are jointly served by one, two, and three
nearest BSs, respectively. The area fraction of each region
is tuned by a parameter γ that varies continuously from 0
to 1. The scheme permits the analysis of BS cooperation
for different cooperation levels and the optimization of γ
under practical system constraints.

• Both one-dimensional (1D) and two-dimensional (2D)
Poisson networks are studied. It is worth noting that
the analysis for Poisson networks applies to general net-
works with shadowing, as the large-scale path loss values
(including shadowing) in all stationary models converge
to those in Poisson networks as the shadowing variance
increases [13]. We obtain analytical expressions for the
success probability, and, more generally, the moments
of the individual link success probability. We give the
analytical form of the asymptotic SIR gain G and show
that the asymptotic SIR gain increases with the path loss
exponent α.

• We study the spectral efficiency normalized by the num-
ber of cooperating BSs. The normalization permits the
evaluation of BS cooperation gain without increasing the
cell load, i.e., users who receive cooperation from N BSs
are served by 1/N RBs from each BS. We show that with
a moderate γ, the non-coherent joint transmission can
improve users’ throughput even with the normalization.

• We apply the methodology to general multi-tier networks,
where the power and distance of the BSs are jointly
considered in the user grouping. The homogeneous in-

TABLE I: Summary of Notation

Notation Definition/Meaning

Φ; λ BS point process Φ with intensity λ
‖ · ‖ Euclidean metric
γ Cooperation level

xi(u) i-th nearest BS to u
C1 Cell center region
C2 Cell edge region
C3 Cell corner region
S Set of cooperating BSs
N Size of the cooperation set
α Path loss exponent
1(·) Indicator function
G Asymptotic SIR gain
R Normalized spectral efficiency
K Number of BS tiers

Φi; λi i-th tier BS point process Φi with intensity λi
Pi Power of the i-th tier BSs

dependent Poisson (HIP) network is studied as a special
case.

• We compare the asymptotic SIR gain in lattice networks
(via simulation) to that in Poisson networks. The com-
parison shows that the asymptotic SIR gain as a function
of γ behaves similarly across different types of networks.

D. Organization of Paper

This paper is organized as follows. In Section II, we
introduce the system model, the definition of the cell regions
and the cooperation set. Both 1D and 2D network models are
presented. Section III introduces the performance metrics of
interest. Section IV studies the cooperation scheme for 1D
Poisson networks, Section V for 2D Poisson networks and
Section VI for 2D lattice networks. In Section VII, we provide
a generalization of the cell regions to heterogeneous networks.
Section VIII concludes our work. A summary of the notation
can be found in Table I.

II. SYSTEM MODEL AND COOPERATION SCHEME

In this section, we introduce our system model and define
the cell regions under the considered model. The 1D case is
presented first to obtain crisp insights for 2D networks.

A. System Model

We focus on non-coherent joint transmission scheme to
minimize the constraints on CSI. Let Φ be any stationary
point process modelling the geometric location of BSs. We
consider iid Rayleigh fading and power-law path loss. The
desired signals come from the set of cooperating BSs, denoted
as S, and the interference comes from the other BSs Φ \ S .
The SIR of the typical user at the origin o is defined as

SIR ,

∣∣∣∑x∈S hx‖x‖
−α/2

∣∣∣2∑
x∈Φ\S |hx|

2‖x‖−α
.

Here, (hx)x∈Φ are iid complex Gaussian random variables
modelling Rayleigh fading, and α denotes the power-law path
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loss exponent. gx , |hx|2 denotes the fading power that is
exponentially distributed with unit mean.

The average received signal strength (over small-scale fad-
ing) at a user from each BS depends on the geometric distance.
The SIR thus strongly depends on the relative distance(s) to the
serving BS and the nearest interfering BS(s). In the Voronoi
diagram of a BS point process Φ ⊂ R2, locations on cell edges
are equidistant to the two nearest BSs, and Voronoi vertices
are equidistant to the three nearest BSs. As a result, users
near the Voronoi edge suffer from relatively strong interference
from one nearby BS, and users near the Voronoi vertices suffer
from relatively strong interference from two nearby BSs. In
the next subsection, we define the cell regions based on this
observation.

B. Cell Regions and Cooperation Set

1) 1D Networks: The study of 1D networks serves as an
interesting study in itself, e.g., for modeling roadside BS
deployments [14]. Its analysis also leads to insights that apply
to 2D networks. For any stationary point process Φ ⊂ R, let
xi(u) ∈ Φ be the i-th nearest BS to u. We denote by C1 and C2
the “cell center region” and the “cell edge region” respectively.
For γ ∈ [0, 1] and ρ = 1− γ we define

C1 , {u ∈ R :
∥∥u− x1(u)

∥∥ ≤ ρ∥∥u− x2(u)
∥∥}

C2 , {u ∈ R : ρ
∥∥u− x2(u)

∥∥ <∥∥u− x1(u)
∥∥}. (1)

Note that γ = 0 results in C1 = R2 and γ = 1 results in
C2 = R2 \ Φ.

We define the cooperation set S to be

S ,

{
{x1(u)}, u ∈ C1
{x1(u), x2(u)}, u ∈ C2.

