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Abstract—This paper develops an analytical framework for
multi-cell uplink NOMA systems based on stochastic geometry.
We propose two scenarios for the clustering of NOMA UEs and
derive the Laplace transform of the inter-cell interference taking
into account uplink power control. We utilize two different order-
ing techniques, namely mean signal power- (MSP-) and instan-
taneous signal-to-intercell-interference-and-noise-ratio- (ISĨNR-)
based, for the successive interference cancellation process at the
BSs. For each technique, we present a signal-to-interference-and-
noise-ratio (SINR) analysis and derive the transmission success
probabilities for the NOMA UEs. We show that uplink power con-
trol, which generally reduces the signal power disparity between
UEs, does not necessarily degrade the NOMA performance. We
discuss how UE clustering and the power control exponent im-
pact this finding. ISĨNR-based ordering, which jointly considers
path loss, fading, inter-cell interference, and noise, is generally
superior to MSP-based ordering. Moreover, we show that the
advantage of NOMA vanishes when the target SINR exceeds
a certain threshold. A comparison of the two UE clustering
scenarios indicates that excluding the UEs which are relatively
far from the serving BS may improve the NOMA performance.

Index Terms—Cellular networks, non-orthonogal multiple ac-
cess, multi-cell, uplink power control, stochastic geometry.

I. INTRODUCTION

In state-of-the-art wireless communication systems like the
long-term evolution (LTE), a variety of orthogonal multiple
access (OMA) technologies such as orthogonal frequency di-
vision multiple access (OFDMA) and single-carrier frequency
division multiple access (SC-FDMA) are utilized [1]. While
OMA avoids intra-cell interference and retrieves users’ signals
with a relatively low complexity, the connectivity and data
rates are limited by the number of orthogonal resources. To
address the requirements of very high data rates and a large
number of devices in next-generation (5G) wireless networks
[2], non-orthogonal multiple access (NOMA) has received
extensive research attention. Contrary to OMA, NOMA serves
multiple user equipments (UEs) on the same time-frequency
resource block (RB) and thus has the potential to improve
the spectral efficiency. The set of UEs served by the same
base station (BS) is the NOMA UE cluster. Based on the
way messages of the UE cluster are superposed, NOMA
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is categorized into power-domain NOMA (PD-NOMA) and
code-domain NOMA (CD-NOMA). The focus of our work is
on PD-NOMA. At the receiver side, successive interference
cancellation (SIC) is exploited to separate the messages of the
UE cluster [3, 4].

A. Related Work

Extensive studies have been conducted on NOMA-based
networks. The performance in terms of outage probability
and ergodic sum rate of a downlink NOMA system with
randomly deployed UEs is first studied in [5]. [6] investigates
the impact of user pairing on the performance of a two-
user downlink NOMA system. It is demonstrated that the
performance gain of NOMA over OMA can be enlarged by
pairing UEs with disparate channel conditions. Furthermore,
[7] investigates a dynamic power control scheme to achieve
a performance gain over OMA and a good tradeoff betweeen
user fairness and system throughput. Closed-form expressions
of the outage probability and the achievable sum data rate
are derived for a two-user uplink NOMA system in [8],
which introduces a power back-off scheme to distinguish
multiplexing UEs. The outage probability of uplink NOMA
systems serving an arbitrary number of UEs is investigated in
[9]. The aforementioned works consider NOMA in single cells
and ignore the impact of inter-cell interference, which has a
drastic negative impact on the NOMA performance.

Recently, stochastic geometry has been applied as an ana-
lytical approach to characterize the performance of multi-cell
NOMA systems while accounting for inter-cell interference.
The performance of downlink multi-cell NOMA has been
well explored [10–14]. In the uplink, however, the analysis is
much more complex since the spatial distribution and channel
statistics of UEs in interfering cells need to be characterized.
Furthermore, the utilization of power control poses significant
challenges on the interference analysis. [10, 14, 15] focus on
uplink NOMA. Specifically, [10] analyzes the uplink NOMA
performance in multi-cell scenarios assuming that the point
processes of interfering UEs for each UE in a NOMA cluster
are homogeneous Poisson point processes (PPPs) with the
same density as the BSs, which is pessimistic since there
is no guarantee that one UE is served by each BS under
nearest-BS association. [14] extends the model of uplink inter-
cell interferers for orthogonal multiple access (OMA) [16],
which is approximated as a general PPP with an intensity
that depends on the distance from the origin, to the NOMA
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case and proposes two simplified models for the point process
for the spatial locations of inter-cell interferers in uplink
NOMA (which we also use in this paper). The moments
of the conditional success probability are derived, and an
expression for the SIR meta distribution1 is given. However,
[14] does not take into account the SIC chain in the signal-to-
interference-ratio analysis and thus overestimates the coverage.
In contrast, [15] presents a framework to analyze uplink multi-
cell NOMA systems using the Matérn cluster process (MCP),
where NOMA UEs are assumed to reside in a disk of fixed
radius centered at their serving BS (i.e., the shape and area
of the Voronoi cells are ignored for the user placement).
The Laplace transform of the intra-cluster and inter-cluster
interference are derived, based on which the rate coverage is
obtained. However, this model leads to the unrealistic situation
where UEs of a NOMA cluster in the typical cell are actually
served by other BSs due to the random shape of the Voronoi
cells.

In terms of power control, [10] assumes the same average
received power for UEs, i.e., full power control, while [14, 15]
assume unit transmit power for UEs, i.e., no power control. In
uplink NOMA systems, the impact of power control is double-
edged. On the one hand, it increases the mean received powers
of NOMA UEs (by compensating for the path loss) [18].
On the other hand, it may increase the inter-cell and intra-
cell interference (the UEs near the cell edge will use higher
power, which increases the intra-cell interference, and some of
them may be relatively close to the receiving BSs in adjacent
cells, which increases the inter-cell interference) and reduce
the difference between NOMA UEs compared to the case of
no power control, which degrades the NOMA performance.
Therefore, the overall impact of power control in multi-cell
uplink NOMA systems needs to be explored in detail.

B. Contributions

In this work we use stochastic geometry to study a large
multi-cell uplink NOMA system that takes into account the
inter-cell and intra-cell interference, the SIC chain, and power
control. We analyze and compare two different UE clustering
models, i.e., two location-based schemes to place NOMA UEs
in a cluster. With the utilization of a fractional power control
scheme, we investigate the performance of mean signal power-
(MSP-) based ordering, which is equivalent to distance-based
ordering2, and instantaneous signal-to-intercell-interference-
and-noise-ratio- (ISĨNR-) based ordering for the SIC process
of NOMA UEs. To the best of our knowledge, an analytical
work that compares both ordering techniques in uplink NOMA
does not exist. Results for an equivalent OMA system are also
given to benchmark the gains attained by NOMA. The main
contributions of this work are summarized as follows:
• We propose two scenarios for NOMA UE clustering. In

the first scenario, the NOMA UEs are distributed uni-
formly on the in-disk, which is the largest disk centered
at the BS that fits inside the Voronoi cell (cf. Fig. 1).
Note that the radius of the in-disk is a random variable.

1See [17] for the definition.
2See [19] for a detailed explanation.

This scenario is referred to as the VD (abbreviation of
“Voronoi disk”) scenario in the following analysis. In the
other scenario, the NOMA UEs are distributed uniformly
in the Voronoi cell of their serving BS (cf. Fig. 3), which
is referred to as the VC (abbreviation of “Voronoi cell”)
scenario3.

• We show that, counterintuitively, uplink power control,
which generally reduces the signal power disparity be-
tween UEs, does not necessarily degrade the NOMA
performance. We discuss how UE clustering and the
power control exponent impact this finding. Also, we
explore what happens if we artificially enhance or over-
compensate for the path loss by setting the power control
exponent to ε < 0 or to ε > 1.

• We show that UE ordering based on ISĨNR, which
takes into account path loss, fading, intercell interference,
and noise, is generally superior to MSP-based ordering.
However, for a given power control exponent, there may
exist a critical level of the target SINR beyond which
MSP-based ordering outperforms ISĨNR-based ordering.

• We also show that the advantage of NOMA vanishes
when the target SINR exceeds a certain threshold. More-
over, a critical minimum level of SIC is required for
NOMA to outperform OMA. A comparison of the VD
and VC scenarios indicates that excluding the UEs which
are relatively far from the serving BS may improve the
NOMA performance.

