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Abstract—In this paper we lay an analytic framework for
computing the downlink success probability of cellular networks,
taking into account a frequency reuse distance as an interference
mitigation scheme. We model the frequency reuse distance
using tools from stochastic geometry, namely, we utilize the
Matérn hard-core (MHC) point process to capture the effect
of interference protection zones created around base stations.
To model the overall cellular network, we introduce a new
point process composed of N superimposed MHC processes,
where each individual MHC process corresponds to a co-channel
base station group; this new point process is called the union-
MHC (UMHC) process. We further investigate the resulting
performance of the UMHC process and present the link success
probability in integral form. The success probability can be
evaluated for an arbitrary fading model and an arbitrary number
of orthogonal resource groups. We test the newly proposed model
against practical data sets from a network operator and observe
a good match of the results.

Index Terms—Cellular networks, stochastic geometry, Matérn
hard-core process, frequency reuse.

I. INTRODUCTION

THE vast deployment of cellular networks resulted in
a ubiquitous infrastructure around the world, which is

still continuously expanding at an accelerating pace. The
strategic planning of such networks arises as an important
aspect that guarantees market competency and copes with the
rapid increase in traffic demand. Network operators resort
to extensive simulations to draw a rough estimate of the
cellular performance under future demand assumptions. These
simulations are usually scenario-specific, tailored for a certain
layout and configuration. Furthermore, the emerging self-
organizing features in 5G networks make the traditional plan-
ning techniques less accurate [1], due to the vast configuration
possibilities that a network can take during the course of its
evolution.

Theoretical methods, on the other hand, are based on ana-
lytic and mathematical models to predict the network perfor-
mance based on different encircling probabilistic conditions.
Analytic models can provide a direct relation between these
conditions and the predicted network performance [2]. That
is, in contrary to simulation methods that are not intended to
provide mathematical tractability.

One of the main uncertainties in wireless networks lies
in the location of users and the location of base stations
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(BSs). The irregularity of the location of users is due to the
mobility and the natural randomness of human behavior, while
the irregularity of BS locations can be attributed to many
factors such as the urban structures, availability of utilities,
building/urban planning codes and other geoeconomic factors.
From this perspective, stochastic geometry is an effective tool
to capture the intrinsic randomness in the geometry of cellular
networks, and the popularity of this technique is increasingly
expanding among researchers.

In stochastic geometry, a point process (a random set of
points) is used to model the distribution of cellular base
stations. The Poisson point process (PPP) is a popular choice
by many researchers due to its tractability and simplicity,
facilitated by a rich set of theoretical results [3].

Many works have been based on PPP to develop tractable
approaches for describing interference, success probability,
and rate of cellular networks [3]–[7]. The points in a PPP
do not exhibit correlation, i.e., the location of a point does
not influence the locations of other points. Thus when us-
ing a PPP, an overestimation in the co-channel interference
usually occurs as a result to the possible extreme proximity
of points. Accordingly, the PPP produces lower bounds of
the performance metrics [8] when the actual base stations
positions exhibit repulsion. Alternative methods to represent
the natural repulsion of base stations are utilized by [9], [10]
using less tractable point processes such as the suggested
β-Ginibre point process. However, the relation between the
theoretical repulsion parameter and the actual frequency reuse
distance is not established.

In actual cellular networks, interference mitigation schemes
are usually applied to increase the link success probability.
These schemes are all centered around the orthogonal use of
radio resources in one (or multiple) of the spatial-temporal-
spectral domains. Modeling these schemes is not a trivial
exercise due to the convoluted relation between the location
of users, traffic load, and the arising mutual interference.
Simplified approaches to theorize the reuse of an arbitrary
number of temporal-spectral resources are presented in mul-
tiple places [11], [12] by assuming a random reuse pattern,
thus performing a random thinning on a PPP, which greatly
facilitates the tractability, because the random thinning of a
PPP yields simply another PPP of a reduced density [3].

Hard-core point processes, on the other hand, prohibit co-
channel transmitters (points) from co-existing closer than a
predefined distance called the hard-core distance; these pro-
cesses are previously used to model concurrent transmitters
in CSMA networks [13]–[15]. Similarly, in this paper we
utilize the Matérn hard-core (MHC) point process of type II
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[3, Def. 3.8] to capture the effect of resource-reuse schemes
in cellular networks. Accordingly, we derive the statistical
behavior of the interference originated from a field of MHC
base stations interfering at a mobile user located at a certain
distance from its serving BS. Then we employ this statistical
behavior to calculate the downlink success probability of the
overall cellular network. The main contributions of this paper
are:
• We provide a novel model to represent frequency reuse

in cellular networks using a superposition of MHC point
processes.

• We provide an approximation for the statistics of the
downlink interference on a cellular user generated by base
stations using a frequency reuse distance.

• We present a general formula to calculate the success
probability in cellular networks guarded with frequency
reuse scheme.

• We provide a comparison with real-world data to verify
the accuracy of the provided analytic model.

For convenience, we list in Table I the main mathematical
symbols and notations.