(2)

In words, a user in Ci is jointly served by i BS(s) since it
receives relatively strong signal(s) from i BS(s). γ is referred
to as “the cooperation level” since the area fraction of C2
increases monotonically with γ. This BS clustering method is
simple yet effective, since in 1D networks, a worst-case user
lying on the Voronoi vertex is equidistant to two nearest BSs
almost surely. This intuition can be generalized to networks
of arbitrary dimensions.

2) 2D Networks: We now give a mathematical definition of
the cell center region, the cell edge region, and the cell corner
region in 2D networks based on the relative distances of the
three nearest BSs. With a slight abuse of notation, we denote
the regions as C1, C2, and C3, respectively. For any stationary
point process Φ ⊂ R2, let xi(u) ∈ Φ denote the i-th nearest
BS in the point process to u. For γ ∈ [0, 1] and ρ = 1− γ we
define

C1 , {u ∈ R2 :
∥∥u− x1(u)

∥∥ ≤ ρ∥∥u− x2(u)
∥∥}

C2 , {u ∈ R2 : ρ
∥∥u− x2(u)

∥∥ <∥∥u− x1(u)
∥∥ ,∥∥u− x1(u)

∥∥ ≤ ρ∥∥u− x3(u)
∥∥}

C3 , {u ∈ R2 :
∥∥u− x1(u)

∥∥ > ρ
∥∥u− x3(u)

∥∥}.
(3)

By definition, the area fraction of each region depends on
Φ and γ. Fig. 1 shows the partition for a realization of the
Poisson point process (PPP). The cell corner region expands

(a) γ = 0.2. (b) γ = 0.5.

Fig. 1. Illustration of the partition for γ = 0.2 and γ = 0.5. The location
of the BSs (blue circles) is a realization of the PPP with intensity λ = 1.
The window is [−5, 5]2. Red lines are the edges of the Voronoi cells. Blank,
green and blue regions denote the cell center region C1, the cell edge region
C2, and the cell corner region C3, respectively.

and the cell center region shrinks as γ increases from 0.2 to
0.5. The boundaries of each region Ci are formed by the union
of circular arcs, where for each arc, the two nearest points of
Φ are the same and their distance ratio to a point of the arc
is ρ.

We define the cooperation set S to be

S ,


{x1(u)}, u ∈ C1
{x1(u), x2(u)}, u ∈ C2
{x1(u), x2(u), x3(u)}, u ∈ C3.

(4)

In words, a user in Ci is jointly served by i BS(s) since it
receives relatively strong signal(s) from i BS(s). A worst-case
user—a user lying on the Voronoi vertex—has exactly three
equidistant nearest BSs almost surely for most stationary point
processes in R2.

Note that γ = 0 results in C1 = R2 (no cooperation), and
γ = 1 results in C3 = R2 \ Φ (full cooperation). The special
cases γ ∈ {0, 1} for Poisson networks have been analyzed in
[15], [16] and [10], [11], respectively.

III. PERFORMANCE METRICS

A. Success Probability

For a given threshold θ, the success probability is defined
as

F̄ (θ) , P(SIR > θ), (5)

which is the complementary cumulative distribution function
(CCDF) of the SIR.

The success probability for the homogeneous PPP with
intensity λ is

F̄PPP(θ) =
1

2F1(1,−δ; 1− δ;−θ)
, (6)

where δ = d/α and d is the dimension of the PPP. (6) has
been derived for d = 2 [15], [17] but can be shown to hold
for Poisson networks of an arbitrary dimension.
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B. Asymptotic SIR Gain

While the success probability of all but a few basic network
models is intractable, the asymptotic SIR gain [18] gives a
simple and unified characterization of the SIR improvement
compared to a baseline scheme. We use F̄PPP(θ) given in (6)
as our baseline model. F̄γ(θ) denotes the success probability
of our scheme with the cooperation level γ. We have

1− F̄γ(θ) ∼ 1− F̄PPP(θ/G), θ → 0, (7)

where G denotes the asymptotic SIR gain and can be expressed
as

G =
MISRPPP

MISRγ
. (8)

The mean-interference-signal-ratio (MISR) [18] MISR ,
E
(
I/S̄

)
is the ratio between the interference power I and

the signal power averaged over the fading S̄ , Eh(S).
MISRPPP denotes the MISR of the baseline PPP model while
MISRγ denotes the MISR of our cooperation scheme with the
cooperation level γ.

C. SIR Meta Distribution

While the standard success probability characterizes the
probability that the SIR of the typical link is greater than
the threshold θ, the SIR meta distribution [16] characterizes
the fraction of individual links that achieve reliability x for a
given threshold θ. It answers questions such as “what is the
fraction of users in the network that achieve an SIR of 5 dB
with probability 90%?”, and is defined as

F̄Ps
(x) , P(Ps(θ) > x), x ∈ [0, 1], (9)

which is the CCDF of the conditional success probability.
The conditional success probability, also referred to as the
individual link success probability, is defined as

Ps(θ) , P(SIR > θ | Φ), (10)

which is the success probability given the point process Φ.
The b-th moment of the conditional success probability is

defined as
Mb(θ) , E(Ps(θ)

b), b ∈ C. (11)

Note that M1(θ) ≡ F̄(θ) is the standard success probability
defined in (5). M2(θ)−M1(θ)2 is the variance of the individual
link success probability, which measures the fairness of the
individual link success probability across the network. We will
mainly focus on the first two moments.