The rest of the work is organized as follows. Section
II discusses the VD clustering scenario while Section III
discusses the VC scenario. For both scenarios, the Laplace
transform of the inter-cell interference and the transmission
success probabilities of the NOMA UEs are derived. In
Section IV, numerical results of the VD and VC scenarios are
given, followed by a comparison of the two scenarios. The
concluding remarks are presented in Section V.

II. THE VD SCENARIO: UES RESIDE IN THE VORONOI
DISKS

A. System Model

We consider an uplink cellular network where BSs are
modeled as Φb = Φ ∪ {o}, where Φ ⊂ R2 is a homogeneous
PPP with intensity λ. By Slivnyak’s theorem [20], the BS at
the origin becomes the typical BS serving UEs in the typical
cell under expectation over Φb. In this work we study the
performance of the typical cell.

Denote by ρ the distance between the typical BS and its
nearest neighbor. Since Φ is a PPP, the distance ρ follows a
Rayleigh distribution with probability density function (pdf)

fρ(x) = 2πλxe−πλx
2

, x ≥ 0. (1)

Each BS serves N UEs in one time-frequency RB by
multiplexing them in the power domain. The UEs, referred
to as NOMA UEs, are distributed uniformly on the in-disk,
which is the largest disk centered at the BS that fits inside the

3The VC scenario can be viewed as a benchmark scenario for multi-cell
uplink NOMA systems.
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Fig. 1. A realization of the network with N = 2 for the VD scenario. The
in-disk for the typical cell is marked by the dashed circle.
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Fig. 2. Uplink network model for the VD scenario. N UEs are uniformly
distributed on a disk of radius R = ρ/2 centered at each BS. The typical BS
is at the origin, and the typical UEs served by it are at xi (1 ≤ i ≤ N). ρ
denotes the distance between the typical BS and its nearest neighbor.

Voronoi cell. The UEs outside the disk are relatively far from
their serving BS and thus are better served on their own RB or
using coordinated multi-point (CoMP) transmission [21]. The
radius of the in-disk is denoted as R = ρ/2.

Approximation 1. We assume that in each cell, there are N
UEs distributed uniformly in the disk centered at the BS with
the same radius R = ρ/2. Hence we ignore that the radii of
the in-disks in interfering cells are different from that of the
typical cell. Using the actual radii would render the analysis
prohibitively complex. Then, given ρ, the user point process
is a Poisson cluster process (PCP) with N points distributed
uniformly and independently in each cluster.

The interfering UEs seen from the typical BS are modeled
as ΦI =

⋃
y∈ΦN y , where N y denotes the set of UEs whose

serving BS is at location y. A realization of the cell at o, its
in-disk, and the surrounding cells are shown in Fig. 1. In the
typical cell, the locations of UEs are denoted as xi (1 ≤ i ≤
N), as shown in Fig. 2. The link distances from the typical UE
xi to the typical BS at o are denoted as Ri. In the interfering
cell whose serving BS is at y, the locations of UEs are denoted
as xi,y , and the link distances are denoted as Ri,y .

Given ρ, the link distances Ri (1 ≤ i ≤ N) in the typical
cell are identically and independently distributed (i.i.d.) with

pdf4

fRi|ρ(r|ρ) =
8r

ρ2
, 0 ≤ r ≤ ρ

2
. (2)

The link distances Ri,y (1 ≤ i ≤ N) follow the same
distribution as Ri.

The standard power-law path loss model with exponent α >
2 for signal propagation and the standard Rayleigh fading are
used. The power fading coefficients hxi associated with the
user at xi and the typical BS are exponentially distributed
variables with unit mean, i.e., hxi ∼ exp(1). The same follows
for hxi,y . We assume hxi and hxi,y are independent for all
xi ∈ N o and xi,y ∈ ΦI.

We use fractional power control in the form Pi = P0R
αε
i

for the typical UEs and Pi,y = P0R
αε
i,y for the interfering

UEs, which is one of the most widely used schemes for uplink
cellular networks to partially compensate for the path loss. ε
denotes the power control exponent. In addition to the usual
range ε ∈ [0, 1], we also consider the cases of ε < 0 and
ε > 1 to explore what happens if we artificially enhance
or overcompensate for the path loss. P0 denotes the baseline
transmit power when there is no power control. Without loss
of generality, we assume P0 = 1. The noise power is denoted
as σ2.

B. LT of the Inter-Cell Interference

Approximation 2. In the analysis of the inter-cell interfer-
ence in the uplink case, we need to consider the distances
from the interfering UEs to the typical BS. Since both the
distances from the interfering UEs to their serving BS (i.e.,
Ri,y) and the distances from other BSs to the typical BS (i.e.,
‖y‖) are random variables, the analysis of the distances from
interfering UEs to the typical BS (i.e., Di,y) is rather difficult.
To make the analysis tractable, we use an approximation that
the interfering UEs are all located at their serving BS’s location
in the analysis of the inter-cell interference5. Note that the
interfering UEs are still using the transmit power determined
by their actual location.

Lemma 1. In the VD scenario under Approximations 1 and
2, the Laplace transform (LT) of the inter-cell interference
conditioned on ρ is given as

LI?|ρ(s) ≈ exp

(
−2πλ

∫ ∞
ρ

(
1− (Vε(y))N

)
ydy

)
· (Vε(ρ))N ,

(3)
where Vε(y) , 2F1(1, δε ; 1 + δ

ε ;−s
(
ρ
2

)αε
y−α), δ , 2

α , and
ε > 0. For the case of ε = 0, the LT of I? is simplified as

LI?|ρ(s)

≈ exp

(
−2πλ

∫ ∞
ρ

(
1− 1

(1 + sy−α)N

)
ydy

)
· 1

(1 + sρ−α)N
.

(4)

Proof. See Appendix A.

4Note that our model is different from the MCP model in that ρ is a random
variable affected by the shape and area of the Voronoi cells. Our model ensures
that the typical NOMA UEs are exclusively served by the typical BS.

5[11] uses a similar approximation in downlink NOMA that assumes the
UEs are at their serving BS’s location. It is their average location since the
UEs are uniformly distributed on the in-disk.
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Approximation 3. To simplify (3), we use the average
power P̄ to replace Pi,y for all 1 ≤ i ≤ N and y ∈ Φ as
an approximation, which is given as

P̄ =

∫ ρ
2

0

xαε
8x

ρ2
dx =

2

αε+ 2

(ρ
2

)αε
=

δ

ε+ δ

(ρ
2

)αε
, (5)

valid for ε > −δ.

Corollary 1. Assuming average transmit power for the inter-
fering UEs, the LT of the inter-cell interference is approxi-
mated as

LI?|ρ(s)

≈ exp
(
−

N∑
k=1

(
N
k

)
Wk(ρ)sk2F1

(
k, k − δ; k + 1− δ;−sP̄

ρα

))
· 1

(1 + sP̄ ρ−α)N
, (6)

where Wk(ρ) = πλδ(−1)k+1P̄k

(k−δ)ρα(k−δ) and ε > −δ.

Proof. See Appendix B.

C. Transmission Success Probabilities

Next we analyze the transmission success probabilities of
the N NOMA UEs in the typical cell. SIC is employed for
decoding NOMA UEs, which requires the ordering of UEs
based on the link quality. We order UEs in such a way that
the ith UE, which is denoted as Ui, has the ith strongest link.
Here, we consider two link quality metrics, namely:

• Mean signal power (MSP): the MSP of the typical UEs
are P ′i = hiR

−(1−ε)α
i given the fractional power control

scheme Pi = Rαεi . Therefore, in MSP-based ordering,
the typical UEs are indexed according to their ascending
ordered link distance R̂i with R̂1 < ... < R̂N under the
condition ε < 1,6 i.e., the ith closest UE from the origin
is referred to as Ui.

• Instantaneous signal-to-intercell-interference-and-noise-
ratio (ISĨNR): the ISĨNR of the typical UEs are Zi =
hiR

−(1−ε)α
i

I?+σ2 . In ISĨNR-based ordering, the typical UEs are
indexed with respect to their descending ordered ISĨNR
Ẑi, i.e., Ui has the ith largest ISĨNR.

