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Abstract—Rateless coding is a promising forward error correc-
tion technique to meet both delay and reliability requirements
of emerging wireless applications. However, existing works on
rateless codes mostly considered finite networks or ignored the
traffic dynamics. In this paper, we present a comprehensive
investigation of the end-to-end performance for rateless codes in
Poisson bipolar and cellular networks. Specifically, we propose
the notion of the end-to-end success probability, which is the
success probability given an end-to-end delay requirement, to
jointly evaluate the delay performance and transmission reliabil-
ity of rateless codes. To fully characterize the end-to-end delay,
we divide it into two parts, namely the packet waiting time
and the transmission time, and provide tractable yet accurate
approximations to their statistical distributions. Compared with
the previous works, the proposed general framework and the
end-to-end performance metric help obtain insights on the role
of scheduling, queueing, and coding scheme in practical radio
access networks. The approximations are verified to be effective
and reliable through simulations. Overall, the results show the
significant benefits of rateless codes relative to the fixed-rate codes
in terms of the transmission reliability with an end-to-end delay
requirement.

Index Terms—Rateless codes, end-to-end delay, reliability,
stochastic geometry, queueing theory, packet waiting and trans-
mission time.

I. INTRODUCTION

A. Motivation

With the rapid development of the mobile Internet, In-
ternet of Things and smart terminals, the fifth-generation
(5G) mobile network and beyond face a variety of latency-
critical applications, such as intelligent manufacturing, remote
control, auxiliary driving, and automatic driving, that lead to
stringent end-to-end delay and reliability requirements [2].
Generally, the end-to-end delay consists of two main parts:
one is the queueing delay, which is the waiting time until
transmission starts [3]; the other is the transmission delay1.
Due to the unprecedented data volumes and heavy traffic load

Na Deng is with the School of Information and Communication Engi-
neering, Dalian University of Technology (DLUT), Dalian, 116024, China,
and also with the National Mobile Communications Research Laboratory,
Southeast University, Nanjing, 210096, China (e-mail: dengna@dlut.edu.cn).
Martin Haenggi is with the Dept. of Electrical Engineering, University of
Notre Dame, Notre Dame 46556, USA (e-mail: mhaenggi@nd.edu).

Part of this work has been presented at the 2019 IEEE International
Conference on Communications (ICC’19) [1].

This work was supported by the National Natural Science Foundation of
China under Grant 61701071, by the China Postdoctoral Science Foundation
(2017M621129 and 2019T120204), by the open research fund of National
Mobile Communications Research Laboratory, Southeast University (No.
2019D03), by the Fundamental Research Funds for the Central Universities
(DUT19RC(4)014), and by the US NSF grant CCF 1525904.

1The processing delay and the propagation delay are negligible compared
to the queueing delay and the transmission delay [4].

in current communication systems, buffers are usually used at
transceivers such that the queueing delay plays an increasingly
critical role in the end-to-end delay performance.

Delay and reliability are two commonly used performance
metrics in the analysis and design of wireless networks, which
rely on and influence each other [5]. In particular, the end-to-
end delay can be reduced through the improvement of the
signal-to-interference ratio (SIR). For a single transmission,
links with higher SIR usually have higher transmission relia-
bility, leading to lower transmission delay. Meanwhile, when a
retransmission mechanism is applied, links with higher trans-
mission reliability also reduce the number of retries and the
backlog of packets. Accordingly, both the transmission delay
and the queueing delay are reduced. Therefore, transmission
reliability has become increasingly dominant in affecting the
diverse performance requirements of 5G wireless networks.

To improve the transmission reliability, forward error cor-
rection (FEC) is one of the most effective and commonly used
techniques for data transmission over unreliable or noisy com-
munication channels. Recently, rateless codes have received
widespread attentions as a promising FEC technique, with the
goal of reducing the transmission delay while improving the
transmission reliability and throughput [6–9]. Compared with
fixed-rate codes, rateless codes adapt both the code construc-
tion and the number of parity symbols to time-varying channel
conditions and hence complete the transmission of fixed-length
information packets faster. More importantly, once the receiver
decodes the data, the transmitter stops interfering with other
ongoing transmissions, thus the interference in the network
can be substantially mitigated. Accordingly, as an effective
FEC coding approach, rateless codes are expected to cope
with both the reliability and delay requirements of emerging
applications.

While there have been many studies on the seamless in-
tegration of rateless codes into wireless networks in recent
years, the impacts of the queueing process on the end-to-end
delay and reliability performance of rateless codes have not
been explored in depth. Furthermore, since delay is an intricate
function of all links and affected by a variety of factors such as
the temporal variation of traffic, the medium access protocol,
the spatial distribution of transceivers, etc., the theoretical
analysis of the delay in large-scale wireless networks is still
challenging but imperative to guide the practical design and
operation. Thus, our paper focuses on the end-to-end delay
and reliability performance of rateless codes in large-scale
networks, taking the random arrival and queueing of packets
at the terminals into account.
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B. Related Work

The conventional delay analysis is usually based on queue-
ing theory with a collision model to simplify the physical layer.
However, in practical networks, the effect of the interference
cannot be accurately modeled merely by a collision since it
is related to the channel fluctuations, path loss, as well as
the spatial distribution of the network transceivers. Stochastic
geometry has been widely used to characterize the interference
in large-scale wireless networks for key performance analysis
such as outage probability, average achievable rate, and so on
[10–12]. Most of the works in the literature assume saturation
conditions for the traffic (i.e., buffers of all network nodes
are always full), and thus no insights regarding the end-to-end
packet delay can be obtained since the queueing dynamics
are ignored. Accordingly, integrating the queueing dynamics
into the stochastic geometry-based model is a promising way
to accurately analyze the end-to-end delay performance. In
this line of research, the delay performance was analyzed for
Poisson ad hoc networks [13] and TDMA/ALOHA multihop
networks in a Poisson field of interference [14]. In [15],
the authors proposed a tractable approach to analyze the
delay in heterogenous cellular networks with spatio-temporal
random arrival of traffic. However, they focused on the delay
performance with retransmission when the received SINR is
less than a predefined threshold and used the mean queueing
delay to measure the end-to-end delay performance with the
adoption of fixed-rate codes.

Since rateless coding was firstly applied and analyzed in
a two-hop network with parallel relays [16], it has received a
widespread attention in the fields of sensor networks [17], cel-
lular networks [18], underwater acoustic networks [19], wire-
less information and energy transfer networks [20]. Though the
benefits of the rateless codes in terms of many performance
metrics such as delay, reliability, throughput, etc., have been
investigated, these works only focus on wireless networks with
a finite number of elements. While the authors in [21] and [22]
extended the performance analysis of rateless codes to large-
scale ad hoc and cellular networks using tools from stochastic
geometry, the full-buffer assumption (i.e., transmitters in the
network always have packets to transmit), which neglects
the queueing dynamics, leads to significant deviations from
the actual end-to-end delay performance. In summary, there
is so far no comprehensive investigation of the end-to-end
performance of rateless codes in large-scale wireless networks
considering the impact of the queueing process. We will fill
this gap with new analytical results for the end-to-end delay
and reliability performance with rateless codes and buffers at
transmitters.