D. Normalized Spectral Efficiency

The normalized spectral efficiency in units of nats/s/Hz/BS
is defined as

R , E
[

1

N
log(1 + SIR)

]
(12)

where N = |S| is the size of cooperating BSs which depends
on the region of the typical user. This normalization allows
the evaluation of the benefits of cooperation while taking into
account the number of RBs a user can occupy.
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Fig. 2. The asymptotic SIR gain G (in dB) in 1D Poisson networks.

IV. 1D POISSON NETWORKS

We first study the performance of the scheme in 1D Poisson
networks, where Φ ⊂ R is a PPP with intensity λ. We focus
on the typical user located at the origin. Let ri = ‖xi(o)‖
be the distance from the i-th nearest point to o, hi be the
fading coefficient and gi = |hi|2 be the fading power. The
joint distribution of r1 and r2 is

fr1,r2(x, y) = (2λπ)2 exp (−2λπy), 0 ≤ x ≤ y. (13)

The area fraction of each region only depends on γ and is
equal to the probability that the origin falls into each region:

P(o ∈ C1) = 1− γ, P(o ∈ C2) = γ. (14)

This follows from P(o ∈ C1) =
∫∞

0

∫∞
x
ρ
fr1,r2(x, y)dydx and

P(o ∈ C2) =
∫∞

0

∫ x
ρ

x
fr1,r2(x, y)dydx. Note that due to the

ergodicity of the PPP, the area fraction of each region is (14)
for each realization of the BS point process.

A. Asymptotic SIR Gain

We now study the asymptotic SIR gain G and show that G
is a function only of α and γ.

Theorem 1. The asymptotic SIR gain of the proposed BS
cooperation scheme in 1D Poisson networks is

G =

(
ρ1+α + 2

(
1− ρ−

∫ 1

ρ

1

1 + zα
dz
))−1

, (15)

where δ = 1/α, δ < 1. For α = 2,

G−1 = ρ3 + 2
(

1− ρ− π

4
+ arctan ρ

)
, (16)

and for α = 4,

G−1 = ρ5 + 2(1− ρ) +
1

2
√

2
log

1 + ρ2 +
√

2ρ

1 + ρ2 −
√

2ρ

− 1

2
√

2
(π + log (3 + 2

√
2))− 1√

2
arctan

√
2ρ

1− ρ2
.

(17)

Proof. See Appendix A.
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Fig. 2 shows the asymptotic SIR gain in 1D Poisson
networks using (15). The curves suggest that the slope of G
goes to 0 as γ approaches 1 regardless of α. We now show
that it is indeed the case.

Corollary 1 (Derivative at γ = 0 and γ = 1). The asymptotic
SIR gain G in 1D Poisson networks satisfies

∂G

∂γ

∣∣∣
γ=0

= α,
∂G

∂γ

∣∣∣
γ=1

= 0. (18)

Proof. By taking the derivative of G with respect of ρ, we
obtain

∂G

∂ρ
= −G2

(
α+ 1− 2

1 + ρα

)
ρα. (19)

Setting γ = 0 (ρ = 1) we get G′|γ=0 = −G′|ρ=1 = α and
setting γ = 1 (ρ = 0) we get G′|γ=1 = −G′|ρ=0 = 0. This
holds for any α > 1.

Remark 1. For any fixed α, G monotonically increases with
the cooperation level γ. The slope at γ = 0 is determined by
the path loss exponent α and is 0 at γ = 1. It can be shown that
the second derivative is first positive and then negative, i.e.,
the slope of G increases slightly beyond α at the beginning
before decreasing to 0.

For any fixed γ, G monotonically increases with the path
loss exponent α. As a result, under the same cooperation level,
users benefit more from cooperation when the signal decays
faster with distance. The rationale is while both the desired
signals and interference will decay faster with a larger α,
their ratio grows with α. Nevertheless, there is a limit to the
achievable gain, since the network becomes noise-limited at
some point.

B. SIR Meta Distribution

1) Conditional Success Probability:

Lemma 1. For the location-dependent cooperation scheme in
general 1D networks, we have

Ps(θ) =


∏∞
i=2

1
1+θr−αi /r−α1

, o ∈ C1∏∞
i=3

1
1+θr−αi /(r−α1 +r−α2 )

, o ∈ C2.
(20)

Proof. For o ∈ C1, the typical user is associated with the
nearest BS only, hence

Ps(θ) = P
(
g1r
−α
1 > θ

∞∑
i=2

gir
−α
i

)
(a)
= E

[
exp

(
− θ

∞∑
i=2

gir
−α
i /r−α1

)]
(b)
= E

[ ∞∏
i=2

exp(−θgir−αi /r−α1 )

]
=

∞∏
i=2

1

1 + θr−αi /r−α1

. (21)

Step (a) follows the exponential distribution of the fading
power. Step (b) follows from the independence of fading
coefficients.
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-10 -5 0 5 10 15 20

 (dB)

0

0.02

0.04

0.06

0.08

0.1

0.12

M
2
-M

12

 = 0

 = 0.1

 = 0.2

 = 0.3

 = 0.4

 = 0.5

 = 0

 = 0.5

(c) M2(θ) −M1(θ)2 for 0 ≤ γ ≤
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Fig. 3. The mean M1(θ) and variance M2(θ)−M1(θ)2, α = 2.