If SIC is ideal7, i.e., there is no residual interference, the
SINR of Ui for 1 ≤ i ≤ N is

SINRi =
hiR

−(1−ε)α
i

N∑
j=i+1

hjR
−(1−ε)α
j + I? + σ2

. (7)

6In the case of ε > 1, the typical UEs are indexed according to their
descending ordered link distance R̂i. In the case of ε = 1, i.e., full power
control, the MSPs of the NOMA UEs are the same, therefore the decoding
order does not matter. Without loss of generality, we take into account the
distances from the NOMA UEs to the BS and decode the UE nearer to the
BS first.

7Here we assume ideal SIC under the assumption of perfect channel
estimation to illustrate the analytical model more coherently. We analyze the
impact of imperfect SIC on NOMA systems in Appendix E.

To decode Ui’s message, the BS needs to successfully
decode the messages of UEs whose order indexes are smaller
than i. We use θi to denote the target SINR (i.e., the SINR
threshold corresponding to the target rate) of Ui. Then the
transmission success (sometimes also called coverage) of Ui

is defined as the joint event

Ci =

i⋂
k=1

{SINRk > θk}. (8)

Theorem 1. In the VD scenario, the transmission success
probability of Ui, 1 ≤ i ≤ N using MSP-based ordering is
given as

P(Ci) = Eρ
[
ER̂1,...,R̂N

[ i∏
k=1

ak

N∏
j=i+1

bi,je
−σ2diLI?|ρ(di)

]]
, (9)

where

ak =


1

1 +
∑k−1
t=1 θt

∏k−1
q=t+1(1 + θq)R̂

(1−ε)α
t R̂

−(1−ε)α
k

, ε ≤ 1,

1

1 +
∑k−1
t=1 θt

∏k−1
q=t+1(1 + θq)R̂

(1−ε)α
N+1−tR̂

−(1−ε)α
N+1−k

, ε > 1,

(10)

bi,j =


1

1 +
∑i
t=1 θt

∏i
q=t+1(1 + θq)R̂

(1−ε)α
t R̂

−(1−ε)α
j

, ε ≤ 1,

1

1 +
∑i
t=1 θt

∏i
q=t+1(1 + θq)R̂

(1−ε)α
N+1−tR̂

−(1−ε)α
N+1−j

, ε > 1,

(11)

di =



i∑
t=1

θt

i∏
q=t+1

(1 + θq)R̂
(1−ε)α
t , ε ≤ 1,

i∑
t=1

θt

i∏
q=t+1

(1 + θq)R̂
(1−ε)α
N+1−t, ε > 1,

(12)

for 1 ≤ k ≤ i, i+ 1 ≤ j ≤ N and 1 ≤ i ≤ N .

Proof. See Appendix C.

Corollary 2. For N = 2 in the VD scenario, the transmission
success probability of U1 using MSP-based ordering is given
as

P(C1) =



∞∫
0

x
2∫

0

Fε(x, r)LI?|x(θ1r
2
δε )Tε(x, r)drfρ(x)dx, ε < 1,

∞∫
0

x
2∫

0

(−τε)r2Fε(x, r)LI?|x(θ1r
2
δε )drfρ(x)dx, ε > 1,

∞∫
0

e−θ1σ
2

LI?|x(θ1)

1 + θ1
fρ(x)dx, ε = 1,

(13)

where Fε(x, r) , 64δεrx
−4e−θ1σ

2r
2
δε , δε , 2

(1−ε)α , τε ,∫ 1

0
v−δε−1

1+θ1v
dv, and

Tε(x, r) ,
∫ r

− 2
δε

( x
2

)
− 2
δε

v−δε−1

1 + θ1r
2
δε v

dv. (14)
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For U2, it is given as

P(C2) =



∞∫
0

x
2∫

0

x
2∫

r1

Gε(x, r1, r2)LI?|x(vε(r1, r2))

1 + θ1r
2
δε
1 r
− 2
δε

2

dr2dr1fρ(x)dx,

ε < 1,

∞∫
0

x
2∫

0

r2∫
0

Gε(x, r2, r1)LI?|x(vε(r2, r1))

1 + θ1r
2
δε
2 r
− 2
δε

1

dr1dr2fρ(x)dx,

ε > 1,
∞∫

0

e−(θ2+θ1(1+θ2))σ2

LI?|x((θ2 + θ1(1 + θ2)))

1 + θ1
fρ(x)dx,

ε = 1,
(15)

where Gε(x, r1, r2) , 128r1r2x
−4e−σ

2vε(r1,r2) and

vε(r1, r2) , θ2r
2
δε
2 + θ1(1 + θ2)r

2
δε
1 .

Proof. See Appendix D.

For ISĨNR-based ordering, the transmission success proba-
bility of Ui, 1 ≤ i ≤ N is

P(Ci)

= P

[
Ẑ1

N∑
j=2

Ẑj + 1

> θ1, ...,
Ẑi

N∑
j=i+1

Ẑj + 1

> θi | Ẑ1 > · · · > ẐN

]

(a)
= E

[ ∫ ∞
0

dzN · · ·
∫ ∞

0

dzi+1

∫ ∞
min(zi+1,θi(

N∑
j=i+1

zj+1))

dzi · · ·

×
∫ ∞

min(z2,θ1(
N∑
j=2

zj+1))

dz1n!fẐ1
(z1) · · · fẐN (zN )

]
, (16)

where (a) follows from the independence of Ẑi for 1 ≤ i ≤ N
and fẐ1,...,ẐN

(z1, ..., zN ) = n!fẐ1
(z1) · · · fẐN (zN ) based on

order statistics [22].
For N ≥ 3, the expressions of P(Ci) are too complex. To

illustrate the analytical model more briefly and coherently, we
focus on N = 2 for ISĨNR-based ordering.

Theorem 2. For N = 2 in the VD scenario, the transmis-
sion success probabilities of U1 and U2 using ISĨNR-based
ordering for θ1 ≥ 1 are given as

P(C1) =

∫ ∞
0

∫ ∞
0

2J(θ1z + θ1, x)K(z, x)dzfρ(x)dx, (17)

P(C2) =

∫ ∞
0

∫ ∞
θ2

2J(θ1z + θ1, x)K(z, x)dzfρ(x)dx, (18)

while for θ1 < 1 they are given as

P(C1) =

∫ ∞
0

(∫ θ1
1−θ1

0

2J(θ1z + θ1, x)K(z, x)dz

+

∫ ∞
θ1

1−θ1

2J(z, x)K(z, x)dz

)
fρ(x)dx, (19)

P(C2) =

∫ ∞
0

(∫ θ1
1−θ1

min(θ2,
θ1

1−θ1
)

2J(θ1z + θ1, x)K(z, x)dz

+

∫ ∞
θ1

1−θ1

2J(z, x)K(z, x)dz

)
fρ(x)dx, (20)

where

J(z, x) =

∫ x
2

0

8rx−2exp(−zσ2r(1−ε)α)LI?|x(zr(1−ε)α)dr, (21)

K(z, x) =

∫ x
2

0

8r1+(1−ε)αx−2exp(−zσ2r(1−ε)α)

·
(
σ2LI?|x(zr(1−ε)α)− L′I?|x(zr(1−ε)α)

)
dr, (22)

in which L′I?|x(s) = dLI?|x(s)/ds.

Proof. See Appendix F.

D. NOMA Gain

In the OMA case, the LT of the inter-cell interference I◦ is
obtained by assuming N = 1, i.e., LI◦|x(s) = LI?|x(s)|N=1.

Let θ denote the target SINR of the OMA UE. The trans-
mission success probability of the typical OMA UE is

P(C) = P
[h1R

−(1−ε)α
1

I◦ + σ2
> θ
]

= Eρ
[
ER1

[
e−θσ

2R
(1−ε)α
1 LI◦|ρ(θR

(1−ε)α
1 )

]]
=

∫ ∞
0

∫ x
2

0

8rx−2e−θσ
2r(1−ε)αLI◦|x(θr(1−ε)α)drfρ(x)dx.