II. BACKGROUND AND RELATED WORK

The utilization of stochastic geometry in modeling cellular
networks has long been investigated by the research com-
munity. References to this subject are numerous, with a vast
trend of adapting the PPP for modeling the spatial distribution
and Rayleigh distribution for modeling the channel fading
process [16]. These two assumptions can greatly facilitate
tractability and mathematical derivations. On the other hand,
the use of general fading models is less popular due to its
computational complexity [17], [18] although it provides more
accurate modeling for wireless cellular networks.

Traditionally, in some previous generations of mobile net-
works (e.g., 2G), a good frequency-plan was achieved via ex-
tensive planning-optimization cycles, where both manual and
automated engineering efforts were essential in this process.
In contrast, in recent and future cellular network generations
(4G and 5G), a universal frequency reuse factor is adopted,
where all base stations have access to the same pool of
frequency bands1. The hustle of manual frequency-plan itera-
tions is left to fully-automated real-time coordination between
base stations that dynamically allocates resources based on
traffic load. In spite of this great interference coordination
capability of modern cellular networks, researchers widely
adopt a randomized frequency assignment model (see [19] and
references therein). The reason is that a randomized frequency
plan preserves the properties of PPP and thus its tractability at
the cost of reducing the accuracy of the model. Accordingly,
when using the PPP model, the aim is more focused on
establishing the performance bounds rather than producing a
tight replication of experimental measurements.

While more accurate modeling of interference mitigation is
proposed in the literature [13]–[15], [20], [21] for capturing

1A widely adopted 3G system is based on the UMTS standard which utilizes
a code-division multiple access scheme. This multiple access scheme does not
permit a granular assignment of the spectrum.

random spectrum access, these models are more suitable for
wireless sensor networks and CSMA networks. To model in-
terference coordination, one can exploit the repulsion property
in hard-core point processes, a subclass of repulsive point
processes. Thus, a thinned process based on the hard-core
distance can emulate an interference protection zone around
every node in the network and thus reduces the interference.

Several other point processes were proposed in the literature
to model the geometry of the cellular network, mainly target-
ing the dependent deployment of femto-cells in the presence of
macro-cells. In this type of heterogeneous deployments, femto-
cells are usually deployed in a hot-spot manner following
the concentrated pockets of users. The work in [22] assumes
that femto-BSs are randomly deployed where macro-BSs are
absent, thus aiming to patch the coverage gaps left by the
macro-BSs. This scheme is a direct utilization of the Poisson
hole process (PHP) [23].

Soft-core point processes also belong to the class of re-
pulsive point processes. The works in [9], [10], [24] utilize
the β-Ginibre process, which has an adjustable parameter
β ∈ (0, 1] to capture the degree of repulsion between the
locations of the base stations. The work in [25] puts forth
a general framework for non-Poisson networks including the
β-Ginibre point process; the paper proposes an analytically
grounded and justified approximation method to calculate the
network performance based on the tractable formulae of the
PPP by shifting the SIR distribution.

In contrast to soft-core point processes, the points in hard-
core point processes are strictly banned from co-existing closer
than the hard-core distance. The MHC process belongs to
the hard-core family and was used in the context of cellular
networks in [26] providing lower bounds of the success prob-
ability using Jensen’s inequality. However the analysis does
not present an explicit formula for the interference, utilizes a
rough approximation to the contact distance, and is restricted
to Rayleigh fading only.

The main novelty in this paper is that it analyzes the
success probability and the downlink interference statistics of
a superposition of MHC point processes. This superposition
models both the spatial and logical distribution of cellular
base stations, where co-channel base stations are modeled in
a single MHC process and the overall geometrical distribution
is captured by the superposition. This approach is shown to
capture actual network deployments much more accurately
than random frequency reuse in PPPs.

III. NETWORK MODEL

In this section, we construct the mathematical model that
emulates the downlink interference of cellular base stations
on mobile users. It is important to note in the case of LTE
(and its extension to 5G), although the reuse factor of the
entire bandwidth is unity, OFDM resource blocks are dynam-
ically assigned and negotiated between nearby base stations
depending on the traffic load distribution. This is indeed a
major advantage over GSM where channels were statically
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assigned2.
The concept of avoiding co-channel interference in LTE

is based on assigning orthogonal resource blocks to cellular
users to avoid potential interference. This mechanism can
still be seen, in principle, as frequency-reuse, where the
geometrical proximity plays the major role in determining
potential interfering channels.

Hard-core point processes prohibit points to be closer than a
certain distance δ called the hard-core distance. This property
can be utilized to model the interference protection zone,
within which BSs are prohibited from assigning the same radio
resources in the downlink.

One of the main hard-core point processes is the Matérn
hard-core (MHC) point process type II, introduced in [27].
To construct this process, we start from a homogeneous PPP
denoted as Φb (called the base process) of intensity λb, then
we mark each point independently with a uniform random
variable, i.e., mx ∼ U(0, 1). After that, for each point x,
we check within the ball b(x, δ) for any other point having a
lower mark than x. If we find such a point, then x is flagged
for removal. The final step is to remove all points that were
flagged. The resulting MHC point process is denoted as Φ and
can be expressed as follows [3, Def. 3.8],

Φ ,{x ∈ Φb : mx < my,∀y ∈ Φb ∩ b(x, δ) \ {x}},
,MHC (Φb) , (1)

where MHC(.) is the dependent thinning operator. It can be
easily shown that the resulting intensity of Φ is given by [28]

λMHC = ρλb =
1− exp(−πδ2λb)

πδ2
, (2)

where ρ is the retention probability of the points in the base
PPP.