For o ∈ C2, the typical user receives the non-coherent joint
transmission from two nearest BSs, and thus

Ps(θ) = P
(∣∣h1r

−α/2
1 + h2r

−α/2
2

∣∣2 > θ

∞∑
i=3

gir
−α
i

)
(a)
= E

[ ∞∏
i=3

exp(−θgir−αi /(r−α1 + r−α2 ))

]
=

∞∏
i=3

1

1 + θr−αi /(r−α1 + r−α2 )
. (22)

Step (a) follows from the fact that |h1r
−α/2
1 + h2r

−α/2
2 |2 is

exponentially distributed with mean r−α1 +r−α2 , and the fading
coefficients are independent.

2) Moments:

Proposition 1. The b-th moment of the conditional success
probability of the proposed scheme in 1D Poisson networks
is

Mb(θ) =
ρ

2F1(b,−δ; 1− δ;−ραθ)

+

∫ 1
ρ

1

1(
t 2F1

(
b,−δ, 1− δ,−θ/(1 + t

1
δ )
))2 dt.

(23)

where b ∈ C and δ = 1/α.

Proof. See Appendix B.

We focus on the first two moments of Ps(θ). For b = 1,
M1(θ) ≡ F̄γ(θ), and we obtain the success probability

M1(θ) =
ρ

2F1(1,−δ; 1− δ;−ραθ)

+

∫ 1
ρ

1

1

(t 2F1(1,−δ, 1− δ,−θ/(1 + t
1
δ )))2

dt.

(24)
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Fig. 4. The normalized spectral efficiency for α = 2 (δ = 1/2) per (27).

The success probability improves monotonically with γ. The
two parts of the success probability correspond to the cases
when the typical user is in the cell center region and when the
typical user is in the cell edge region. M2(θ)−M1(θ)2 is the
variance of the conditional success probability, reflecting the
disparity in the link success probability. Ideally, the network is
fairest when the link success probability is highly concentrated
around the (mean) success probability. Thus, the variance
of the conditional success probability serves as an insightful
criterion of the network fairness.

The mean and variance of the conditional success probabil-
ity for δ = 1/2 is shown in Fig. 3. The horizontal shift is less
significant as γ increases, which is consistent with Fig. 2. In
comparison, the maximal variance of the conditional success
probability decreases first, achieves its minimal at γ ≈ 0.5 and
then increases. For instance, at θ = −5 dB, as γ increases from
0 to 0.5, the success probability increases from 0.776 to 0.872,
and the maximal variance decreases from 0.0415 to 0.0154.
Hence, a moderate level of BS cooperation jointly improves
the SIR performance and the fairness of the individual link
quality.

C. Normalized Spectral Efficiency

The average number of serving BSs per user is

EN = 1− γ + 2γ = 1 + γ. (25)

The normalized spectral efficiency in units of nats/s/Hz/BS
is

R =

∫ ∞
0

P(SIR > et − 1, o ∈ C1)dt

+
1

2

∫ ∞
0

P(SIR > et − 1, o ∈ C2)dt,

(26)

where P(SIR > et − 1, o ∈ Ci), i = 1, 2, are given in (24).
For α = 2, we have

R =

∫ ∞
0

ρ

1 + ρ
√
ex − 1 arctan(ρ

√
ex − 1)

dx

+
1

2

∫ ∞
0

∫ 1
ρ

1

1

t2
(
1 +

√
ex−1
1+tα arctan

√
ex−1
1+tα

)2 dtdx.

(27)

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

A
re

a
 f
ra

c
ti
o
n

C
1

C
2

C
3

Fig. 5. The area fraction of the three regions.

Fig. 4 shows the normalized spectral efficiency as a function
of γ per (27). The normalized spectral efficiency first increases
and then decreases. The same value of R is achieved around
γ = 0.5 as in the non-cooperation case (γ = 0) when α = 2.
Interestingly, the maximal variance also achieves minimum
value at γ ≈ 0.5.

V. 2D POISSON NETWORKS

In this section, we study the performance of the scheme in
2D Poisson networks, where Φ ⊂ R2 is a PPP with intensity
λ. The performance analysis has applicability beyond Poisson
networks. In fact, the signal strengths for any stationary point
process with shadowing converge in distribution to those in
Poisson networks as the shadowing variance increases [13].

Let ri = ‖xi(o)‖ be the distance from the origin to its i-th
nearest BS as defined before. The joint distribution of r1, r2

and r3 is

fr1,r2,r3(x, y, z) = (2λπ)3xyz exp (−λπz2), 0 ≤ x ≤ y ≤ z.

The area fraction of each region depends on γ and is equal to
the probability that the origin falls into each region [17]:

P(o ∈ C1) = (1− γ)2,

P(o ∈ C2) = γ(1− γ)2(2− γ),

P(o ∈ C3) = γ2(2− γ)2.

(28)

Fig. 5 shows the area fraction of the three regions as γ
increases from 0 to 1.