(23)

We use RNOMA and ROMA to denote the achievable
transmission sum rate of NOMA and OMA, respectively, and
define the uplink NOMA gain G as

G , RNOMA −ROMA

=

N∑
i=1

P(Ci) log(1 + θi)− P(C) log(1 + θ). (24)

For N = 2, P(C1) and P(C2) are given in (13) and (15)
for MSP-based ordering and in (17)-(20) for ISĨNR-based
ordering.

III. THE VC SCENARIO: UES RESIDE IN THE VORONOI
CELLS

A. System Model

In the VC scenario, we also model the BSs as Φb = Φ∪{o},
in which Φ ⊂ R2 is a homogeneous PPP with intensity λ. By
Slivnyak’s theorem, the BS at the origin becomes the typical
BS under expectation over Φb. Assume that N NOMA UEs
are served on one RB by each BS. A realization of the cell at
o, the UEs in it, and the surrounding cells are shown in Fig.
3. The UEs in the typical cell are denoted as xi, 1 ≤ i ≤ N ,
as depicted in Fig. 4. The link distances from UE xi to the
typical BS are denoted as Ri. From the results in [16], the Ri
are distributed as

fRi(r) = 2aπλrexp
(
−aπλr2

)
, r > 0, (25)

where a is the correction factor relative to the distribution in
the Crofton cell. The value a = 9/7 is used in the following
analysis.

To characterize the inter-cell interference, we consider two
approximative models based on the pair correlation function
between the interfering UEs and the typical BS [14].
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Fig. 3. A realization of the network with N = 2 for the VC scenario.
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Fig. 4. Uplink network model for the VC scenario. N NOMA UEs are served
on a given RB in each cell.

1) Model 1: The interfering UE process for the typical
NOMA UEs is denoted as ΨI, which is formally defined as
ΨI = {y ∈ Φ : UN (V (y))}, where V (y) denotes the Voronoi
cell of BS y. UN (B), B ⊂ R2, denotes a set of N points
chosen uniformly and randomly from B, and independently
across different B. In the interfering cell whose serving BS
is located at y, the locations of UEs are denoted as xi,y for
1 ≤ i ≤ N , and their link distances are denoted as Rxi,y .
The distances from the interfering UEs to the typical BS are
denoted as Dxi,y = ‖xi,y‖. Since Rxi,y cannot be larger than
Dxi,y (due to nearest-BS association), the distribution of Rxi,y
conditioned on Dxi,y is given as

fRxi,y (r|Dxi,y ) =
2aπλrexp

(
−aπλr2

)
1− exp

(
− aπλD2

xi,y

) , 0 < r < Dxi,y .

(26)
Based on the results in [16], ΨI is approximated as a PPP

with intensity function

λ(x) = Nλ(1− exp(−bπλ‖x‖2)), (27)

where b = 12/5.
2) Model 2: The inter-cell interfering UEs are modeled as a

PCP, where the parents form an inhomogeneous PPP Ψp with
intensity function λp(x) = λ(1− exp(−bπλ‖x‖2)) while the
N offspring points in each cluster are located at the same
location as the parent8.

8Note that the purpose of Model 2 is to approximate the interferers’ point
process by a tractable simplified model. The locations of the NOMA UEs
under consideration (those in the typical cell that are to be decoded at their
base station) are placed according to the PCP model, i.e., they are not assumed
co-located.

As in Section II-A, we assume the standard power-law path
loss model with exponent α > 2 for signal propagation and
the standard Rayleigh fading. Fractional power control in the
form P = Rαε is used for all UEs. In addition to the usual
interval ε ∈ [0, 1], we also consider the cases of ε < 0 and
ε > 1 to explore what happens if we artificially enhance or
overcompensate for the path loss.

B. LT of the Inter-Cell Interference

Lemma 2. In the VC scenario, the LT of the inter-cell
interference is approximated as

LI∗(s) ≈ exp

(
−2πNλ

∫ ∞
0

(
1− e−bπλz

2
)

(1− µ1(z, s))zdz

)
,

(28)
for Model 1 and

LI∗(s) ≈ exp

(
−2πλ

∫ ∞
0

(
1− e−bπλz

2
)

(1− µN (z, s))zdz

)
,

(29)
for Model 2, where

µn(z, s) ,
∫ z

0

2aπλye−aπλy
2

(1− e−aπλz2)(1 + syεαz−α)n
dy. (30)

Proof. See Appendix G.

C. Transmission Success Probabilities

Theorem 3. In the VC scenario, the transmission success
probability of Ui, 1 ≤ i ≤ N using MSP-based ordering is
given as

P(Ci) = ER̂1,...,R̂N

[ i∏
k=1

ak

N∏
j=i+1

bi,je
−σ2diLI∗(di)

]
, (31)

where ak, bk, and dk are given in (10), (11), and (12),
respectively.

Proof. The proof is similar to that of Theorem 1 (see Ap-
pendix C).

Corollary 3. For N = 2 in the VC scenario, the transmission
success probability of U1 using MSP-based ordering for ε < 1
is given as

P(C1)

=



∞∫
0

2e−θ1σ
2r

2
δε LI∗(θ1r

2
δε )ξδε(aπλr

2, θ1)2aπλre−aπλr
2

dr,

ε < 1,
∞∫

0

2e−θ1σ
2r

2
δε LI∗(θ1r

2
δε )(−ξδε(aπλr

2, θ1))2aπλre−aπλr
2

dr,

ε > 1,

e−θ1σ
2

LI∗(θ1)

1 + θ1
, ε = 1,

(32)
where

ξδε(y, z) , δεy

∫ 1

0

v−δε−1e−yv
−δε

1 + zv
dv. (33)
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For U2, it is given as

P(C2)

=



∞∫
0

∞∫
r1

M(r1, r2)e−σ
2vε(r1,r2)LI∗(vε(r1, r2))

1 + θ1r
2
δε
1 r
− 2
δε

2

dr2dr1, ε < 1,

∞∫
0

r2∫
0

M(r2, r1)e−σ
2vε(r2,r1)LI∗(vε(r2, r1))

1 + θ1r
2
δε
2 r
− 2
δε

1

dr1dr2, ε > 1,

e−(θ2+θ1(1+θ2))σ2

LI∗(θ2 + θ1(1 + θ2))

1 + θ1
, ε = 1,

(34)
where M(r1, r2) , 8(aπλ)2r1r2e

−aπλ(r21+r22) and vε(r1, r2)
is defined in Corollary 2.

Proof. See Appendix H.

Theorem 4. For N = 2 in the VC scenario, the transmis-
sion success probabilities of U1 and U2 using ISĨNR-based
ordering for θ1 ≥ 1 are given as

P(C1) =

∫ ∞
0

2J ′(θ1z + θ1)K′(z)dz, (35)

P(C2) =

∫ ∞
θ2

2J ′(θ1z + θ1)K′(z)dz, (36)

while for θ1 < 1 they are given as

P(C1) =

∫ θ1
1−θ1

0

2J ′(θ1z + θ1)K′(z)dz

+

∫ ∞
θ1

1−θ1

2J ′(z)K′(z)dz, (37)

P(C2) =

∫ θ1
1−θ1

min(θ2,
θ1

1−θ1
)

2J ′(θ1z + θ1)K′(z)dz

+

∫ ∞
θ1

1−θ1

2J ′(z)K′(z)dz, (38)

where

J ′(z) =

∫ ∞
0

exp(−zσ2r
2
δε )LI∗(zr

2
δε )2aπλre−aπλr

2

dr, (39)

K′(z) =

∫ ∞
0

exp(−zσ2r
2
δε )
(
σ2LI∗(zr

2
δε )− L′I∗(zr

2
δε )
)

· 2aπλr1+ 2
δε e−aπλr

2

dr, (40)

in which L′I∗(s) = dLI∗(s)/ds.

Proof. See Appendix I.

D. NOMA Gain

In the OMA case, the LT of the inter-cell interference I� is
obtained by assuming N = 1, i.e., LI�|x(s) = LI∗|x(s)|N=1.

Thus the transmission success probability of the typical
OMA UE is given as

P(C) = P
[
h1R

−(1−ε)α
1

I� + σ2
> θ

]
=

∫ ∞
0

e−θσ
2r(1−ε)αLI�(θr(1−ε)α)2aπλre−aπλr

2

dr. (41)

Similar as in the VD scenario, the NOMA gain given in
(24) is considered. For N = 2, P(C1) and P(C2) for the
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Fig. 5. Comparison of the analytical and simulation results for the transmis-
sion success probabilities of the NOMA UEs for N = 2 under different
simplifying assumptions in the VD scenario. λ = 1, ε = 1, α = 4,
σ2 = 0.01, θ1 = θ2 = θ are assumed.