C. Contributions

Combining the tools from stochastic geometry and queueing
theory, we characterize the end-to-end performance of rateless
codes in radio access networks, where the spatial distribution
and the spatio-temporal traffic of transmitters follow a homo-
geneous Poisson point process (PPP) [12] and a Poisson arrival
process (PAP), respectively. The end-to-end delay is divided
into two parts: the packet waiting time and the transmission

time, where the former is presented by an M/Geo/1 queueing
model [23] with random scheduling and the latter corresponds
to the decoding time of rateless coding for a packet with fixed-
size information.

Specifically, we first provide an exact statistical distribution
of the packet waiting time and propose an accurate approxima-
tion via the concept of effective bandwidth [24, 25] to facilitate
the further analysis. The results reveal that the logarithm of
the distribution of the packet waiting time decays linearly with
time. For the analysis of the packet transmission delay, we pro-
pose three approaches to bound or approximate its statistical
distribution by simplifying the behavior of the interference in
Poisson bipolar and cellular networks. Interestingly, it turns
out that the distribution of the packet transmission time is not
affected by the scheduling probability as long as the arrival
rate is smaller than the service rate. Since the packet waiting
time and the packet transmission time are interdependent given
an end-to-end delay requirement, we further quantify the end-
to-end success probability—the probability of a successful
transmission within an end-to-end delay constraint—of rate-
less codes to reflect the impact of such mutual influence on the
delay and reliability characteristics jointly. As a benchmark,
the end-to-end success probability of fixed-rate codes in each
type of network is also derived. Numerical results validate that
among the three proposed approximations, the independent-
interferer approximation most accurately matches the actual
packet transmission time. Moreover, the impacts of some
key parameters, such as the scheduling probability, network
density, path loss exponent, and frame duration on the end-to-
end success probability are investigated numerically, and the
results demonstrate the prominent advantage of rateless codes
over fixed-rate codes.

In summary, the theoretical results lead to general insights
into how the delay and reliability performance of rateless
codes are impacted by system design parameters and prop-
agation effects as well as their intricate relationships, while
either eliminating the need for extremely time-consuming
simulations completely or drastically reducing the ranges of
the simulation parameters.

II. SYSTEM MODEL

A. Network Model

We employ rateless codes for the information transmissions
in interference-limited networks, where the (potential) trans-
mitters form a homogeneous PPP Φ of density λ with unit
transmit power. We consider the typical receiver at the origin
that attempts to receive a signal from a transmitter. This model
comprises both bipolar and cellular networks, and the differ-
ence lies in how the desired transmitter is chosen. According
to the concept of the frame (or subframe) in 4G and future
5G networks [26], the time domain is divided into discrete
frames with equal duration Tf . We use the standard path loss
model with exponent α, where ℓ(x) = |x|−α represents the
path loss function between transmitter x and the origin. The
power fading coefficient associated with transmitter x in frame
k is denoted by hx,k, which is assumed to be an exponential
random variable with E(hx,k) = 1 (Rayleigh fading). In
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addition, the fading coefficients remain constant over each
frame and are spatially and temporally independent.

Each transmitter has a buffer of infinite capacity to store
the generated packets and to apply the first-input-first-output
(FIFO) rule to transmit packets. The packets at each transmitter
are generated according to a PAP with arrival rate ζ (packets
per second), and each packet has K information bits. The
arrival processes at different transmitters are independent of
each other. Specifically, at the beginning of each frame, each
node in Φ independently attempts to send its head-of-line
packet with probability p if its buffer is not empty (i.e., it
uses ALOHA2). During each transmission, K information
bits are encoded by a rateless code and sent via Gaussian
symbols incrementally over the channel. At the receiver side,
the channel output symbols are collected to decode the K
information bits with the corresponding rateless decoder. The
transmission of the parity symbols continues until the receiver
succeeds decoding the K information bits and sends an
acknowledgment (ACK) signal3 to the transmitter or the frame
runs out. Due to the inherent property of the rateless code, we
assume no retransmission mechanism since it would be more
sensible to continue the rateless transmission rather than re-
transmitting (from scratch), which is an essential difference
from the commonly used fixed-rate codes. When the typical
receiver is receiving signals from its transmitter, all the other
active transmitters are interferers until their transmissions are
completed. In other words, once the interferers receive the
ACK from their corresponding receivers, they become silent
and stop interfering with other ongoing transmissions.

B. Delay Characterization

The end-to-end delay of packet transmission is evaluated
in two phases: one is the waiting phase where the packet
waiting time measures the delay between the time when a
packet arrives at the buffer and the time when it starts to
be transmitted; the other is the transmission phase where the
packet transmission time is either the time to successfully
transmit a packet within a frame or the frame duration.

1) Packet Waiting Time: Due to the PAP of the packets
and the ALOHA scheme, an M/Geo/1 queueing model with
arrival rate ζ is adopted to characterize the queueing process
at each transmitter. Its service time Tsv follows a geometric
distribution as

P(Tsv = nTf) = (1− p)n−1p, n ≥ 1. (1)

Then the statistics of the sojourn time Tsj of a packet in
the M/Geo/1 queue can be obtained by those of Tsv and the
Pollaczek-Khinchine transform equation [23], which will be
given in the next section. Denote by Tw the waiting time
for a given packet. Since each packet is transmitted from
the start of each frame and the transmission time does not
exceed the current frame duration, the packet waiting time is
Tw = Tsj − Tf .

2In cellular networks, we use the ALOHA mechanism to model the activity
of each base station caused by load distributions, the scheduling and muting
strategies.

3The feedback message is usually transmitted via a dedicated channel,
separate of the data transmission [26].