A. Asymptotic SIR Gain

Theorem 2. The asymptotic SIR gain of the proposed BS
cooperation scheme in 2D Poisson networks is (30) (see next
page). For α = 4, we have

G−1 = ρ6 + ρ8
( 2

ρ2
− π

2
+ 2 arctan ρ2 − 2

)
+ 3

∫ ∞
0

∫ x
ρ

x

∫ ∞
x
ρ

8xyz−3e−z
2

x−4 + y−4 + z−4
dzdydx. (29)

Proof. See Appendix C.
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G =
2

(α+ 2)E
[
( r1r2 )α1C1

]
+ (α+ 4)E

[
(r1/r3)α

1+(r1/r2)α1C2

]
+ 6E

[
(r1/r3)α

1+(r1/r2)α+(r1/r3)α1C3

] . (30)
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 (
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B

)  = 3

 = 3.5

 = 4

Fig. 6. The asymptotic SIR gain G (in dB) using (30).

Fig. 6 shows the asymptotic SIR gain as a function of γ
for α = 3, 3.5, 4. For any fixed α, the asymptotic SIR gain
increases with the cooperation level γ. For any fixed γ, the
asymptotic SIR gain increases with the path loss exponent
α. When the path loss exponent α grows larger than 4, the
transmission scenario eventually approaches the point-to-point
transmission scenario where the interference is negligible—
the interference-free scenario. In this case, the network is no
longer interference-limited and the effect of noise needs to be
considered.

We observe a similar pattern of G in terms of its slope as
in 1D Poisson networks. We now study its derivative in 2D
Poisson networks.

Corollary 2 (Derivative at γ = 0 and γ = 1). The asymptotic
SIR gain G in 2D Poisson networks satisfies

∂G

∂γ

∣∣∣
γ=0

= α,
∂G

∂γ

∣∣∣
γ=1

= 0. (31)

Proof. The proof is straightforward and parallel to the proof
for Corollary 1.

B. SIR Meta Distribution

1) Conditional Success Probability: Similar to Lemma 1,
the conditional success probability for the cooperation scheme
in general 2D networks can be written as

Ps(θ) =


∏∞
i=2

1
1+θr−αi /r−α1

, o ∈ C1∏∞
i=3

1
1+θr−αi /

∑2
k=1 r

−α
k

, o ∈ C2∏∞
i=4

1
1+θr−αi /

∑3
k=1 r

−α
k

, o ∈ C3.
(32)

2) Moments:

Proposition 2. The b-th moment of the conditional success
probability of the proposed scheme in 2D Poisson networks is
(33) (see next page) where Fb(x) = 2F1(b,−δ; 1− δ;− θ

x ).
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(a) M1(θ) for 0 ≤ γ ≤ 0.4.
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(b) M1(θ) for 0.4 ≤ γ ≤ 1.
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(c) M2(θ) −M1(θ)2 for 0 ≤ γ ≤
0.4.
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(d) M2(θ)−M1(θ)2 for 0.4 ≤ γ ≤
1.

Fig. 7. The mean M1(θ) and variance M2(θ)−M1(θ)2, α = 4.

Proof. The proof is parallel to the proof for Proposition 1 in
Appendix B and thus omitted.

To evaluate the average SIR performance and the network
fairness, we focus on the mean and variance of Ps(θ). Fig.
7 shows the mean and variance of the conditional success
probability as a function of θ from γ = 0 to γ = 1.

Remark 2. For 0 ≤ γ ≤ 0.4, the maximal variance is
monotonically decreasing. For γ > 0.4, the maximal variance
starts to increase monotonically. So the minimal maximal
variance is achieved when γ ≈ 0.4. For 0 ≤ γ ≤ 0.4,
the variance when θ > 10 dB is essentially the same. For
γ > 0.4, the variance when θ < 0 dB is essentially the same.
In contrast to our user-centric scheme, [11] studies the scheme
where all users are jointly served by the same number of
BSs. It is shown that the maximum variance monotonically
increases with the number of cooperating BSs. Essentially,
user-centric BS cooperation can improve fairness by primarily
helping users with bad locations.

Remark 3. For small θ, the main reason not to succeed is
bad fading (fading defines the asymptotic slope of the success
probability as θ → 0). The secondary reason is bad location.
Cooperation helps with both, but it makes less of a difference
for users in a good location—users near the cell center almost
all succeed anyway, even without cooperation. Hence for small
θ, M1(θ) does not change anymore once γ > 0.4. Similarly,
for the variance, all users who need help are receiving it at
γ < 0.4. For larger γ, there is a negligible improvement for
most users, hence no further reduction in variance.



8

Mb(θ) =
ρ2

2F1(b,−δ; 1− δ,−ραθ)
+

∫ ∞
0

∫ x
ρ2

x

∫ ∞
x
ρ2

exp

(
− zFb

(( z
x

) 1
δ

+
(z
y

) 1
δ

))(
1 +

θ

( zy )
1
δ + ( zx )

1
δ

)−b
dzdydx

+

∫ ∞
0

∫ x
ρ2

x

∫ x
ρ2

y

exp

(
− zFb

(
1 +

( z
x

) 1
δ

+
(z
y

) 1
δ

))
dzdydx, b ∈ C,

(33)

For large θ, the main reason to succeed is good location
(proximity to the serving BS defines the asymptotic slope
as θ → ∞). Users who are quite close to their BS but not
extremely close will benefit from cooperation, which means
that γ needs to be fairly large (> 0.4) to make a difference
in M1(θ). Conversely, users who get cooperation for γ < 0.4
are in such bad location that they cannot succeed at high θ.
Similarly, for the variance, for γ < 0.4 there is no impact
since no user switches from not succeeding to succeeding.
For γ > 0.4, the users in almost-great locations start to
benefit from cooperation (while those in bad locations still
do not), which widens the gap between the two, increasing
the variance. This is the regime where “the rich get richer”.