VC scenario are given in (32) and (34) assuming MSP-based
ordering and in (35)-(38) assuming ISĨNR-based ordering.

IV. NUMERICAL RESULTS

A. The VD Scenario

First, we show that the simplifying assumptions (Approx-
imations 1-3) we make in the analysis of the VD scenario
are sensible and result in tight approximative results. Fig. 5
denotes the transmission success probabilities of the NOMA
UEs in the typical cell for both ordering techniques, which are
obtained based on the analytical results under Approximations
1-3 and the simulation results under different approximations.
It is indicated that Approximation 2 (assuming the interfering
UEs are at their serving BSs’ locations), leads to a slightly
larger deviation than the other approximations. Overall, the
assumptions are mild and sensible.

Assuming perfect SIC and the same target SINR for the
NOMA UEs, we explore the impact of ε on NOMA systems.
Fig. 6 depicts the transmission success probabilities of the
NOMA UEs using MSP- and ISĨNR-based ordering for dif-
ferent values of ε ∈ [0, 1] assuming N = 2 . The curves
correspond to the analytical results given in Corollary 2 and
Theorem 2 while the markers correspond to the simulation
results. It is shown that the transmission success probabilities
of U1 and U2 deteriorate with the increase of ε for all values
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Fig. 6. The transmission success probabilities of the NOMA UEs using MSP-
and ISĨNR-based ordering for ε ∈ [0, 1] and N = 2 in the VD scenario. The
curves correspond to the analytical results given in Corollary 2 and Theorem
2 while the markers correspond to the simulation results.

of θ assuming MSP-based ordering. ISĨNR-based ordering
shows a similar trend except that ε = 0.5 exhibits a marginal
performance advantage over ε = 0 and ε = 1 for U2 when θ
is lower than 0 dB.

Fig. 7 depicts the NOMA gain for different ε assuming
MSP-based ordering and N = 2. For a given ε, the NOMA
gain increases gradually with the increase of θ at first, then
starts to sharply decline after reaching the maximum value, and
finally drops below zero when θ exceeds a certain threshold,
which means that the advantage of NOMA vanishes. For
example, for ε = 1 (i.e., full power control), NOMA is superior
to OMA for θ < −1 dB. For ε = 0 (i.e., no power control),
NOMA outperforms OMA if θ is below 5 dB. Moreover, the
NOMA gain of ε = 0 shows a significant advantage over ε = 1
for a given θ, which is intuitive based on the results in Fig.
6(a). Furthermore, we consider the case of ε < 0 and ε > 0 to
explore the result if we artificially enhance or overcompensate
for the path loss. It is shown that using a negative ε improves
the NOMA gain for θ > 2 dB. Moreover, the NOMA gain
gets more evident for a smaller ε given ε < 0. The case of
ε = 1.2 exhibits a marginal improvement of the NOMA gain
compared to ε = 1 for θ > −6 dB. Further increasing ε does
not lead to a performance enhancement.

For the VD scenario, we take values of θ = −5, 0, 5 dB
and plot the NOMA gain vs. ε for the cases of N = 2 and
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Fig. 7. Simulation results of the NOMA gain for different values of ε
assuming MSP-based ordering and N = 2 for the VD scenario.
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Fig. 8. Analytical results of the achievable sum rate of NOMA with different
θi for Ui assuming MSP-based ordering, N = 2 and ε = 0 for the VD
scenario. The product (1 + θ1)(1 + θ2) = (1 + θ)2 is fixed for all cases to
ensure the same target sum rate for the NOMA UEs.

N = 3. As demonstrated in Fig. 9, there exists an optimal ε
for each θ to achieve the maximum NOMA gain.9 Moreover,
the optimal value of ε decreases as θ increases. For example,
for N = 2 using ISĨNR-based ordering, the optimal value
of ε for θ = 5 dB is −0.5, which indicates that artificially
enhancing the path loss improves the NOMA performance.
In comparison, the optimal ε is 0.6 for θ = −5 dB, which
implies that partial compensation for the path loss results in the
optimal performance. Furthermore, the optimal ε for ISĨNR-
based ordering is larger than for MSP-based ordering. Similar
conclusions can be drawn for N = 3. Moreover, it is shown in
Fig. 9 that ISĨNR-based ordering is generally superior to MSP-
based ordering. Note that the variation of the NOMA gain with
respect to ε is not completely smooth in Fig. 9, which is due
to the fact that the impacts of ε on the transmission success
probabilities of NOMA UEs are intricate, as shown in (9)-(12)
and (17)-(22).

Fig. 8 depicts the achievable sum rate with different θi for
Ui assuming N = 2. The product (1 + θ1)(1 + θ2) = (1 + θ)2

is fixed for all cases to ensure the same target sum rate for the
NOMA UEs. We observe that setting θ1 > θ2 does not lead

9Here we obtain the optimal ε for a given N , θ and ordering technique
through simulation results. It is rather unlikely that an exact analytical
expression of the optimal ε that maximizes the NOMA gain can be found.
The same applies for Fig. 14.
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Fig. 9. Simulation results of the NOMA gain vs. ε for N = 2 and N = 3
in the VD scenario. The markerless curves depict the results for MSP-based
ordering while the curves with markers depict the results for ISĨNR-based
ordering.

to a performance gain for any value of θ. θ1 = θ2 achieves
the optimal performance for θ < 2 dB while θ1 = 1

2θ2 leads
to the highest sum rate for θ ∈ [2, 10] dB. Furthermore, θ1 =
1
4θ2 achieves the highest sum rate for θ ∈ [10, 12] dB while
θ1 = 1

8θ2 outperforms the other cases for θ > 12 dB. This
indicates that using a smaller rate for U1 than U2 leads to a
better overall performance in the high-θ regime.

B. The VC Scenario

First, we show that the approximative models of inter-cell
interferers we use in the analysis of the VC scenario are
sensible. Fig. 10 depicts the analytical results for Model 1
and 2 and the simulation results assuming N = 2, ε = 1,
λ = 1, α = 4, σ2 = 0.01 and θ1 = θ2 = θ. It is shown that
the results of Model 1 are lower bounds for Model 2 while
both models lead to upper bounds on the simulation results.
The analytical and the simulation results match closely for
both ordering schemes.

As in Sec. IV-A, we explore the impact of ε assuming
perfect SIC and the same target SINR for the NOMA UEs.
Fig. 11 depicts the transmission success probabilities of U1

and U2 using MSP- and ISĨNR-based ordering for ε ∈ [0, 1].
It is shown that the performance of both UEs decline with the
increase of θ. Moreover, the pace of deterioration accelerates
as ε increases. Furthermore, it is interesting to find that in
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(b) ISĨNR-based

Fig. 10. Comparison of the analytical results assuming Model 1 and 2 with
the simulation results of the transmission success probabilities of the NOMA
UEs for N = 2 in the VC scenario. λ = 1, ε = 1, α = 4, σ2 = 0.01,
θ1 = θ2 = θ are assumed.

the VC scenario, counterintuitively, using power control (i.e.,
assuming ε > 0), which generally reduces signal power
disparity between NOMA UEs, does not necessarily degrade
the performance. Assuming MSP-based ordering, ε = 0.5
results in the best performance for U1 if θ is lower than -5 dB
while ε = 0 provides the optimal performance when θ exceeds
5 dB. As for U2, ε = 0.5 results in the best performance for θ
lower than 0 dB while ε = 0 provides the optimal performance
for θ > 0 dB. For the case of ISĨNR-based ordering, ε = 1,
ε = 0.5 and ε = 0 results in the best performance for U1 when
θ is lower than -10 dB, within [−10,−2] dB, and larger than
-2 dB, respectively.