2) Packet Transmission Time: Thanks to the adoption of
rateless codes, the packet transmission time is less than the
frame duration if the packet is transmitted successfully. For
k ∈ N, let tk be the starting time of the k-th frame, i.e.,
tk = kTf . Denoting by x0 the transmitter corresponding to
the typical receiver and Φ′ = Φ \ {x0}, the instantaneous
interference at the typical receiver at time t in frame k is

Ik(t)=
∑
x∈Φ′

ℓ(x)hx,kBx,k1Qx,k>0ex,k(t), tk ≤ t < tk+1,

(2)
where the subscripts k and x denote the k-th frame and
transmitter x, respectively, Qx,k is the number of packets in
the queue of transmitter x, Bx,k ∈ {0, 1} denotes whether
x attempts to transmit data in frame k and Bx,k = 1 with
probability p, ex,k(t) = 1(tk ≤ t ≤ tk + Tx,k) denotes the
active state of transmitter x at time t, and Tx,k is the packet
transmission time between the transmitter x and its receiver.
We assume that the receiver employs a nearest-neighbor
decoder to perform minimum Euclidean distance decoding
merely based on the desired channel gain, as suggested in
[27]. Thus the achievable rate4 Ck(t) is

Ck(t) = W log2(1 + ˆSIR(t)), (3)

where W denotes the bandwidth for information transmission,
ˆSIR(t) = ℓ(x0)hx0,k/Îk(t) is the time-average received SIR,

and Îk(t) represents the time-average interference at the typ-
ical receiver from tk up to time t, given by

Îk(t) =
1

t− tk

∫ t

tk

Ik(τ)dτ

=
∑
x∈Φ′

ℓ(x)hx,kBx,k1Qx,k>0ηx,k(t), tk ≤ t < tk+1,(4)

where

ηx,k(t) =
1

t− tk

∫ t

tk

ex,k(τ)dτ = min
{
1,

Tx,k

t− tk

}
. (5)

Since each interfering transmitter ceases to interfere with other
ongoing transmissions after receiving the ACK signal, Îk(t) is
a monotonically decreasing function of t within each frame,
and thus Ck(t) is monotonically increasing with t. Letting T̂k

be the time needed to decode a packet with K information
bits in frame k, we have

T̂k = min{t : K < t · Ck(t)}, (6)

and the packet transmission time follows as Tk =
min{T̂k, Tf}.

III. DELAY ANALYSIS

In this section, we first give an exact analytical expression
and a simple approximation for the complementary cumulative
distribution function (CCDF) of the packet waiting time.
Second, we provide three approaches to bound or approximate
the CCDF of the packet transmission time by simplifying the
behavior of the interferers.

4Note that with finite block length, there is a gap to the Shannon limit [28].
However, since the gap affects both the fixed-rate and rateless codes, we use
the Shannon limit as a benchmark to highlight the advantage of rateless codes
in terms of the end-to-end performance relative to fixed-rate codes.
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A. Packet Waiting Time Analysis

As mentioned above, Tw = Tsj − Tf , hence P(Tw >
b) = P(Tsj > b + Tf), and we derive the CCDF for Tsj

using standard queueing theory. According to the Pollaczek-
Khinchine transform equation for the sojourn time [23, Eq.
5.13], the Laplace-Stieltjes transform (LST)5 of Tsj is

LTsj(s) =
(1− ε)sLTsv(s)

s− ζ[1− LTsv(s)]
, (7)

where ε = ζTf/p (where ε < 1 is assumed to guarantee a
finite queueing delay) is the probability that the buffer is not
empty and

LTsv(s) =
∞∑

n=1

(1− p)n−1pe−snTf =
pe−sTf

1− (1− p)e−sTf
(8)

is the LST of Tsv. Through the inverse transform, the CCDF
of the packet waiting time is

P(Tw > b) = 1− 1

2πj

γ+j∞∫
γ−j∞

exp(s(b+ Tf))

s
LTsj(s)ds, (9)

where j =
√
−1 and γ is a real number so that the path of

integration is in the region of convergence (ROC) of LTsj(s).
Since Tsj is non-negative, the ROC is Re{s} > Re{P0}, where
P0 is the solution of the equation exp(−sTf) =

s−ζ
(1−p)s−ζ of

s ∈ C with the maximum real part, which can be found by
numerical approaches. Since s = 0 is always a solution, the
ROC is at most Re{s} > 0.

Although (9) can be evaluated by numerical integration, it
requires a careful selection of γ, the range of the numerical
integration, which depends on the rate of convergence of the
integrand, and its step size. Moreover, the results are compli-
cated and provide little insight, which imposes restrictions on
further analysis. Therefore, in the following, we provide an
approximation to simplify the exact result by means of the
effective bandwidth [24, 25].

Theorem 1. The CCDF of the packet waiting time is approx-
imated by

P(Tw > b) ≈ ζTf

p
exp
(
− ζ(eu

∗
− 1)(b+ Tf) + u∗

)
, b > 0,

(10)
where u∗ > 0 satisfies

ζ(eu
∗
− 1) +

1

Tf
log
(
pe−u∗

+ 1− p
)
= 0. (11)

Moreover,

P(Tw = 0) ≈ 1− ζTf

p
e−ζ(exp(u∗)−1)Tf+u∗

. (12)

Proof: See Appendix A.

5Letting FX(x) be the cumulative distribution function (CDF) of the
random variable X , LX(s) denotes the LST of X i.e., LX(s) =∫∞
0 e−sxdFX(x). If F has a derivative f , the LST of X is the standard

Laplace transform.

Note that P(Tw = 0) represents the probability that a packet
arrives at an empty queue and thus is transmitted immedi-
ately6. Letting W(x) be the Lambert W function, which solves
W(x)eW(x) = x, we have u∗ = −ζTf − W

(
− ζTfe

−ζTf
)

when p = 1. For p < 1, from Thm. 1, u∗ can be obtained
by solving the equation in (11) via numerical techniques. The
numerical approach usually requires setting an initial range,
which is provided in the following corollary. It also establishes
the uniqueness of the solution of (11).

Corollary 1. Letting

uu =
1

ζ

(
− ζ + 1/Tf +

√
(ζ − 1/Tf)2 − 2ζ log(p)/Tf

)
,

ul = log
(−p+

√
p2 − 4(1− p)p/(ζTf)

2(1− p)

)
, (13)

the solution of (11) is unique and lies in (ul, uu) for p < 1.