3) SIR Meta Distribution: The meta distribution is the
distribution of the conditional success probability, which is
hard to calculate in general. The moments of the conditional
success probability is easier to calculate using the PGFL of
the PPP. Recently, [19] and [20] propose two approximations
of the SIR meta distribution, based on strategies to retrieve the
distribution of a random variable with bounded support given
its moments (known as the Hausdorff moment problem). In
[16], an approximation of the meta distribution by matching
its first two moments to beta distribution is proposed, which is
quite accurate. We use this method here due to its simplicity.
It yields

F̄Ps(θ, x) ≈ 1− Ix
( M1β

1−M1
, β
)

(34)

with

Ix(a, b) =

∫ x
0
ta−1(1− t)b−1dt

B(a, b)
(35)

and

β =
(M1 −M2)(1−M1)

M2 −M2
1

. (36)

Using (34), we obtain the following plots of the meta
distribution.

Fig. 8 shows the meta distribution as a function of the
reliability, with fixed θ = −10, 5, 0, 5 dB. Observe that the
gap between adjacent curves (with γ changed by 0.1) gets
smaller as γ increases. Fig. 9 shows a contour plot of the SIR
meta distribution for different γ when F̄Ps(θ, x) = 0.95 (i.e.,
95% of the user in the network achieves reliability above x
for the SIR threshold θ). Observe the trade-off between the
reliability and the SIR threshold when the user percentage is
fixed. For θ ≤ 0 dB, the reliability improves significantly, as
the cooperation scheme primarily helps users to succeed with
small θ. The improvement from γ = 0.4 to γ = 0.5 is barely
noticeable.
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(a) θ = −10 dB.
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(b) θ = −5 dB.
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(c) θ = 0 dB.
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(d) θ = 5 dB.

Fig. 8. The meta distribution F̄Ps (θ, x) for θ = −10,−5, 0, 5 dB, α = 4.
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Fig. 9. The performance of the “5% user”, α = 4.

C. Normalized Spectral Efficiency

The normalized spectral efficiency can be written analyt-
ically similar to (27) in Section IV-C. However, it involves
complex multiple integrals, and we will show the simulation
result instead. Fig. 10 shows our simulation result in a PPP
network and evaluate the normalized spectral efficiency at the
typical user for 100,000 realizations of the network. In each
realization, BS locations are generated according to the PPP
of unit intensity with a window of [−20, 20]2. The normalized
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Fig. 10. The normalized spectral efficiency via simulation, α = 4 .

(a) Square lattice (b) Triangular lattice

Fig. 11. The three regions in a square lattice and a triangular lattice network
when γ = 0.5. Only one cell is colored since all cells are shifted version of
each other. Red crosses and red lines denote the BSs and the edges of the
associated Voronoi cells in the lattice. Blank, green and blue regions denote
C1, C2 and C3 respectively.

spectral efficiency (in units of bits/s/Hz/BS) increases slightly
and then decreases wrt γ. Observe that the same normalized
spectral efficiency is achieved when γ = 0 and γ ≈ 0.28. As
a result, γ ≤ 0.28 is the range of the cooperation level that
improves the typical link quality without lowering the overall
throughput. The optimum reliability performance is essentially
achieved at γ ≈ 0.4, where the normalized spectral efficiency
is decreased by only about 3.4%.

VI. LATTICE NETWORKS

In this section, we apply the scheme to two single-tier
lattice networks, namely square lattice and triangular lattice
networks. Lattice networks are generally less tractable but
they provide upper bounds on the network performance due
to the optimistic assumption of the BS deployment. Here, we
confine our analysis to the asymptotic SIR gain and make a
comparison between Poisson and lattice networks.

The area fraction of each region in a lattice network can
be analytically calculated thanks to its rigid structure. The
boundaries of each region Ci are formed by the union of
circular arcs, where for each arc, the two nearest points of
the lattice are the same and their distance ratio to a point of
the arc is ρ. Note that all the arcs have the same radius and
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(b) Triangular lattice

Fig. 12. The area fractions of the three regions for square and triangular
lattices
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Fig. 13. The comparison of the asymptotic SIR gain in Poisson networks and
lattice networks, α = 4.

angle depending on γ, as shown in Fig. 11. Fig. 12 shows the
area fraction of each region as γ increases from 0 to 1.

In the simulation, BSs are generated according to the lattice
with unit intensity, with a window of [−20, 20]2. The lattice is
shifted such that the origin is in the center of a cell. The SIR
is evaluated for 100,000 users placed uniformly at random in
that cell. For each user, the fading coefficients from all BSs
are generated independently according to complex Gaussian
random variables. In Fig. 13, we compare the asymptotic SIR
gain in Poisson networks and lattice networks. The asymptotic
SIR gain in the lattice cases is approximated using the SIR
shift of the success probability evaluated at F̄γ(θ) = 0.95.
The gap at γ = 0 is the inherent SIR gain between Poisson
and lattice networks (3 dB and 3.4 dB respectively for α = 4
[18]). All three curves increase almost linearly at the beginning
and tend to saturate around γ = 0.6. The comparison reveals
the similarity of the SIR gain of the proposed BS cooperation
scheme in different networks.