Fig. 12 depicts the NOMA gain for MSP-based ordering
assuming N = 2. It is shown that the variation of the NOMA
gain with respect to θ in the VC scenario exhibits a similar
trend as in Fig. 7 for the VD scenario. The advantage of
NOMA vanishes when the target SINR exceeds a certain
threshold. For example, for ε = 1, NOMA is superior to
OMA for θ < −6 dB. For ε = 0, NOMA outperforms
OMA if θ is below 6 dB. Moreover, it is shown that using
ε = −0.5 leads to the optimal NOMA gain for θ > −1
dB. In contrast, the NOMA gain of ε = 0 exceeds all the
other cases for θ ∈ [−5,−1] dB while ε = 0.5 is optimal
for θ < −5 dB. Furthermore, we compare the achievable sum
rate of NOMA using MSP-based and ISĨNR-based ordering
for ε = −0.5, 0, 0.5. As depicted in Fig. 13, ISĨNR-based
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Fig. 11. Simulation results of the transmission success probabilities of the
NOMA UEs using MSP- and ISĨNR-based ordering for N = 2 and ε ∈ [0, 1]
in the VC scenario.
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Fig. 12. Simulation results of the NOMA gain for different values of ε
assuming MSP-based ordering and N = 2 for the VC scenario.

ordering is superior to MSP-based ordering for ε = 0, 0.5 for
all values of θ. However, MSP-based ordering outperforms
ISĨNR-based ordering as θ exceeds 10 dB for ε = −0.5.

For the VC scenario, we also take values of θ = −5, 0, 5
dB and plot the NOMA gain vs. ε for the cases of N = 2
and N = 3. As depicted in Fig. 14, the optimal value of ε for
ISĨNR-based ordering is larger than for MSP-based ordering
for θ = −5, 0 dB, which indicates that the NOMA gain
improves more for ISĨNR-based ordering in response to power
control in comparison to MSP-based ordering. In contrast,
the optimal ε for both ordering schemes are approximately
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Fig. 13. Analytical results of the achievable sum rate of NOMA with N = 2
assuming MSP-based and ISĨNR-based ordering for the VC scenario. ε =
−0.5, 0, 0.5 are assumed.
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Fig. 14. Simulation results of the NOMA gain vs. ε for N = 2 and N = 3
in the VC scenario. The markerless curves depict the results for MSP-based
ordering while the curves with markers depict the results for ISĨNR-based
ordering.

equal for θ = 5 dB. Furthermore, the optimal ε decreases as
θ increases, which is similar to the observations of the VD
scenario in Fig. 9. Based on the comparison of Fig. 9 and Fig.
14, we see that the optimal ε for the VD and VC scenarios
are close for a given θ and a given ordering scheme, which
indicates that the NOMA gain varies in a similar manner in
response to power control for the two clustering scenarios.
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Fig. 15. Simulation results of the NOMA gain of NOMA systems with
N = 2, 3, 4 and ε = 0 assuming MSP-based ordering.

C. Comparison of the VD and VC Scenarios

Fig. 15 depicts a comparison of the NOMA gain for NOMA
systems with N = 2, 3, 4 under the VD and VC scenarios.
ε = 0 is selected to obtain the best performance for MSP-
based ordering. For the VD scenario, N = 4 results in the best
performance for θ < −5 dB while N = 3 provides the optimal
performance for θ ∈ [−5, 0] dB. N = 2 outweighs N = 4
and N = 3 for θ > 0 dB. As for the VC scenario, N = 4
provides the optimal performance for θ < 3 dB while N = 2
provides the optimal performance for θ > 3 dB. Generally,
for a given N , the NOMA gain in the VD scenario largely
exceeds its counterpart in the VC scenario. Nevertheless, the
NOMA gain in the VC scenario is higher than the VD scenario
for a relatively large θ, namely 0 dB for N = 4 and 3 dB for
N = 3. However, it is noteworthy that the NOMA gain falls
under 0 when θ exceeds 5 dB, which means that NOMA is
more beneficial for small θ. Therefore, it can be concluded that
the VD clustering scenario is preferable in the application of
uplink NOMA in multi-cell scenarios. [13] came to a similar
conclusion for downlink NOMA.

We then explore the impact of imperfect SIC on NOMA.
Fig. 16 depicts the achievable sum rate vs. β for θ = 1, 3 dB
assuming MSP-based ordering, N = 2, ε = 0, and the same
θ for the NOMA UEs. Since OMA does not use SIC, the
corresponding sum rate plots are independent of β. The figure
shows the existence of a maximum β until which a NOMA
system with a particular θ outperforms the corresponding
OMA system for both the VD and the VC scenarios. This
highlights that a critical minimum level of SIC is required for
NOMA to outperform OMA. Moreover, the threshold for the
VD scenario is lower than for the VC scenario, which indicates
that the VD scenario is more susceptible to the RI. We also
observe that the decrease in the sum rate as a function of β is
steeper for a larger θ highlighting its increased susceptibility
to the RI.

V. CONCLUSION

In this paper, we have developed a theoretical framework to
analyze the performance of multi-cell uplink NOMA systems
under two different UE clustering scenarios, namely the VD
and VC scenarios. Using some mild simplifying assumptions,
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Fig. 16. Analytical results of the achievable sum rate vs. β assuming MSP-
based ordering, N = 2, ε = 0, and the same θ for the NOMA UEs. The
markerless curves represent NOMA while the curves with markers represent
OMA.

we have characterized the Laplace transform of the inter-cell
interference with the assumption of fractional power control.
Two kinds of UE ordering techniques are analyzed, namely
MSP- and ISĨNR-based ordering, and the transmission success
probabilities of the NOMA UEs taking into account the SIC
chain are derived. We show that uplink power control does
not necessarily reduce the NOMA performance and identify
the selection of the power control exponent given different
clustering scenarios and target SINR constraints. Also, we
show that ISĨNR-based ordering is generally superior to MSP-
based ordering. Nevertheless, MSP-based ordering could pro-
vide a marginal performance gain over ISĨNR-based ordering
for large θ if we artificially enhance the path loss, i.e., use
negative ε, in the VC clustering scenario. Moreover, we show
that the advantage of NOMA vanishes when the target SINR
exceeds a certain threshold. Furthermore, a critical minimum
level of SIC is required for NOMA to outperform OMA.

The results highlight the importance of choosing network
parameters such as the power control exponent and the UE
ordering technique, depending on the network objective and
the target SINR constraint. A comparison of the two UE
clustering scenarios indicates that excluding the UEs that are
relatively far from the serving BS from the clustering process
may improve the NOMA performance.

APPENDIX A
PROOF OF LEMMA 1

Based on Approximations 1 and 2, the inter-cell interference
at the typical BS originating from ΦI is given as

I? ≈
∑
y∈Φ
‖y‖>ρ

N∑
i=1

Pi,yhi,y‖y‖−α +
∑
y∈Φ
‖y‖=ρ

N∑
i=1

Pi,yhi,y‖y‖−α

=
∑
y∈Φ
‖y‖>ρ

N∑
i=1

Rαεi,yhi,y‖y‖−α

︸ ︷︷ ︸
I?nn

+

N∑
i=1

Rαεi,yρhi,yρρ
−α

︸ ︷︷ ︸
I?n

, (42)
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where I?nn denotes the inter-cell interference which originates
from UEs in the non-neareast cells while I?n denotes the
interference that stems from UEs in the neareast cell10.

The LT of I? given ρ is thus given as

LI?|ρ(s) ≈ LI?nn|ρ(s) · LI?n |ρ(s). (43)

LI?nn|ρ(s) is obtained as

LI?nn|ρ(s) = E
[
exp

(
− s

∑
y∈Φ
‖y‖>ρ

N∑
i=1

Rαεi,yhi,y‖y‖−α
)]

(a)
= EΦ

[ ∏
y∈Φ
‖y‖>ρ

ERi,y
[ N∏
i=1

1

1 + sRαεi,y‖y‖−α

]]

(b)
= EΦ

[ ∏
y∈Φ
‖y‖>ρ

(∫ ρ
2

0

fRi,y|ρ(x)

1 + sxαε‖y‖−α dx

)N]

(c)
= exp

(
− 2πλ

∫ ∞
ρ

(
1−

(∫ ρ
2

0

fRi,y|ρ(x)

1 + sxαεy−α
dx︸ ︷︷ ︸

A

)N)
ydy

)
,

(44)

where (a) follows from hi,y ∼ exp(1) and the independence
between hi,y , (b) follows since Ri,y are i.i.d. for 1 ≤ i ≤ N ,
(c) follows from mapping Φ to one dimension and applying
the probability generating functional (pgfl) of the PPP [20].