Proof: Letting f(u) = ζ(eu−1)+ 1
Tf

log
(
pe−u+1−p

)
,

we have f(0) = 0, and its first-order derivative is

f ′(u) = ζeu
(
1− p

ζTf

1

peu + (1− p)e2u

)
, (14)

which changes from negative to positive as u increases.
Accordingly, it means that f(u) decreases at first and increases
later, and thus the solution of f(u) = 0 is unique for u > 0.
From the monotonicity of f(u), u∗ is larger than the solution
of f ′(u) = 0, and we have a lower bound of u∗ as

ul = log
(−p+

√
p2 − 4(1− p)p/(ζTf)

2(1− p)

)
. (15)

As for an upper bound uu of u∗, we first obtain

f(u) > ζ(u+ u2/2) +
1

Tf
log(pe−u) = g(u), (16)

and uu is the solution of g(u) = 0, given by

uu =
−(ζ − 1/Tf) +

√
(ζ − 1/Tf)2 − 2ζ log(p)/Tf

ζ
. (17)

B. Packet Transmission Time Analysis

Since each transmitter attempts to transmit independently
at the beginning of each frame, the achievable rate and the
packet transmission time are statistically identical in each
frame. Thus, the frame index can be omitted. To characterize
the CCDF of the packet transmission time, we note that T and
T̂ are related as

P(T > b) =

{
P(T̂ > b) b ≤ Tf

0 b > Tf .
(18)

According to (6), we have

P(T̂ > b) = P
(
K > b · C(b)

)
= P

(
K > bW log2

(
1 +

ℓ(x0)hx0

Î(b)

))
6In this case, to facilitate the analysis, the waiting time before the next

frame starts is neglected due to the adoption of the M/Geo/1 model, in other
words, the packet waiting time in this case is approximated to be zero.
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= 1− P
(ℓ(x0)hx0

Î(b)
> θb

)
(a)
= 1− E

[
exp

(
− θbr

α
0 Î(b)

)]
= 1− Er0

[
LÎ(b)(θbr

α
0 | r0)

]
, (19)

where step (a) follows since hx0 is an exponential dis-
tributed variable, θb = 2

K
bW − 1, r0 = |x0| and LX(s) =

EX(exp(−sX)) is the Laplace transform of the random
variable X . Eq. (19) implies that the CCDF of the packet trans-
mission time is related to two factors: one is the distance r0
between the typical receiver and its corresponding transmitter;
the other is the Laplace transform of Î(b), which is determined
by the spatial distribution of the interfering transmitters Φ′,
and both depend on how the receiver chooses its transmitter.
In the following two sections, we analyze the specific cases
of Poisson bipolar and cellular networks.

It should be noted that for the packet transmission time
analysis, the main technical difficulty lies in the interaction
between the interference and the actual transmission time of
rateless codes. To be specific, whether the interference is
strong or weak largely depends on the number and position of
concurrent transmitters, and whether a transmitter is active or
not depends on the actual time for a successful transmission
of rateless codes, which, in turn, is directly influenced by the
interference. Thus, a direct calculation of the exact CCDF of
the packet transmission time seems infeasible and we turn to
giving bounds or approximations for the analytical result via
the following three approaches [22] to simplify the behavior
of the interferers.

• Dummy-interferer bound (DIB): Consider a dummy-
interferer system in which the interfering transmitters
continue to transmit “dummy” signals and interfere with
other ongoing transmissions even after they have received
the ACK from the receivers. Therefore, the transmitters
causing interference at the typical receiver remain con-
stant in this system, and the resulting packet transmission
time will be larger than the actual one.

• Nearest-interferer approximation (NIA): Consider a
nearest-interferer system in which only the nearest in-
terfering transmitter is active during the entire frame and
the interference from other interfering transmitters is ig-
nored. The rationale behind this approximation is that the
interference from the nearest interferer usually dominates
the total interference (at least when the path loss exponent
is not small) and hence the packet transmission for the
typical receiver.

• Independent-interferer approximation (IIA): Consider
an independent-interferer system in which the packet
transmission time T̄x of each interfering transmitter is sta-
tistically independent with an identical CCDF P(T̄ > b).
Besides, the CCDF of T̄x can be taken to be the one for
the typical receiver in the dummy-interferer system or the
nearest-interferer system, which can be viewed as two
extreme cases. Therefore, the interference at the typical
receiver in this system is decoupled from the actual packet
transmission time, resulting in an approximation.

IV. POISSON BIPOLAR NETWORKS

In this section, we consider the Poisson bipolar model
[12, Def. 5.8], where each transmitter is assumed to have
a dedicated receiver at a fixed distance r0 in a random
orientation. Due to the conditioning property of the PPP [12,
Box 8.2], adding a point at x0 is the same as conditioning
on x0 ∈ Φ in a PPP. Therefore, we consider the transmitter
x0 located at (r0, 0) to send packets to the typical receiver,
and the set of potential interfering transmitters Φ′ forms a
PPP on the plane. Under this setup, we provide bounds and
approximations on the CCDF of the packet transmission time
through the three approaches described in Sec. III-B, based on
which we can then characterize the end-to-end performance of
rateless codes combined with the results related to the packet
waiting time.

1) Dummy-interferer bound: In this system, we can upper
bound the interference Î(t) as

Î(t) =
∑
x∈Φ′

ℓ(x)hxBx1Qx>0ηx(t)

<
∑
x∈Φ′

ℓ(x)hxBx1Qx>0 = Idi. (20)

Then, the upper bound for the CCDF of T can be obtained
by replacing the Laplace transform of Î(b) in (19) with that
of Idi, given in the following theorem.

Theorem 2. Let δ ≜ 2/α, and

Pdi(θb) ≜ 1− exp
(
− πλζTfΓ(1 + δ)Γ(1− δ)θδbr

2
0

)
. (21)

Given that the typical transmitter is active, the CCDF of the
packet transmission time for the typical receiver in Poisson
bipolar networks is upper bounded as P(T > b) < Pdi(θb),
for b ≤ Tf .

Proof: According to (19) and (20), we have

P(T̂ > b) = 1− P
(r−α

0 hx0

Î(b)
> θb

)
< 1− P

(r−α
0 hx0

Idi
> θb

)
= 1− LIdi(θbr

α
0 ), (22)

where the Laplace transform of Idi is [12, Sec. 5.17]

LIdi(s) = exp
(
− πλpεΓ(1 + δ)Γ(1− δ)sδ

)
, (23)

and the final result is obtained by inserting (23) in (22).
It should be noted that the arrival rate should be less than

the service rate to guarantee a finite queueing delay, i.e., ε < 1.
Otherwise, the buffer at each transmitter will never be empty,
and hence the upper bound for the CCDF of T becomes

P(T > b) < 1− exp
(
− πλpΓ(1 + δ)Γ(1− δ)θδbr

2
0

)
. (24)

2) Nearest-interferer approximation: In this system, denot-
ing by x1 the nearest active interferer for the typical receiver,
the achievable rate is obtained by

C = W log2

(
1 +

hx0ℓ(x0)

hx1ℓ(x1)

)
. (25)
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Theorem 3. Letting Tni be the packet transmission time of
the typical receiver in the nearest-interferer system and given
that the typical transmitter is active, we have

P(Tni > b) = 1−
∫ ∞

0

exp(−r)dr

1 + θbrα0 (πλζTf)
α
2 r−

α
2
, b ≤ Tf .