We call the resulting point process of superimposing mul-
tiple i.i.d. MHC processes as the Union-MHC (UMHC).
Formally, we define the UMHC process as

Ξ ,
N⋃
i=1

Φ(i), where Φ(i) = MHC(Φ
(i)
b ). (3)

Its intensity is
λUMHC = NλMHC. (4)

In this paper we represent the location of base stations using
a UMHC process, where each element process Φ(i) represents
a co-channel base station group (also called a resource group),
since they share the same radio resources and are logically
having the same color3. Note that in practice, a resource
group is composed of base stations using non-orthogonal radio
resources and are mutually interfering. We depict a realization
of a UMHC process in Fig. 1 for N = 3 resource groups,
indicating the interference protection zone around BSs of the
first resource group as an example.

2In GSM, a frequency hopping scheme might be enabled, however this
does not change the fact that the number of channels is constant in a given
cell depending on the number of available transceiver (TRX) modules.

3More precisely, a color represents the BSs that are using the same resource
block (RB). BSs with different colors are considered non-interfering

Fig. 1. A realization of a UMHC point process with N = 3, δ = 1 and
λMHC = 1/π, indicating the hard-core zones of the first element process
Φ(1).

TABLE I
NOTATIONS AND SYMBOLS

Symbol Explanation

Φb PPP (the base process)
Φ MHC point process
Ξ UMHC point process
MHC(.) MHC thinning operator
λb The parent PPP intensity
λMHC MHC intensity
λUMHC UMHC intensity
δ Hard-core distance (frequency reuse distance)
mx The mark of point x
ρ Unconditional MHC retention probability
N The number of resource groups (colors)
g(r) Pair correlation function for isotropic point process
%(2)(r) Second moment density
k(r) The probability of two points in the base PPP

separated by distance r to be both retained
Ro Contact distance random variable
φ The angle between an interfering BS and the serving BS
h Channel fading random variable
ho Channel fading of the serving BS
α Path loss exponent
θ SINR service threshold

IV. UMHC PROPERTIES

In order to study the plausibility of utilizing the UMHC
process to represent cellular networks, we investigate its
regularity by examining its pair correlation function. If this
function is equal to unity, then the points have no pairwise
correlation in their locations, while values less than unity
indicates a repulsive behavior between points and vice-versa
for clustering. The pair correlation function for a motion-
invariant process is defined as [3]

g(r) ,
%(2)(r)

λ2
, (5)



CELLULAR PERFORMANCE WITH FREQUENCY REUSE 4

where λ is the intensity, and %(2)(r) is the second moment
density, which can be informally understood as the joint
probability that there are two points separated by the distance
r [3].

Lemma 1. The pair correlation function of the UMHC process
is given by

gUMHC(r) =
k(r)

N

λ2
b

λ2
MHC

+
N − 1

N
. (6)

where k(r) is the probability of two points in the parent PPP
separated by a distance r to be both retained in the resulting
MHC process [29]. It is given by [13]

k(r) =


0 r < δ

2

(
1−e−πδ

2λb

πδ2
+ e−λbV (δ,r)−1

V (δ,r)

)
λ2
b(V (δ,r)−πδ2)

r ≥ δ,
(7)

where

V (δ, r) =

{
2πδ2 − 2 cos−1

(
r
2δ

)
δ2 +

√
δ2 − r2

4 r r ≤ 2δ

2πδ2 r > 2δ
(8)

is the union area of two disks of radius δ whose centers are
separated by a distance r.

Proof. We start from the second moment density of a single
MHC point process given as [29]

%
(2)
MHC(r) = λ2

bk(r). (9)

Similarly, by considering the union of all the N parent PPPs,
we can think of the event of retaining both points as the union
of the following two mutually exclusive cases: (i) the points
belong to the same parent PPP, which occurs with a probability
1
N ; in this case, the retention probability is k(r), and (ii) the
points belong to two different parent PPPs, which occurs with
probability 1− 1

N ; in this case the retention probability is ρ2 =(
λMHC

λb

)2

. The retention probability in the second case is ρ2

because each point is independently retained with probability
ρ as the points belong to two independent PPPs. Accordingly,
we express the two-point retention probability of the UMHC
process as

kUMHC(r) =

(
1

N

)
k(r)︸ ︷︷ ︸

Case(i)

+

(
1− 1

N

)(
λMHC

λb

)2

︸ ︷︷ ︸
Case(ii)

. (10)

Using the definition in (5) we have

gUMHC(r) =
%

(2)
UMHC(r)

λ2
UMHC

=
%

(2)
UMHC(r)

(Nρλb)
2 , (11)

where the second moment density can be formulated similar
to (9), namely

%
(2)
UMHC(r) = (Nλb)

2
kUMHC(r). (12)

By substituting in (11) we obtain the result of this lemma.

Corollary 1. The pair correlation function of the UMHC
process asymptoticly tends to unity as the number of the
generating parent processes N →∞.