The integral A is calculated as

A =

∫ ρ
2

0

1

1 + sxαεy−α
8x

ρ2
dx

(d)
=

4δ

ερ2

∫ ( ρ
2

)αε

0

u
δ
ε
−1

1 + sy−αu
du

(e)
= 2F1

(
1,
δ

ε
; 1 +

δ

ε
;−s

(ρ
2

)αε
y−α

)
, (45)

where (d) follows from the substitution u = xαε, δ = 2
α

and ε 6= 0, (e) follows from ε > 0 and
∫ t

0
xµ−1

(1+βx)v dx =
tµ

µ 2F1(v, µ; 1 + µ;−βt), µ > 0 [23, Eqn. 3.194.1].

LI?n |ρ(s) is obtained as

LI?n |ρ(s) = E
[
exp

(
− s

N∑
i=1

Rαεi,yρhi,yρρ
−α
)]

(f)
=
(∫ ρ

2

0

fRi,yρ |ρ(x)

1 + sxαερ−α
dx
)N

(g)
=
(

2F1

(
1,
δ

ε
; 1 +

δ

ε
;−s

(ρ
2

)αε
ρ−α

))N
, (46)

where (f) follows since hi,yρ ∼ exp(1), hi,yρ are i.i.d. and
Ri,y are i.i.d., (g) follows from (45) by replacing y with ρ.

Combining (46) and (44), we obtain (3).

10The nearest cell refers to the cell whose serving BS is the nearest neighbor
of the typical BS. The other interfering cells are referred to as the non-nearest
cells. In (42), we denote the location of the nearest BS, which is at distance
ρ from the typical BS, as yρ.

APPENDIX B
PROOF OF COROLLARY 1

Assuming that the interfering UEs use transmit power P̄ ,
the LT of I?nn is approximated as

LI?nn|ρ(s) ≈ exp

(
− 2πλ

∫ ∞
ρ

(
1−

(
1

1 + sP̄ y−α

)N)
ydy

)
(a)
= exp

(
− πλδ

∫ ρ−α

0

(
1−

(
1− sP̄u

1 + sP̄u

)N)
u−δ−1du

)
(b)
= exp

(
− πλδ

N∑
k=1

(
N
k

)
(−1)k+1skP̄ k

∫ ρ−α

0

uk−δ−1

(1 + sP̄u)k
du

)
(c)
= exp

(
−

N∑
k=1

(
N
k

)
Wk(ρ)sk2F1

(
k, k − δ; k + 1− δ;−sP̄

ρα

))
,

(47)

where (a) follows from the substitution u = y−α and δ = 2/α,

(b) follows from the binomial expansion of
(

1 − sP̄u
1+sP̄u

)N
,

and (c) follows from [23, Eqn. 3.194.1].
LI?n |ρ(s) is approximated as

LI?n |ρ(s) ≈ E
[
exp
(
− s

N∑
i=1

P̄ hi,yρρ
−α
)]

=
1

(1 + sP̄ ρ−α)N
.

(48)
Combining (47) and (48), we obtain (6).

APPENDIX C
PROOF OF THEOREM 1

Assuming ε ≤ 1,

P(Ci) = P

[
h1R̂

−(1−ε)α
1

N∑
j=2

hjR̂
−(1−ε)α
j + I? + σ2

> θ1, ...,

hiR̂
−(1−ε)α
i

N∑
j=i+1

hjR̂
−(1−ε)α
j + I? + σ2

> θi

]

(a)
= E

[ ∫ ∞
0

dhN · · ·
∫ ∞

0

dhi+1

∫ ∞
θi(

N∑
j=i+1

hjR̂
−(1−ε)α
j +I?+σ2)

dhi

× · · · ×
∫ ∞
θ1(

N∑
j=2

hjR̂
−(1−ε)α
j +I?+σ2)

dh1e
−h1 · · · e−hN

]
,

= E
[ i∏
k=1

ak

N∏
j=i+1

bi,je
−(I?+σ2)di

]
, (49)

where (a) follows from hi ∼ exp(1) and the independence
between hi for 1 ≤ i ≤ N . Applying the definition of the
Laplace transform, we obtain (9).

For ε > 1,

P(Ci) = P

[
hN R̂

−(1−ε)α
N

N−1∑
j=1

hjR̂
−(1−ε)α
j + I? + σ2

> θ1, ...,

hN+1−iR̂
−(1−ε)α
N+1−i

N−i∑
j=1

hjR̂
−(1−ε)α
j + I? + σ2

> θi

]
. (50)

Following similar derivations as in (49), we obtain (9).
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APPENDIX D
PROOF OF COROLLARY 2

Define

E(ρ, r1) ,
∫ ρ

2

r1

fR2(r2)

1 + θ1r
(1−ε)α
1 r

−(1−ε)α
2

dr2

(a)
=

4δε
ρ2

∫ r
− 2
δε

1

( ρ
2

)
− 2
δε

v−δε−1

1 + θ1r
2
δε
1 v

dv =
4δε
ρ2
Tε(ρ, r1), (51)

where (a) follows from the substitution v = r
−(1−ε)α
2 and

δε = 2
(1−ε)α .

Assuming ε < 1, from (9) we have

P(C1) = Eρ
[
ER̂1,R̂2

[
e−θ1σ

2R̂
(1−ε)α
1 LI?|ρ(θ1R̂

(1−ε)α
1 )

1 + θ1R̂
(1−ε)α
1 R̂

−(1−ε)α
2

]]
(b)
= Eρ

[ ∫ ρ
2

0

2e−θ1σ
2r

(1−ε)α
1 LI?|ρ(θ1r

(1−ε)α
1 )fR1(r1)E(ρ, r1)dr1

]
,

(52)

where (b) follows from fR̂1,R̂2
(r1, r2) = 2fR1(r1)fR2(r2)

based on order statistics [22]. Substituting (51) in (52), we
get (13). Similarly,

P(C2) = Eρ
[
ER̂1,R̂2

[
e−σ

2vε(R̂1,R̂2)LI?|ρ(vε(R̂1, R̂2))

1 + θ1R̂
(1−ε)α
1 R̂

−(1−ε)α
2

]]
. (53)

Applying the joint pdf of R̂1 and R̂2 and some simplifica-
tions, we obtain (15). Using similar derivations, we obtain the
results for ε > 1 and ε = 1 as given in (13) and (15).

APPENDIX E
IMPACT OF IMPERFECT SIC

Considering imperfect SIC, the SINR of Ui for 1 ≤ i ≤ N
is

SINRi =
hiR

−(1−ε)α
i

N∑
j=i+1

hjR
−(1−ε)α
j + β

i−1∑
q=1

hqR
−(1−ε)α
q + I? + σ2

,

(54)
where β ∈ [0, 1] is the fraction of residual interference
(RI) from UEs decoded before Ui. β = 0 means perfect
SIC, while β = 1 corresponds to no SIC at all. Using
similar derivations as in the perfect SIC case, the transmission
success probabilities of the NOMA UEs can be derived. As
an example, here we give the expression of P(C2) considering
imperfect SIC using MSP-based ordering for the VD scenario
with N = 2. P(C2) is given in (55) for θ1θ2β < 1, where

wε(r1, r2) =
1

1 + θ1r
2/δε
1 r

−2/δε
2

− 1

1 + θ−1
2 β−1r

2/δε
1 r

−2/δε
2

,

(56)

uε(r1, r2) =
θ1(1 + θ2)

1− θ1θ2β
r

2/δε
1 +

θ2(1 + θ1β)

1− θ1θ2β
r

2/δε
2 . (57)

For θ1θ2β ≥ 1, P(C2) = 0. The numerical results are given
in Fig. 16.