(26)

Proof: Since each interferer in Φ′ sends its packet with
probability p in each frame and the probability of a non-
empty buffer is ε, the set of active interferers form a PPP
by independently thinning Φ′ with probability pε. Thus, the
distance between the nearest active interfering transmitter x1

to the origin has the probability density function (PDF) [29]

f|x1|(r) = 2πλpεr exp(−πλpεr2). (27)

According to (25), we have

P(Tni > b) = P
(
K > bW log2

(
1 +

hx0ℓ(x0)

hx1ℓ(x1)

))
= 1− P

( hx0r
−α
0

hx1 |x1|−α
> θb

)
= 1− E

[ 1

1 + θbrα0 |x1|−α

]
= 1−

∫ ∞

0

f|x1|(r)dr

1 + θbrα0 r
−α

= 1−
∫ ∞

0

exp(−r)dr

1 + θbrα0 (πλpε)
α
2 r−

α
2
. (28)

3) Independent-interferer approximation: In this system,
each interferer starts the packet transmission at the beginning
of each frame and continues for a certain duration T̄x, no
matter whether the packet is successfully transmitted or not.
T̄x is assumed to be identically independently distributed with
the CCDF P(T̄ > b). Thus, the time-average interference at
the typical receiver is

Ī(t) =
∑
x∈Φ′

ℓ(x)hxBx1Qx>0η̄x(t), 0 < t ≤ Tf , (29)

where η̄x(t) = min{1, T̄x/t}, and the achievable rate follows
as

C(t) = W log2

(
1 +

hx0ℓ(x0)

Ī(t)

)
. (30)

Theorem 4. Let µ ≜
∫ Tf

0
P(T̄ > b)db be the average

packet transmission time of the interfering transmitters in the
independent-interferer system. Given that the typical transmit-
ter is active, the CCDF of the packet transmission time Tii in
Poisson bipolar networks satisfies

P l
ii(θb) ≤ P(Tii > b) ≤ P u

ii (θb), b ≤ Tf , (31)

where

P u
ii (θb) = 1− exp

(
− πλζTf(min{1, µ

b
})δ

×Γ(1 + δ)Γ(1− δ)θδbr
2
0

)
, (32)

P l
ii(θb) = 1− exp

(
− πλζµΓ(1 + δ)Γ(1− δ)θδbr

2
0

)
.(33)

Proof: See Appendix B.

From Thm. 4, we can see that the calculation of the CCDF
of Tii in the independent-interferer system requires a known
CCDF P(T̄ > b) to obtain the average packet transmission
time of interfering transmitters µ. A natural choice for such
known CCDF is the distribution of the packet transmission
time in the dummy- or nearest-interferer system given in
Thms. 2 and 3, respectively. Thus, µ can be µdi or µni, given
as

µdi = Tf−
∫ Tf

0

exp
(
−πλζTfΓ(1+δ)Γ(1−δ)θδbr

2
0

)
db, (34)

µni = Tf −
∫ Tf

0

∫ ∞

0

exp(−r)drdb

1 + θbrα0 (πλζTf)
α
2 r−

α
2
. (35)

Remarks: These two options are two extremes and have
their own relative merits. Due to the adoption of rateless
codes, there are complicated interactions between the packet
transmission time for the typical receiver and the interfer-
ence from other ongoing transmissions. And because of the
distance-dependent path loss, such interaction is dominated
by the nearby interferers. Therefore, although µdi has a
simpler form, the interference approximated by the dummy-
interference system is an overestimation of the real case, and
accordingly, it is less accurate than µni for approximating the
CCDF of the packet transmission time. As will be shown in
Sec. VII-B, the difference between these two options is more
evident in cellular networks.

V. POISSON CELLULAR NETWORKS

In Poisson cellular networks with nearest-base station (BS)
association, the distance r0 between the typical user and its
serving BS is random. The PDF of the random variable r0
is known from [29] as fr0(r) = 2πλr exp(−πλr2), and the
set of potential interfering BSs Φ′ forms a PPP outside the
circle centered at the origin with the radius r0. According to
(19), the packet transmission time of rateless codes under the
cellular network setting follows

P(T̂ > b) = 1−
∫ ∞

0

LÎ(b)(θbr
α)fr0(r)dr, (36)

and we then use the three approaches proposed in Sec. III-B.
1) Dummy-interferer bound: In this system, the interfer-

ence Î(t) in cellular networks is upper bounded by

Ĩdi =
∑
x∈Φ′

ℓ(x)hxBx1Qx>0. (37)

Hence, the upper bound for the CCDF of T is obtained through
bounding the interference, given in the following theorem.

Theorem 5. Let F (α, θ) ≜ 2F1(1,−δ, 1− δ,−θb)− 1 and

P̃di(θb) ≜ 1− 1

1 + ζTfF (α, θb)
, (38)

where 2F1(·) is the Gaussian hypergeometric function. Given
that the typical BS is active, the CCDF of the packet trans-
mission time for the typical user is upper bounded as P(T >
b) < P̃di(θb), b ≤ Tf .
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Proof: Given that r0 = r, the Laplace transform of Ĩdi in
cellular networks evaluated at s = θbr

α is

LĨdi
(θbr

α) = E
[
exp

(
− θbr

α
∑
x∈Φ′

ℓ(x)hxBx1Qx>0

)]
= E

[ ∏
x∈Φ′

(
1− pε+ pεe−θbr

αℓ(x)hx

)]
= E

[ ∏
x∈Φ′

(
1− pε+

pε

1 + θbrα|x|−α

)]
(a)
= exp

(
− 2πλpε

∫ ∞

r

(
1− 1

1 + θbrαt−α

)
tdt
)

= exp
(
− πλpεr2θδb

∫ ∞

θ−δ
b

1

1 + tα/2
dt
)

(b)
= exp

(
− πλpεr2F (α, θb)

)
, (39)

where step (a) uses the PGFL of the PPP and the integration
limit is obtained since the distance between the closest inter-
ferer and the typical user is larger than r, and step (b) uses
the identity [30]

1 + θδ
∫ ∞

θ−δ

1

1 + tα/2
dt ≡ 2F1(1,−δ, 1− δ,−θ). (40)

By substituting LĨdi
(θbr

α) into (36), we obtain

P(T̂ > b) < 1− 1

1 + pεF (α, θb)
. (41)

In Thm. 5, P̃di(θb) is in fact the standard success probability
in a Poisson cellular network where interfering BSs are active
independently with probability ζTf [31, Eq. (29)].

2) Nearest-interferer approximation: In this system, denote
by x1 the nearest active interfering BS to the typical user.
Letting T̃ni be the packet transmission time of the typical user
for cellular networks, we have the following theorem.