VII. MULTI-TIER NETWORKS

Multi-tier networks characterize BS deployment where BSs
at different tiers have different transmission powers, spatial
densities, maximum load, etc. We study a K-tier network Φ =⋃K
i=1 Φi, where the i-th tier is modelled using a stationary

and ergodic point process Φi ⊂ R2, 1 ≤ i ≤ K. Note that
the dependence between BS tiers need not be specified. Our
definition of the “cell regions” includes the power of each tier
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to reflect the average received signal strengths. K = 1 is the
single-tier case where the regions are defined based on the
distances only. We limit our partition to three regions with a
maximum of three cooperating BSs being as before.

A. Cell Regions and Cooperation Set

Assume BSs at the i-th tier transmits with power Pi, 1 ≤
i ≤ K. For a user at location u, let xi(u) be its i-th strongest
BS and v(xi(u)) be the index of the tier xi(u) belongs to,
i.e.,

xi(u) ∈ Φv(xi(u)). (37)

We have ∥∥xi(u)− u
∥∥

P
1/α
v(xi(u))

≤
∥∥xj(u)− u

∥∥
P

1/α
v(xj(u))

, i ≤ j. (38)

Letting ρ = 1− γ we define

C1 ,

{
u ∈ R2 :

∥∥x1(u)− u
∥∥

P
1/α
v(x1(u))

≤ ρ
∥∥x2(u)− u

∥∥
P

1/α
v(x2(u))

}

C2 ,

{
u ∈ R2 : ρ

∥∥x2(u)− u
∥∥

P
1/α
v(x2(u))

<

∥∥x1(u)− u
∥∥

P
1/α
v(x1(u))

,∥∥x1(u)− u
∥∥

P
1/α
v(x1(u))

≤ ρ
∥∥x3(u)− u

∥∥
P

1/α
v(x3(u))

}

C3 ,

{
u ∈ R2 :

∥∥x1(u)− u
∥∥

P
1/α
v(x1(u))

> ρ

∥∥x3(u)− u
∥∥

P
1/α
v(x3(u))

}
.

(39)

For a cooperation level γ we partition the plane into three
regions based on the relative average received signal strengths
from the three strongest BSs. C1, C2, and C3 are referred to as
the “cell center region”, the “cell edge region”, and the “cell
corner region” as before. Note that the notion of “cell” is less
straightforward than in single-tier networks—it is based on the
maximum average signal strength instead of distance only. In
other words, it is determined jointly by the power and distance
of the BSs.

The definition can include shadowing and load biasing when
such factors are relevant. For practical systems, each user
measures the average received signal strengths of a list of
potential serving BSs in the network. A user is classified to be
in C1 when it receives a much stronger signal on average from
its serving BS than from all the interfering ones; a user within
C2 receives signals of similar strength from two strongest BSs
and much weaker signals from the interfering ones; C3 is
defined analogously. The cooperation scheme is that a user
receiving similar signal strength from i BSs is jointly served
by i BSs, where γ defines the “similarity”.

B. Homogeneous Independent Poisson Networks

The homogeneous independent Poisson (HIP) model [18,
Def. 2] models a K-tier network Φ =

⋃K
i=1 Φi, where BSs of

the i-th tier are modeled using a homogeneous PPP Φi ⊂ R2

with intensity λi, is independent of the other tiers, and transmit
with power Pi.

We focus on the typical user at the origin o. Let Ξ =⋃
x∈Φ{‖x‖

α
/Pv(x)}, we obtain the distance process—a non-

homogeneous PPP on R+. Its intensity function is

λ(t) =

K∑
i=1

λiπδPit
δ−1, t ∈ R+, (40)

where δ = 2/α. Arranging the elements in Ξ in ascending
order, we have ξi =‖xi‖α /Pv(xi) where ξ1 < ξ2 < .... Note
that ξ−1

i is the average received signal power from the i-th
strongest BS. The joint distribution of ξ1 < ξ2 < ξ3 is given
by [10] as

fξ1,ξ2,ξ3(x, y, z) = (λeqπδ)
3 exp (−λeqπz

δ)(xyz)
δ−1

, (41)

for 0 ≤ x ≤ y ≤ z and λeq =
∑K
i=1 λiP

δ
i .

For the HIP model, the success probability is independent
of the number of network tiers K and the power level Pi in
each tier [10], so is the meta distribution [21]. The evaluation
of the metrics of interest is omitted, since this generalization
to multi-tier networks is but a redefinition of the three regions.

VIII. CONCLUSION

In this paper, we give a mathematical definition of cell
regions based on the relative distances of three nearest BSs.
The idea of user grouping based on relative received signal
strengths generalizes to other channel models and heteroge-
neous networks. By enabling BS cooperation based on users’
location, users vulnerable to interference can benefit from
extra BS resources from nearby BS(s) without harming the
network throughput. We quantify the impact of the cooperation
level and the path loss exponent from the asymptotic SIR
gain, the success probability, the variance of the link success
probability as well as the normalized spectral efficiency. We
show that a moderate level of BS cooperation is optimal
to improve the individual link quality without compromising
users’ throughput.

This work permits many extensions. The proposed definition
of cell regions can be applied in the scenario of handover
where mobile users in the cell corner region can be con-
nected to two or more BSs with similar signal strengths. The
framework can be applied to uplink interference management
and non-orthogonal multiple access (NOMA) transmission
techniques.