Fig. 2. The pair correlation function of the UMHC point process, indicating
the regularity with respect to different number of superimposed processes.
δ = 1 and λMHC = 1/π.

Proof. For N →∞, we have from (6)

g′UMHC(r) = lim
N→∞

gUMHC(r) = 1, r > 0, (13)

indicating that the location of the points of the UMHC process
become pair-wise uncorrelated. The result also follows from
the fact that the superposition of N independent stationary
and ergodic point processes approaches a PPP as N → ∞
[3], [30].

In order to get insights on the transition behavior of the
regularity (from a repulsive process to a completely random
process), we plot the pair correlation function of the UMHC
process in Fig. 2, using infinite parent points intensity of
λb →∞ and a hard-core distance δ = 1. As real cellular
networks exhibit a certain degree of repulsion between BSs,
naturally a suitable analytical model must be repulsive, ideally
with an adjustable degree of repulsion. As it can be noted from
Fig. 2, the UMHC features this property.

So far, we have shown that increasing the number of parent
processes N leads to more randomness in the resulting union
of the children processes. Accordingly, for a large N , the
UMHC process can be thought as a PPP divided uniformly
at random into N groups of points. These groups represents
the co-channel base stations.

The particular value of the generating intensity λb is ir-
relevant when modeling a cellular network model, but what
matters is the resulting MHC process intensity λMHC as it
will have a direct effect on the interference statistics. Thus,
a simplified method to model cellular networks using UMHC
point process is to generate the underlying MHC processes
using an infinite intensity for the parent point process, i.e.,
letting λb → ∞. The resulting MHC process intensity can
then be calculated from the simple relation

λ′MHC = lim
λb→∞

1− exp(−πδ2λb)

πδ2
=

1

πδ2
. (14)
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Accordingly, a simple relation can be formed to link the reuse
distance δ and the number of resource groups N as follows,

δ =

√
N

πλ′UMHC

, N ∈ N. (15)

This relation is deduced by substituting (14) in (4), where
λ′UMHC is the overall density of the cellular base stations.
Thus, if we have a given number of resource groups N and a
given base stations density, then we can calculate the required
reuse distance δ to construct the corresponding UMHC model.

A. Contact Distance in UMHC Process

A very important aspect to analyze in a point process model
is the contact distance between a mobile user and its nearest
serving base station. The statistics of this distance heavily in-
fluences the signal strength and the signal-to-interference-and-
noise ratio (SINR). We utilize the mathematical framework
developed in [28] in order to calculate the distribution of the
contact distance between a user placed at the origin and an
MHC process (representing base stations), where equations
(2) and (15) in [28] yield

FMHC(r) =

1− exp

(
−
∫ r

0

1− exp
[
−λb

(
πδ2 − l(υ, δ)

)]
πδ2 − l(υ, δ)

2πυ dυ

)
,

(16)

representing the cumulative distribution function (CDF) of the
contact distance in a single MHC process, where l(r, δ) is the
area of the asymmetrical lens formed by the intersection of
two circles separated by a distance r, one with radius r and
the other with radius δ. This area is given by

l(r, δ) =


πr2, 0 < r < δ

2

r2 cos−1
(

1− δ2

2r2

)
+ δ2 cos−1

(
δ
2r

)
− 1

2δ
√

4r2 − δ2, r ≥ δ
2 .

When multiple MHC processes are superimposed, the user
will opt to contact the closest base station of all the superim-
posed processes. Thus for the typical user at the origin, the
contact distance to a UMHC process is given by

Ro = min
i∈{1,...,N}

‖Φ(i)‖. (17)

Accordingly, the distribution of the contact distance of the
UMHC is

FUMHC(r) = 1− [1− FMHC(r)]
N
, (18)

because all underlying contact distances are i.i.d.
The form of (16) is somewhat complicated, since it involves

an integral over trigonometric functions. Alternatively we
could exploit the convergence property of UMHC process
to PPP as the number of the superimposed MHC processes
increases, thus the contact distance distribution of the UMHC
process converges to the simple form of the PPP contact
distance, i.e.,

FPPP(r) = 1− exp(−πλ′UMHCr
2). (19)

0  0.2 0.4 0.6 0.8 1  1.2 1.4
0  

0.2

0.4

0.6

0.8

1  

PPP
UMHC

N = 1,2,10,30

Fig. 3. The asymptotic behavior of the CDF of the contact distance in the
UMHC process as per (18), converging to the PPP contact distance described
in (19). The parameters are λUMHC = 0.3, N = {1,2,10,30}, λb →∞.

Fig. 4. The interference-free region V as the union of the two balls b(x,Ro)
and b(uo, δ).

We depict in Fig. 3 a visualization of the convergence in
distribution of the contact distance towards the PPP as per
(18) and (19); to establish a valid comparison base in Fig.
3, we consider a constant UMHC intensity λUMHC, in which
the underlying MHC processes are generated based on the
given number of resource groups N where that the hard-core
distance δ is calculated as per (15). The comparison is made
with PPP having an intensity equal to that of the UMHC
process, i.e., λUMHC.