Theorem 6. Given that the typical BS is active, the CCDF of
T̃ni in cellular networks is

P(T̃ni > b) =
θb

1 + θb
−

1∫
0

xδ

(1− ζTf)xδ + ζTf

× θb
(1 + θbx)2

dx, b ≤ Tf . (42)

Proof: Letting ν = r0/|x1|, the CCDF of T̃ni is

P(T̃ni > b) = 1− P
(hx0ℓ(x0)

hx1ℓ(x1)
> θb

)
= 1− P

(hx0ν
−α

hx1

> θb

)
= 1− E

[ 1

1 + θbνα

]
= 1−

1∫
0

1

1 + θbvα
dP(ν < v). (43)

Next we need to derive the distribution of ν. Due to the
independent thinning property, the set of active interfering
BSs forms a PPP Φ′

a with density λpε outside the circle

centered at the origin with radius r0. Conditioning on r0,
the distribution of |x1| is derived through calculating the
probability that there is no BS belonging to Φ′

a in the ring
with inner radius r0 and outer radius |x1|. Thus, we have
P(|x1| > t | r0) = e−λpεπ(t2−r20), and the CDF of ν follows
as

P(ν < v) = P(|x1| > r0/v)

=

∫ ∞

0

e−λpεπ(r2/v2−r2)fr0(r)dr

=
v2

(1− pε)v2 + pε
, 0 ≤ v ≤ 1. (44)

By inserting (44) into (43), the final result is obtained.
3) Independent-interferer approximation: In this system,

each interfering BS is assumed to interfere with the typical
user for an independent time duration T̃x, which is identically
independently distributed with P(T̃ > b). Letting T̃ii be
the packet transmission time of the typical user in cellular
networks, we obtain its CCDF as follows.

Theorem 7. Let µ̃ ≜
∫ Tf

0
P(T̃ > b)db be the average packet

transmission time of the interfering BSs in the independent-
interferer system. Given that the typical BS is active, the CCDF
of T̃ii for the typical user is

P̃ l
ii(θb) ≤ P(T̃ii > b) ≤ P̃ u

ii (θb), b ≤ Tf , (45)

where

P̃ u
ii (θb) = 1− 1

1 + ζTfF (α, θb min{1, µ̃/b})
, (46)

P̃ l
ii(θb) = 1− 1

1 + ζµ̃F (α, θb)
. (47)

Proof: See Appendix C.

Similar to the case in Poisson bipolar networks, P(T̃ > b)
can also be chosen as the distribution of the packet transmis-
sion time in the dummy- or nearest-interferer system given in
Thms. 5 and 6. Thus, µ̃ can be µ̃di or µ̃ni, given as follows

µ̃di = Tf −
∫ Tf

0

1

1 + ζTfF (α, θb)
db, (48)

µ̃ni =

Tf∫
0

θbdb

1 + θb
−

Tf∫
0

1∫
0

xδ

(1− ζTf)xδ + ζTf

θb
(1 + θbx)2

dxdb.

(49)
The distribution of the packet transmission time does not

depend on the scheduling probability p. The reason is that
a potential transmitter becomes an interferer to the typical
receiver only if Bx,k = 1 and Qx,k > 0 and thus the
probability of a transmitter being an interferer is pε = ζTf ,
which is independent of p. However, such independence holds
under the condition that ζ < p/Tf , i.e., the arrival rate should
be less than the service rate, since, otherwise, the buffer at
each transmitter is non-empty with probability 1 and p will in
turn affect the CCDF of the packet transmission time.



8

TABLE I. Symbols and descriptions

Symbol Description Default value
Φ, λ The PPP of transmitters and density 1× 10−3 m−2

α The path loss exponent 4

Tf The length of a frame 1× 10−4 s

p The scheduling probability of transmitters 0.5

r0 The fixed distance between transmitter-receiver pair in D2D networks 2 m

W The bandwidth 1 MHz
ζ The arrival rate of the packets 400 packets/second
K The information bits of a packet 160 bits

Tw, T The packet waiting time, packet transmission time N/A

µ The average packet transmission time of interferers N/A

VI. END-TO-END PERFORMANCE ANALYSIS

In this section, to characterize the intrinsic connection
between the end-to-end delay and reliability, we propose the
notion of end-to-end success probability, which is the success
probability given the end-to-end delay requirement, and use it
to analyze the performance of rateless codes. To highlight the
performance benefits from rateless codes, we also derive the
corresponding results for fixed-rate codes.

A. The End-to-End Success Probability for Rateless Codes

The end-to-end delay D of a packet is the sum of the packet
waiting time Tw and the packet transmission time T , i.e., D =
Tw+T . The CCDF of D is hence obtained through the CCDFs
of Tw and T . When b ≤ Tf , we have

P(D>b) = P(Tw=0)P(T >b)

+

∫ b

0+
P(T > b− t)fTw(t)dt+ P(Tw > b), (50)

and when b > Tf ,

P(D > b) =

∫ b

0+
P(T > b− t)fTw(t)dt+ P(Tw > b), (51)

where fTw(t) is the PDF of Tw. However, due to the adoption
of rateless codes, the packet transmission terminates when
the transmitter receives the ACK from its receiver. In this
case, the transmission time of a packet can be either smaller
or equal to the length of a frame Tf , and the CCDF of D
cannot reflect whether the packet is successfully transmitted
or not as long as the end-to-end delay is smaller than the
maximum delay constraint. To jointly analyze the delay and
reliability performances, we then focus on the end-to-end
success probability of rateless codes in Poisson bipolar and
cellular networks.

Given a delay constraint b and conditioned on Tw = t, the
success probability in the transmission phase is 1 − P(T >
b − t) for b − t < Tf and 1 − P(T > Tf) for b − t > Tf .
According to the total probability law, the end-to-end success
probability follows as

ps(b) =

∫ b

0+

(
1− P (T > min{b− t, Tf})

)
fTw(t)dt

+P(Tw = 0)
(
1− P (T > min{b, Tf})

)
, (52)

where fTw(t) is obtained, based on the CCDF of Tw in Thm.
1, as

fTw(t) ≈
ζ2Tf

p
(eu

∗
−1) exp

(
−ζ(eu

∗
−1)(t+Tf)+u∗

)
, t > 0,

(53)
and P(T > t) can be bounded or approximated according to
Thms. 2-7.

Since the characterization of the end-to-end success proba-
bility involves multiple processes (queueing and transmission
processes) and multiple metrics (packet waiting and trans-
mission time, end-to-end delay and reliability), it is almost
surely impossible to obtain closed-form analytical expressions.
Although our expression involves two nested integrals, its
calculation is still much more efficient than simulations.