APPENDIX F
PROOF OF THEOREM 2

For θ ≥ 1,

P(C1) = P
[
Ẑ1 > θẐ2 + θ | Ẑ1 > Ẑ2

]
= P

[
Ẑ1 > θẐ2 + θ

]
= Eρ,R1,R2

[∫ ∞
0

∫ ∞
θz2+θ

fẐ1,Ẑ2|ρ,R1,R2
(z1, z2)dz1dz2

]
(a)
= Eρ,R1,R2

[∫ ∞
0

∫ ∞
θz2+θ

2fZ1|ρ,R1
(z1)fZ2|ρ,R2

(z2)dz1dz2

]
,

(58)

where (a) follows from fẐ1,Ẑ2|ρ,R1,R2
(z1, z2) =

2fZ1|ρ,R1
(z1)fZ2|ρ,R2

based on order statistics [22].
The cumulative distribution function (cdf) of the unordered

Zi conditioned on ρ and Ri is given as11

FZi|ρ,Ri(z) = P
[
hiR

−(1−ε)α
i

I? + σ2
< z

]
(b)
= 1− e−zσ

2R
(1−ε)α
i LI?|ρ(zR(1−ε)α

i ), (59)

where (b) follows from hi ∼ exp(1) and the definition of the
LT. The conditional pdf of Zi is thus obtained as

fZi|ρ,Ri(z) =
dFZi|ρ,Ri(z)

dz

= R
(1−ε)α
i e−zσ

2R
(1−ε)α
i

(
σ2LI?|ρ(zR(1−ε)α

i )− L′I?|ρ(zR
(1−ε)α
i )

)
,

(60)

where L′I?|x(s) = dLI?|x(s)/ds can be obtained from (6).
Substituting (60) in (58), we get the results in (17).

For θ < 1, we have

P(C1) =P
[
Ẑ1 > θẐ2 + θ, 0 ≤ Ẑ2 ≤

θ

1− θ

]
+ P

[
Ẑ1 > Ẑ2, Ẑ2 >

θ

1− θ

]
. (61)

Using similar derivations, we obtain (19). Similarly, we can
obtain the results for U2.

11The unordered Zi are independent for i = 1, 2.

P(C2) =



∫ ∞
0

∫ x
2

0

∫ x
2

r1

wε(r1, r2)e−σ
2uε(r1,r2)LI?|ρ(uε(r1, r2))dr2dr1fρ(x)dx, ε < 1,∫ ∞

0

∫ x
2

0

∫ r2

0

wε(r2, r1)e−σ
2uε(r2,r1)LI?|ρ(uε(r2, r1))dr1dr2fρ(x)dx, ε > 1,

1− θ1θ2β

(1 + θ1)(1 + θ2β)
e
− θ2+θ1(1+θ2+θ2β)

1−θ1θ2β
σ2
∫ ∞

0

LI?|ρ
(θ2 + θ1(1 + θ2 + θ2β)

1− θ1θ2β

)
fρ(x)dx, ε = 1,

(55)
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APPENDIX G
PROOF OF LEMMA 2

For Model 1, the inter-cell interference at the typical BS
originating from ΨI is denoted as I∗ and given by

I∗ =
∑
x∈ΨI

Pxhx‖x‖−α =
∑
x∈ΨI

Rαεx hxD
−α
x . (62)

The LT of I∗ is given as

LI∗(s) = E
[
exp

(
− s

∑
x∈ΨI

Rαεx hxD
−α
x

)]
(a)
= EΨI

[ ∏
x∈ΨI

ERx
[

1

1 + sRαεx D
−α
x

|Dx
] ]

(b)
= EΨI

[ ∏
x∈ΨI

∫ Dx

0

2aπλye−aπλy
2

(1− e−aπλD2
x)(1 + syαεD−αx )

dy

]
(c)
= exp

(
− 2πNλ

∫ ∞
0

(
1− e−bπλz

2
)

(1− µ1(z, s))zdz

)
, (63)

where (a) follows from hx ∼ exp(1) and the independence
between hx, (b) uses (26) to average over Rx, (c) follows
from (27), applying the pgfl of the general PPP [20], map-
ping ΨI to one dimension, and the substitution µn(z, s) =∫ z

0
2aπλye−aπλy

2

(1−e−aπλz2 )(1+syεαz−α)n
dy.

For Model 2, the LT of the inter-cell interference at the
typical BS is given as

LI∗(s) = E
[
exp

(
− s

∑
x∈Ψp

N∑
i=1

Rαεx hx,iD
−α
x

)]
. (64)

Using similar derivations as in (63), we obtain (29).

APPENDIX H
PROOF OF COROLLARY 3

Define

F (r1) ,
∫ ∞
r1

fR2(r2)

1 + θ1r
(1−ε)α
1 r

−(1−ε)α
2

dr2

=

∫ ∞
r1

2aπλxe−aπλx
2

1 + θ1r
(1−ε)α
1 x−(1−ε)α

dx

(a)
= δεaπλr

2
1

∫ 1

0

v−δε−1e−aπλr
2
1v

−δε

1 + θ1v
dv

= ξδε(aπλr
2
1, θ1), (65)

where (a) follows from the substitution v = ( xr1 )
−(1−ε)α and

δε = 2
(1−ε)α .

Assuming ε < 1, from (31) we have

P(C1) = P

[
h1R̂

−(1−ε)α
1

h2R̂
−(1−ε)α
2 + I∗ + σ2

> θ1

]
(b)
= ER̂1,R̂2

[
e−θ1σ

2R̂
(1−ε)α
1 LI∗(θ1R̂

(1−ε)α
1 )

1 + θ1R̂
(1−ε)α
1 R̂

−(1−ε)α
2

]
(c)
=

∫ ∞
0

2e−θ1σ
2r

(1−ε)α
1 LI∗(θ1r

(1−ε)α
1 )F (r1)fR1(r1)dr1, (66)

where (b) follows from h1 ∼ exp(1), h2 ∼ exp(1) and the
independence of h1 and h2, (c) follows from fR̂1,R̂2

(r1, r2) =

2fR1
(r1)fR2

(r2) based on order statistics [22]. Substituting
(65) in (66), we get (32). Similarly,

P(C2) = P

[
h1R̂

−(1−ε)α
1

h2R̂
−(1−ε)α
2 + I∗ + σ2

> θ1,
h2R̂

−(1−ε)α
2

I∗ + σ2
> θ2

]
(d)
= ER̂1,R̂2

[
e−σ

2vε(R̂1,R̂2)LI∗(vε(R̂1, R̂2))

1 + θ1R̂
(1−ε)α
1 R̂

−(1−ε)α
2

]
, (67)

where (d) follows from h1 ∼ exp(1), h2 ∼ exp(1) and the
independence of h1 and h2. Applying the joint pdf of R̂1

and R̂2 and some simplifications, we get (34). Using similar
derivations, we obtain the results for ε > 1 and ε = 1 as given
in (32) and (34).

APPENDIX I
PROOF OF THEOREM 4

For θ1 ≥ 1,

P(C1) = P
[
Ẑ1 > θ1Ẑ2 + θ1

]
(a)
= ER1,R2

[∫ ∞
0

∫ ∞
θ1z2+θ1

2fZ1|R1
(z1)fZ2|R2

(z2)dz1dz2

]
, (68)

where (a) follows from fẐ1,Ẑ2|R1,R2
(z1, z2) =

2fZ1|R1
(z1)fZ2|R2

(z2) based on order statistics.
The cdf of the unordered Zi conditioned on Ri is given as

FZi|Ri(z) = P
[
hiR

−(1−ε)α
i

I∗ + σ2
< z

]
(b)
= 1− exp(−zσ2R

2
δε
i )LI∗(zR

2
δε
i ), (69)

where (b) follows from hi ∼ exp(1) and the definition of the
LT. The conditional pdf of Zi is thus obtained as

fZi|Ri(z) =
dFZi|Ri(z)

dz

= R
2
δε
i exp(−zσ2R

2
δε
i )
(
σ2LI∗(zR

2
δε
i )− L′I∗(zR

2
δε
i )
)
, (70)

where L′I∗(s) = dLI∗(s)/ds can be obtained from (28) and
(29). Substituting (70) in (68), we get (35).

For θ1 < 1, we have

P(C1) =P
[
Ẑ1 > θ1Ẑ2 + θ1, 0 ≤ Ẑ2 ≤

θ1

1− θ1

]
+ P

[
Ẑ1 > Ẑ2, Ẑ2 >

θ1

1− θ1

]
. (71)

Using similar derivations, we obtain (37). Similarly, we can
obtain the results for U2.
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