B. Channel Model

We model the mean path loss using the common power-law
relation given by R−αu = ‖u−x‖−α, where u is the location of
the BS, while x is the location of the user, ‖.‖ is the Euclidean
distance, and α is the path loss exponent. The effect of fading
on the channel gain is captured in the random variable h.
Accordingly the resulting received power from a BS at u is
PRXu = huR

−α
u , where all BS are assumed to transmit at a

common normalized power and the fading process is i.i.d.
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V. INTERFERENCE CHARACTERIZATION

Without loss of generality, we consider the typical user at
the origin. More precisely, the origin is the typical location
we focus on. Also, we assume that a cellular user associates
with the closest base station4 (called the serving base station
and denoted as uo), where,

uo = argmin{x ∈ Ξ: ‖x‖ < ‖y‖ ∀y ∈ Ξ \ {x}}, (20)

and we denote the distance towards this serving uo as Ro =
‖uo‖ and the resource group of this cell as κ, i.e., uo ∈ Φ(κ),
and Φ

(κ)
o = Φ(κ) \ {uo} is the set of co-channel base stations

under consideration.
All other co-channel BSs, other than the serving one, are

considered as interferers. Thus the aggregated interference
power at the receiver is

I =
∑

u∈Φ
(κ)
o

huR
−α
u , (21)

where Ru is the distance toward the interfering BSs, and
hu are the power fading random variables of the interfering
BSs. A key property of the cellular network model is that
all interferers are located outside the ball b(x,Ro) since the
serving base station is the closest to the user x.

If the co-channel base stations are modeled using a MHC
process, there is an interference protection zone around every
base station, within which no two co-channel base stations are
allowed to co-exist. Thus, all interferers are also outside the
ball b(uo, δ). As a result, the overall interferer-free region is
the union of the two balls V = b(O, Ro)

⋃
b(uo, δ). Note that

when Ro ≤ δ
2 where the union, i.e., the interference protection

zone, consists only of b(uo, δ). The interference-free region is
depicted in Fig. 4.

Coming back to the aggregated interference in (21), our aim
is to characterize its statistical behavior, ideally by describing
its CDF. Unfortunately the CDF of the interference cannot be
obtained in a closed form; however, we can still obtain its
Laplace transform (LT) LI(s), where the LT for a random
variable X is defined as LX(s) = E

[
e−sX

]
, and s is

a complex variable. With the LT available, we can utilize
a numerical inversion method to compute the CDF of I
according to

FI(x) = L−1

[
1

s
LI(s)

]
. (22)

The particular method we will use in the subsequent numerical
examples is called Talbot Inversion along with the unified
numerical inversion framework developed in [31].

To this end, and in order to find the Laplace transform of
the interference, we utilize a similar method as in [4], which
considers the interferers to be scattered in the entire plane
R2. The difference is that in our approach the distribution of
the interferers is restricted to the outside of the interference
exclusion region V = b(O, Ro)

⋃
b(uo, δ).

4Note that in practical implementation of cellular networks in urban
environment, the shape of the serving region of a cell can be discontinuous
and patchy. However, the chief goal here is to construct an analytic framework
that creates a balance in the trade-off between the insightful formulation and
high-accuracy modeling.

Proposition 1. The conditional Laplace transform given Ro
of the aggregated interference of co-channeled BS modeled as
a MHC process is approximated by

Proof. We start from the definition of the Laplace transform of
the interference random variable, where the expectation should
be performed over (i) the stochastic processes of the radio
channel hu and (ii) over the geometrical stochastic process of
Φ

(κ)
o

LI|Ro(s) = E
[
e−sI | Ro

]
= E

exp

−s ∑
u∈Φ

(κ)
o

huR
−α
u

 | Ro


= E

 ∏
u∈Φ

(κ)
o

exp
(
−shuR−αu

)
| Ro


(a)
= E

 ∏
u∈Φ

(κ)
o

Eh
[
exp

(
−shuR−αu

)]
| Ro


(b)
= E

 ∏
u∈Φ

(κ)
o

Lh
[
−sR−αu

]
| Ro

 , (25)

where (a) stems from the fact that the channels h are inde-
pendent of the point process and that all hu are i.i.d. random
variables, while (b) follows directly from the definition of the
Laplace transform, with Ru given by

Ru =
√
r2
u +R2

o + 2rRo cosφu, (26)

where ru = ‖u − uo‖ is the distance between the interfering
base stations u and the serving base station uo. The geo-
metrical reasoning for (26) can be deduced using the cosine
rule, see Fig. 5 for details. Since all MHC processes are i.i.d.,
the interference statistics are the same for each of the MHC
processes (co-channel groups).