B. The End-to-End Success Probability for Fixed-Rate Codes

When fixed-rate coding is adopted, each transmitter is active
during the entire frame. Therefore, the packet transmission
time is always Tf and the end-to-end delay is D = Tw + Tf .
Due to the continuous transmission in each frame, the inter-
ference at the typical receiver is same as that in the dummy-
interference system. Thus, the success probability ξ in the
transmission phase is

ξ = exp
(
− πλζTfΓ(1 + δ)Γ(1− δ)θδr20

)
(54)

for Poisson bipolar networks and

ξ =
1

1 + ζTfF (α, θ)
(55)

for Poison cellular networks, where θ = 2
K

WTf −1. Hence, the
end-to-end success probability of fixed-rate codes is

ps(b) =

{
ξ
(
1− P(Tw > b− Tf)

)
b ≥ Tf

0 b < Tf .
(56)

VII. NUMERICAL RESULTS

In this section, we present numerical results that demon-
strate the performance in both Poisson bipolar and cellular
networks. The main symbols and parameters are summarized
in Table I, and default values are given where applicable.
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Fig. 1. Validating the approximation for the CCDF of the packet waiting time.
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Fig. 2. Validating the bounds and approximations for the CCDF of the packet transmission time.

A. The Distribution of the Packet Waiting Time

Fig. 1 plots the CCDFs of the packet waiting time Tw for
different frame durations Tf , active probabilities p and arrival
rates of packets ζ, where the exact and approximative results
are obtained via the inverse Laplace transform in (9) and
Theorem 1, respectively. It is observed that the approximations
derived from the effective bandwidth approach match the
exact results extremely well under different parameter settings,
which substantially enhances the analytical tractability with
almost zero deviation. It is also seen that the logarithmic form
of P(Tw > b) decays linearly as b increases with the slope
ζ(eu

∗ − 1). Consisted with the result in (12), P(Tw > b) ̸= 1
as b → 0 since P(Tw = 0) > 0. In addition, the packet waiting
time becomes longer as ζ or Tf increases or p decreases. The
reason is that the packet waiting time depends on the queue
length in the buffer, and a larger ζ will contribute to the packet
backlog in the queue, while a smaller Tf or a larger p will
increase the service rate and hence the packets leave the queue

faster.

B. The Distribution of the Packet Transmission Time

Fig. 2 illustrates the CCDFs of the packet transmission
time T with analytical bounds and approximations as well
as simulation results for Poisson bipolar (in Fig. 2(a)) and
cellular networks (in Fig. 2(b)). For Poisson bipolar networks,
the dummy-interferer bound and the nearest-interferer approxi-
mation provide almost the same curve, which implies that the
performance of the typical receiver strongly depends on the
interference from the nearest transmitter. However, these two
analytical results are applicable only for small transmission
times, i.e., b < 10−4, and begin to deviate from the simulation
result as the transmission time increases. This is mainly due
to the fact that the benefits brought by rateless codes are
not considered in the dummy- and nearest-interferer systems,
i.e., the phenomenon that interferers gradually cease their
transmissions if they have received the ACK is not captured
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Fig. 3. The impact of the scheduling probability on the end-to-end success probability.
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Fig. 4. The end-to-end success probability for different λ in Poisson
bipolar networks with r0 = 5.

Fig. 5. The end-to-end success probability for different α in Poisson
cellular networks with Tf = 2× 10−5.

by the two analytical results. Since the independent-interferer
system incorporates the benefits of rateless codes, the upper
bounds in this system provide the closest approximations to
the simulation.

For cellular networks, the dummy-interferer bound performs
similarly to that in Poisson bipolar networks while the nearest-
interferer approximation has an intersection point with the sim-
ulation curve. In the early stage of each frame, the interference
at the typical receiver is from all the active interfering BSs,
which is equivalent to that in the dummy-interferer system
and stronger than that in the nearest-interferer system. As
time goes by, the interfering BSs gradually complete their
transmission and stop interfering with other ongoing transmis-
sion. Thus, the interference becomes weaker than in both the
dummy-interferer and nearest-interferer systems. Similarly, the
upper bounds in the independent-interferer system also provide
good approximations, in particular, the bound that adopts the
CCDF of the packet transmission time in the nearest-interferer
system is tight.

C. The End-to-End Success Probability
Due to its effectiveness, the upper bound in the independent-

interferer system with the aid of NIA is used to quantify the
end-to-end success probability for Poisson bipolar and cellular
networks in the following.

Fig. 3 shows how the scheduling probability p affects the
end-to-end success probability. It is observed that rateless
coding significantly outperforms the fixed-rate coding under
low delay constraints and that the performance gap between
the two techniques becomes larger as p increases, which
highlights the benefits of the rateless codes for delay con-
strained applications. When b < Tf = 10−4 seconds, the
end-to-end success probability of fixed-rate codes is zero,
because it takes a constant time of Tf for fixed-rate codes to
perform data transmission. Moreover, for both Poisson bipolar
and cellular networks, increasing p improves the end-to-end
success probability due to the impact of p on the packet
waiting time and the transmission time, i.e., the former reduces
with the increase of p while the latter is independent of p as
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Fig. 6. The impact of the frame duration Tf on the end-to-end success probability with λ = 0.01.

long as ζ < p/Tf . When the delay constraint increases, the
probability that the packet waiting time exceeds the constraint
tends to 0 and the end-to-end success probability is dominated
by whether the packet is successfully transmitted.

Since p only affects the packet waiting time while λ and α
merely affect the transmission time, we next study the impacts
of λ and α on the end-to-end success probability in Poisson
bipolar and cellular networks, respectively, in Figs. 4 and 5. It
is seen in Fig. 4 that a smaller density leads to a better end-to-
end success probability and a larger performance gap between
rateless and fixed-rate codes. Furthermore, the packet can be
successfully transmitted in a shorter time using rateless codes
in the case with smaller density and hence the constraint for
the packet waiting time can be relaxed more, which means
that the end-to-end transmission can still succeed even if the
packet waiting time is larger than b − Tf . However, if fixed-
rate codes are adopted, the constraint for the packet waiting
time is constant as b−Tf for different densities. Fig. 5 shows
that a larger path loss exponent leads to a better end-to-
end success probability and larger performance gap between
the two coding schemes. Due to the nearest-BS association,
a larger α leads to more severe power attenuation for the
interfering signals than the desired signal, and thus improves
the success probability. The two figures reveal the positive
correlation between the packet waiting time and transmission
time by means of rateless codes, i.e., the reduction of either
side will relax the requirement of the other, which does not
hold for fixed-rate codes.