APPENDIX

A. Proof of Theorem 1

The asymptotic SIR gain G can be expressed as

G =
MISRPPP

MISRγ
.

The MISR of the 1D PPP without cooperation is

MISRPPP =

∞∑
i=2

E
[(r1

ri

)α]
=

1

α− 1
, (42)

by using P(r1/ri ≤ x) = 1 − (1 − x)i−1 [18]. Note that
this case can be generalized to d-D easily: MISRPPP =
d/(α− d) = δ/(1− δ) where δ = d/α.
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We determine MISRγ by calculating it for the two regions
and adding the results, i.e.,

MISRγ = MISRC1 + MISRC2 ,

where MISRCi denotes the MISR within Ci. For C1, we have

MISRC1 =
∑
i>1

E
[(r1

ri

)α
1C1

]
(a)
= E

[(r1

r2

)α
1C1

]∑
i>1

E
[(r2

ri

)α]
(b)
= E

[(r1

r2

)α
1C1

]α+ 1

α− 1
, (43)

where 1Ci is the indicator function that the typical user falls
into Ci. Step (a) follows from the fact that only the first term in
MISRC1 is constrained by the cooperation region, which can
be calculated using the joint distribution of r1 and r2. Step (b)
follows from the relative distance process calculation in [22].

Similarly, we obtain the MISR in C2 as

MISRC2 = E
[ 1

1 + (r2/r1)α
1C2

] 2

α− 1
. (44)

Combining (42), (43) and (44) we can write

G =
1

(α+ 1)E
[(
r1
r2

)α
1C1

]
+ 2E

[
1

1+(r2/r1)α1C2

]
=
(
ρ1+α + 2

∫ ∞
0

∫ x
ρ

x

exp (−y)

1 + ( yx )α
dydx

)−1

(a)
=
(
ρ1+α + 2

(
1− ρ−

∫ 1

ρ

1

1 + zα
dz
))−1

.

Step (a) follows from the change of variable z = x/y.

B. Proof of Proposition 1

Mb = E[Ps(θ)
b] =

2∑
i=1

E[Ps(θ)
b
1Ci ].

where 1Ci is the indicator function that is one when o ∈ Ci
and zero otherwise.

We know that E[Ps(θ)
b
1C1 ] = ρ/2F1(b,−δ; 1− δ;−ραθ)

from [3]. For C2,

E[Ps(θ)
b
1C2 ]

(a)
=

∞∫
0

x
ρ∫
x

exp

(
− y −

∫ ∞
y

1− 1

(1 + st−
1
δ )b

dt

)
dydx

(b)
=

∞∫
0

x
ρ∫
x

exp

(
− y −

∞∫
y

1
δ

(
1− 1

(1 + su−1)b

)
uδ−1δdu

)
dydx

=

∞∫
0

x
ρ∫
x

exp

(
− y 2F1

(
b,−δ; 1− δ;− θ

1 + ( yx )
1
δ

))
dydx

(c)
=

∫ 1
ρ

1

1(
t 2F1

(
b,−δ, 1− δ,−θ/(1 + t

1
δ )
))2 dt.

Step (a) follows from letting s = θ/(x−α + y−α)
and using the probability generating functional (PGFL) of
the PPP [23]. Step (b) follows from u = t1/δ and∫∞
r

(1 − 1/(1 + sx−1)b)xδ−1dx = rδ(−1 + 2F1(b,−δ, 1 −
δ,−s/r))/δ. Step (c) follows from t = y/x.

C. Proof of Theorem 2

The asymptotic SIR gain G can be expressed as

G =
MISRPPP

MISRγ
.

The MISR of the 2D PPP without cooperation is MISRPPP =
2/(α− 2) [18], and

MISRγ = MISRC1 + MISRC2 + MISRC3 ,

where MISRCi denotes the MISR within Ci. For C1, we have

MISRC1 =
∑
i>1

E
[(r1

ri

)α
1C1

]
(a)
= E

[(r1

r2

)α
1C1

]∑
i>1

E
[(r2

ri

)α]
,

where step (a) follows from the fact that only the first term
in MISRC1 depends on the cooperation region. It can be
calculated using the joint distribution of r1 and r2 as

E
[(r1

r2

)α
1C1

]
=

∫ ∞
0

∫ ∞
x
ρ

fr1,r2(x, y)
(r1

r2

)α
dydx.

The second term can be calculated by considering the relative
distance process [22]∑

i>1

E
[(r2

ri

)α]
= 1 +

4

α− 2
.

Similarly, we obtain the MISR in C2 and C3 as

MISRC2 =
∑
i>2

E
[ r−αi
r−α1 + r−α2

1C2

]
= E

[ (r1/r3)α

1 + (r1/r2)α
1C2

]∑
i>2

E
[(r3

ri

)α]
,

where ∑
i>2

E
[(r3

ri

)α]
= 1 +

6

α− 2
,

and

MISRC3 =
∑
i>3

E
[ r−αi
r−α1 + r−α2 + r−α3

1C3

]
= E

[ (r1/r3)α

1 + (r1/r2)α + (r1/r3)α
1C3

]∑
i>3

E
[(r3

ri

)α]
,

where ∑
i>3

E
[(r3

ri

)α]
=

6

α− 2
.
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