In order to analytically compute the expectation in (25),
we follow the approximation in [13] where the MHC process
is approximated as an inhomogeneous PPP that follows the
conditional intensity of the MHC process. This approximation
allows the use of the probability generating functional on R2

[3], which states that for a function f : R2 → [0, 1] the identity

E

[∏
x∈Φ

f(x)

]
≡ exp

(
−
∫
R2

[1− f(x)]Λ(dx)

)
(27)

holds, where Φ is a PPP5 and Λ(.) is its intensity measure.
As the MHC point process features a strong dependency

between its points, knowing that we have a serving BS uo will
influence the intensity of its surrounding region. This influence
goes beyond just the interference protection zone b(uo, δ)
and causes an intensity reduction that gradually decays with
distance. We can obtain this conditional intensity by adding
two points in the parent PPP Φb with a known distance r,

5In our case it is an inhomogeneous PPP approximating the MHC process
under study. The probability generating functional is shown to hold well in
the subsequent numerical examples.
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LI|Ro(s) ≈ exp

(
−
∫ ∞
δ

∫ φo

−φo

[
1− Lh

(
s(r2 +Ro

2 + 2rRo cosφ)−
α
2

)]
λb
k(r)

ρ
r dφdr

)
, (23)

where

φo =

{
π − cos−1 r

2Ro
: r < 2Ro

π : otherwise.
(24)

Fig. 5. The geometrical representation of the integration in (24), showing
the integration arc extending from −φo to φo and the integration region. The
original axis and the translated axis are indicated.

where we have shown in (7) that the Palm probability of
having them both retained in the resulting MHC process is
k(r). Denote these two points as x1 and x2 with a distance
r = ‖x2 − x1‖. Further denote the event of x1 to migrate
to the MHC process as A, and the event of x2 to migrate
to the MHC process as B. Given a distance r, the following
Bayesian rule applies

P (B | A; r) =
P (A

⋂
B; r)

P (A)
=
k(r)

ρ
, (28)

where we have k(r) = P (A
⋂
B; r) by definition, and P(A) =

ρ is the probability for a point in the PPP to migrate to the
MHC process by definition.

Coming back to the integration in (27), and considering
a polar coordinate system (r, θ), the conditional intensity can
then be written as Λ(rdθdr) = λbk(r)/ρ rdθdr. As the parent
PPP is isotropic, there is no dependency on the relative angle
between two points in the MHC process [32].

We evaluate the double integral by translating the coordinate
system with the origin at the serving BS and the typical
user along the negative side of the x-axis. The translation
significantly reduces the complexity of the numeric evalua-
tion. Accordingly, the new coordinates r and φ respectively
represent the distance and the angle between the interfering
BSs and the serving BS. The infinitesimal integration arc is
indicated in Fig. 5. Thus by substituting in (27) we obtain the
result of Proposition 1. The angle limits of the integration in
(24) are obtained using Euclidean reasoning as follows; from
Fig. 5 we note that ∠abc = cos−1 r

2Ro
using the cosine rule.

Thus, ±φ = π − cos−1 r
2Ro

for r < 2Ro. While in the case
of r ≥ 2Ro the blue stripe extends to a full annulus and thus
the integration limits will be φ = ±π for r ≥ 2Ro.

10-9 10-8
0

0.2

0.4

0.6

0.8

1

N  = 6, 10, 14, 18

Analytic Approx
Monte Carlo

Fig. 6. The cumulative distribution function of the cellular interference using a
constant BS density λUMHC = 2

10002
m−2, a variable number of frequency

reuse groups N = {6, 10, 14, 18}, a path loss exponent α = 3, a unit
transmit power, and no channel fading (h = 1), the values of δ are obtained
according to (15). The figure compares Monte-Carlo simulations with the
analytic approximation in (29).

A numerical example is shown in Fig. 6 for a cellular net-
work modeled using a UMHC process for a different number
of stacked MHC processes N = {6, 10, 14, 18} representing
the number of frequency reuse groups. The overall cellular BS
density is kept constant λUMHC = 2

10002 m−2, where a large
value of the generating intensity is used λb → ∞, thus the
frequency reuse distance is calculated from (15). The CDF plot
is obtained using numerical inversion of the Laplace transform
and then a numerical expectation over the contact distance Ro,
i.e.,

FI(x) = ERo
[
L−1

[
1

s
LI|Ro(s)

]]
=

∫ ∞
0

L−1

[
1

s
LI|r(s)

]
fUMHC(r)dr, (29)

where we utilize the convergence property of the UMHC
process to a PPP in order to approximate the probability
density function (PDF) of the contact distance as

fUMHC(r) ≈ 2πλUMHCr exp(−πλUMHCr
2). (30)

The results are compared to Monte-Carlo simulations, where
the method of simulation is elaborated later on in Sec. VI-C.

VI. CELLULAR SUCCESS PROBABILITY

A. Analytical Formulation

A wireless transmission can be considered successful if the
SINR at the receiver exceeds a certain threshold θ. Accord-
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ingly, for a given BS-user distance Ro, we can express the
link success probability as

pL | ho, Ro = P [SINR ≥ θ | ho, Ro]

= P
[
hoR

−α
o

I +W
≥ θ | ho, Ro

]
= FI|Ro

(
ho
θRαo

−W
)
, (31)

where FI|Ro is the CDF of the aggregated interference I
conditioned on the BS-user distance Ro and the fading of the
desired BS-user link, while W is the average noise power
normalized to the common transmit power of the BS. The
random variable ho models the fading of the serving BS
channel. Accordingly, by deconditioning on ho and Ro we
can obtain the averaged performance of the cellular network
as

ps = E [pL | ho, Ro] = E
[
FI|Ro

(
ho
θRαo

−W
)]

=

∫ ∞
0

∫ ∞
0

FI|Ro

(
ho
θRαo

−W
)
× fRo(r)fho(u) drdu,

(32)

where fRo(r) and fho(v) are the PDFs of Ro and ho respec-
tively. The fading PDF can take any of the known models,
e.g., Rayleigh, Rician, Nakagami, etc., while Ro follows the
distribution of the UMHC point process. To illustrate the
performance of a cellular network guarded with a frequency
reuse distance, we depict in Fig. 7 a comparison between
the success probability ps against a varying threshold θ and
for different reuse distances δ =

√
N

πλUMHC
(see (15)). The

analytical curves and Monte-Carlo simulations match to a
good degree of accuracy, indicating the plausibility of approx-
imating the MHC point process with an inhomogeneous PPP
in Proposition 1. The simulation methodology is detailed Sec.
VI-C.

B. Comparison with Experimental Data

As indicated in the literature review section, a plethora of
previous works aimed at establishing an analytical approxi-
mation for frequency reuse in modern cellular networks. A
popular method is to utilize a pool of N frequencies and
assign these channels randomly to base stations [7], [33]. This
method has a great advantage in simplifying the analytical
study since when dealing with PPPs the randomly reduced
set of PPP interferers is simply another PPP with a lower
intensity. Indeed such method is very basic when compared to
advanced interference mitigation schemes in cellular networks
[34], and the performance of LTE-A and 5G networks is
heavily dependent on these schemes. In fact, one of the main
differentiators between network vendors is how well their
interference mitigation is designed.

For comparing the ability of UMHC in capturing real
network deployments we rely on publicly available data of
a major telecom operator (Telstra) through the Australian
Communication and Media Authority [35]. We select several
subsets of this data trying to capture regions with relatively
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Fig. 7. The cellular success probability ps versus the SINR threshold θ for
a UMHC cellular model with different values of N = {1, 4, 8, 12, 16}. The
generating parent PPPs has a very high density λb →∞, while the cellular
density (UMHC density) is set to λUMHC = 1

500×500
m−2. The noise

power is ignored.
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Fig. 8. The locations of base stations of a major telecom operator, indicating
the test region used in the simulation. The location of base stations is sourced
from the Australian Media and Communication Authority [35], coastline map
is sourced from Geoscience Australia [36].

homogeneous density of BS as indicated in Fig. 8 showing
the locations of the base stations6 and the associated Voronoi
tessellation representing the serving cell of each base station.
The total area of the three subsets is around 250 km2, which
makes our study statistically significant.

6It is noteworthy that in real-life scenarios, a telecom tower (or a site)
usually consists of three directional sectors, where the presented model and
analysis in this paper still apply to this case. In fact, it does not matter how
many sectors each BS antenna is divided in. The distance to the serving BS
remains unchanged, as do the distances to all interfering ones.
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We compare the actual network deployment against two
theoretical network layouts. In total the three scenarios are
summarized below:

1) UMHC Point Process (theoretical): In this method the
reuse distance δ is calculated using (15) based on a given
number of colors (frequency channels) N .

2) Poisson Point Process with Random Coloring (theoreti-
cal): In this method a PPP network of base stations is created
and the colors (frequency channels) are assigned randomly
from a pool of colors having a cardinality of N . The analytical
formulation of the probability of successful cellular service ps

is based on [18], where we invoke the path loss-only scenario
in the comparison.

3) Actual Network with Greedy Coloring (experimental): In
this scenario the network is simulated for a different frequency
reuse distances δ ∈ {δmin, δmax}. For each of the simulated
δ, a graph G = (V,E) is constructed with the base stations
as its vertices V , while the edges E are formed between base
stations that are having distances below the reuse distance δ,
i.e.,

E = {(u, v) ∈ V : ‖u− v‖ ≤ δ}. (33)

After constructing the graph, it is colored using a fast greedy
coloring algorithm [37] with repeated random sequences. Note
that the ideal coloring might not be practically achievable in
a reasonable simulation time, as coloring problems are known
to be NP-hard. The resulting frequency plan using the selected
greedy coloring algorithm is indeed suboptimal, however only
very few residue base stations are given an extra frequency
channel. We opt to ignore such group if the residue is less
than 1% of the total number of base stations. The resulting
number of colors N is recorded based on the given reuse
distance δ. The entire simulation is extensively repeated (re-
coloring) to obtain a statistically viable result, and we report
both the mean performance and its standard deviation.

We quantify the performance in terms of the success prob-
ability ps, which it is obtained against varying color numbers
N (frequency channels) and compared in Fig. 9 for the
three different scenarios; the theoretical models of (i) UMHC
process and (ii) PPP, where both Monte-Carlo and analytic
results show a good match and (iii) a practical network layout
based on Telstra sites locations. It is interesting to observe
that the average behavior of the practical network (scenario
iii) becomes more aligned with the UMHC model as the
number of frequency channels N increases, then it shows a
good match for N ≥ 12. The figure indicates a significant
gap between the random frequency assignment in PPP and
the UMHC model, which highlights the main added value of
the proposed model showing its ability to accurately capture
the performance of cellular networks when proper frequency
assignment is utilized.

We note an interesting tendency of the practical network
(Scenario iii) to follow the PPP model for a low number of
frequency channels, i.e., N ≤ 6. The intuition behind this
is that the average number of sides (or neighbors) of a given
Voronoi cell in the PPP process is 6, which means that it is sig-
nificantly more likely to have at least one interfering neighbor
when the available frequency channels N ≤ 6. However, it is

5 10 15 20 25 30

Frequency groups (N)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

P
ro

ba
bi

lit
y 

of
 c

ov
er

ag
e 

(P
co

v)

MHC Analytic
MHC Monte-Carlo
PPP Analytic
PPP Monte-Carlo
Cellular Operator

Fig. 9. The success probability of cellular network at SINR of θ = 10 dB,
comparing three scenarios: (i) UMHC point process (simulation and analyti-
cal), (ii) Randomly colored PPP (simulation and analytical) and (iii) a practical
implementation of a cellular network.

Fig. 10. A realization of UMHC process showing the SIR heatmap for each
resource group MHC process, as well as the resulting combined heatmap of
UMHC process (the top layer). Parameters λ = 1

500×500
, δ = 800 m.

important to know that a typical implementation of LTE/LTE-
A system using 5, 10 MHz bandwidth will result in 25, 50
resource block (RB)7 respectively [1], i.e., N = 25, 50. Thus,
the range of N ≥ 12 in Fig. 9 is quite realistic to achieve in
LTE/LTE-A and next-generation cellular technologies.

C. Simulation Methodology

In the previous sections we have compared the analytical
results obtained by numerical integration with Monte-Carlo
simulation to verify the consistency of the two approaches. The
simulation is performed according to the following systematic
steps:

7A resource block in LTE constitute the minimum possible resource
assignment seen from the frequency domain perspective. Note that an LTE
scheduler can assign multiple RBs simultaneously to users, thus the spectrum
is usually divided disproportionately. As the proposed model is agnostic to
the actual bandwidth of each resource group, it still applies for such a general
case.
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Fig. 11. The service area for each resource group MHC process, taking the
SINR threshold as θ=10 dB. The locations of BS are the same as Fig. 10..

Algorithm 1: Generate UMHC point process

1 Initialize the UMHC set Ξ̂⇐ ∅
2 for i = 1 to N do
3 Generate a new PPP Φ̂b

4 Initialize the MHC set i; Φ̂i ⇐ ∅
5 forall x ∈ Φ̂b do
6 Give a mark M(x) = t ∼ U(0, 1)
7 end
8 forall x ∈ Φ̂b do
9 Build the set Φ̂b ∩ b(x, δ)

10 FLAG(x)=‘Keep’
11 forall y ∈ Φ̂b ∩ b(x, δ) do
12 if M(x) >M(y) then
13 FLAG(x)=‘Remove’
14 Break
15 end
16 end
17 if FLAG(x)==’Keep’ then
18 Update the MHC set i; Φ̂i ⇐ Φ̂i

⋂
{x}

19 end
20 end
21 Update the UMHC set Ξ̂⇐ Ξ̂

⋂
Φ̂i

22 end

• Generate a UMHC set Ξ̂ using Algorithm 1 for a given
δ

• Deploy UEs (sampling points) randomly inside the des-
ignated map region using a homogeneous intensity, while
keeping a margin on the edges of the map to avoid the
edge-effect resulting form the finite realization of the
point process.

• For each user do the following:
– Calculate the distance matrix between UEs and BSs

as:

D =
[(
XUEJ1,m − (XBSJ1,n)T

)◦2
+(

Y UEJ1,m − (Y BSJ1,n)T
)◦2]1/2

,

where n and m are the lengths of the Cartesian
coordinate vector of the UEs and BSs respectively,
and XUE,Y UE and XBS,Y BS are the coordinate
column vector of UEs and BSs respectively, while
Ju,v is the ones matrix of dimensions u× v.

– Find the frequency channel of the serving BS
– At the user location, calculate the received powers

from all BSs having the same frequency channel.
The power is calculated using the power-law path
loss equation and accommodating the fading factor.

– Sum the received power from all interfering BS and
calculate the SINR accordingly.

– Append the SINR value to SINR vector γ̂
• Obtain the empirical cumulative distribution function of

the SIR vector γ̂ conditioned on the given δ.
• The success probability is found by obtaining the empir-

ical CDF of γ̂, where p̂s = 1− CDFγ̂(θ).
In Fig. 10 we visualize the concept of UMHC process

(shown in the top layer) as a superposition of MHC processes
(layers 1 to 4). The top layer represents the overall cellular
network performance reported in terms of signal to interfer-
ence ratio (SIR), while the lower layers represents the logical
interference domains of the co-channel base stations.

VII. CONCLUSION

Based on an extensive comparison with a practical net-
work deployment, it is clear that the union Matérn hard-core
point process is capable of accurately capturing the effect
of radio resource reuse in cellular networks. The accuracy
of the UMHC process outperforms the random frequency
assignment based on Poisson point process. The paper also
shows how to construct a UMHC process and derive its
pair correlation function as a measure of the point process
regularity. In addition, the paper obtains the contact distance
distribution for an arbitrary placed user towards the UMHC-
modeled network. A generic analytic framework is presented
that allows the numeric calculation of the interference statistics
and accordingly the success probability under the interference-
protection zone assumption. Future studies might investigate
the superposition of other types of hard-core point processes.
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