Fig. 6 shows the impact of the frame duration Tf on the
end-to-end success probability, where Tf affects both waiting
and transmission time of a packet. For different Tf , rateless
codes achieve better performance than fixed-rate codes. As
for the impact of Tf on the performance, we can see that
under an extremely strict delay requirement, a smaller value
of Tf (e.g., Tf = 1 × 10−5) is superior to a larger one (e.g.,
Tf = 1× 10−4, 5× 10−4) in terms of the end-to-end success
probability. Thus, in this case, one should try to increase the

success probability of a single transmission, e.g., by adopting
rateless codes rather than fixed-rate codes. In contrast, when
the delay constraint becomes loose, the plateau of the success
probability is higher with a larger Tf due to the fact that it is
more likely to successfully transmit a fixed-size information
packet over a longer frame. Therefore, there are two key
tradeoffs: one is between the transmission reliability and the
delay requirement; and the other is between the packet waiting
time and the packet transmission time under an end-to-end
delay requirement, both of which require a judicious choice
of the frame duration. Besides, the smaller Tf , the faster the
probability of the packet waiting time exceeding the delay
constraint tends to zero, and hence the earlier entry into the
plateau for the success probability.

VIII. CONCLUSIONS

In this paper, we proposed a general framework for the
end-to-end performance analysis of rateless codes in Poisson
bipolar and cellular networks where both the spatial distribu-
tion of transmitters and traffic dynamics are incorporated. We
first investigated the end-to-end delay through dividing it into
two parts, namely, the packet waiting time and transmission
time, and then provided analytical results including bounds
and approximations for their statistical distributions. Through
comparison with Monte Carlo simulations, we validated that
our proposed approximations match the actual distributions
well. Interestingly, the scheduling probability merely affects
the packet waiting time if the arrival rate is smaller than the
service rate.

Furthermore, we derived the end-to-end success probability,
defined as the probability of successful transmission within an
end-to-end delay constraint, through the tractable yet accurate
approximations for the packet waiting and transmission time,
which characterizes the delay and reliability performance
jointly. The results reveal that the parameters such as the
scheduling probability, the network density, and the path loss
exponent affect either the packet waiting time or transmission
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time and present monotonic effects on the end-to-end success
probability, while the frame duration plays a critical role in
balancing the tradeoff between the transmission reliability and
the delay requirement. In addition, the frame duration also
serves as a regulator between the packet waiting time and the
packet transmission time under an end-to-end delay constraint,
which, in turn, affects the end-to-end success probability.
The full comparison shows the significant benefits of rateless
codes relative to the fixed-rate codes in terms of the end-to-
end reliability and delay, which indicates that rateless coding
offers great potential to achieve the stringent requirement
of future emerging applications, e.g., the URLLC scenario,
possibly in combination with other technologies like mm-
wave communication, massive MIMO, ultra-dense networks
or coordinated multi-point transmissions.

APPENDIX A
PROOF OF THEOREM 1

Proof: Using the effective bandwidth and capacity in
[24, 25], the distributions of the steady-state queue length
Q(∞) and the queueing delay Dq(∞) can be asymptotically
characterized and accurately approximated. Denote by A(t)
and S(t) the total number of packets reaching and leaving
the buffer in t time instants, respectively. We first obtain the
asymptotic log-moment generating functions of the arrival and
service processes, respectively, given by

ΛA(u) = lim
t→∞

1

t
logE

[
euA(t)

]
= lim

t→∞

1

t
log

( ∞∑
n=0

eune−ζt (ζt)
n

n!

)
= ζ(eu − 1), (57)

and

ΛS(u) = lim
N→∞

1

NTf
logE

[
euS(NTf )

]
= lim

N→∞

1

NTf
log

(
N∑

n=0

eun
(
N

n

)
pn(1− p)N−n

)
=

1

Tf
log(peu + 1− p). (58)

Then, the effective bandwidth of the arrival process is E(u) =
ΛA(u)/u. Accordingly, the violation probabilities of the
steady-state queueing length and the queueing delay under
small threshold can be accurately approximated by

P(Q(∞) > Qth)≈P(Q(∞) > 0) exp(−u∗Qth),

P(Dq(∞) > Dth)≈P(Q(∞) > 0) exp(−u∗E(u∗)Dth), (59)

where P(Q(∞) > 0) = ζTf/p is the probability that the buffer
is not empty, and u∗ > 0 is the decay rate of the tail distribu-
tion of the queue length, satisfying ΛA(u

∗) + ΛS(−u∗) = 0.
From (59), these two violation probabilities are equivalent by
letting Qth = E(u∗)Dth.

For a given packet, its sojourn time is its queueing delay
in the buffer plus its service time, which is equivalent to

the queueing delay of a packet with an extra one before it.
Therefore, the CCDF of the packet waiting time is

P(Tw > b) = P(Tsj > b+ Tf)

≈ P(Q(∞) + 1 > (b+ Tf)E(u∗))

≈ ζTf

p
exp

(
− u∗(b+ Tf)E(u∗) + u∗). (60)

APPENDIX B
PROOF OF THEOREM 4

Proof: According to (30), we have

P(Tii > b) = P
(
K > bW log2

(
1 +

hx0ℓ(x0)

Ī(b)

))
= 1− P

(hx0ℓ(x0)

Ī(b)
> θb

)
= 1− LĪ(b)(θbr

α
0 ). (61)

Similar to the derivation of LIdi , the Laplace transform of Ī(b)
is

LĪ(b)(s) = E[e−sĪ(b)]

= E
[ ∏
x∈Φ′

(
1− pε+ pεe−sℓ(x)hxη̄x(b)

)]
= exp

(
− 2πλpε

∫ ∞

0

Eh,η̄(t)

[
1− e−shη̄(b)r−α]

rdr
)

= exp
(
− πλpεE(η̄(b)δ)Γ(1 + δ)Γ(1− δ)sδ

)
, (62)

where E(η̄(b)δ) performs the expectation over the packet trans-
mission time T̄ of the interfering transmitters. By inserting
LĪ(b) into (61), we have

P(Tii > b)=1− exp
(
−πλpεE(η̄(b)δ)Γ(1+ δ)Γ(1− δ)θδbr

2
0

)
.

(63)
For notational simplicity, we define g(T̄ ) =

[
min{1, T̄ /b}

]δ ,
and thus we have E(η̄(b)δ) = E[g(T̄ )]. The concavity of g(T̄ )
can be verified easily by its 2nd derivative

d2g(T̄ )

d2T̄
=

{
δ(δ − 1)T̄ δ−2/bδ T̄ ≤ b
0 b < T̄ ≤ Tf ,

(64)

which shows that g(2)(T̄ ) ≤ 0 for T̄ ∈ [0, Tf ]. Hence, we have
E[g(T̄ )] ≤ g(E(T̄ )) =

[
min{1, µ/b}

]δ and E[g(T̄ )] ≥ µ/Tf

due to

g(T̄ ) ≥
(
1− T̄

Tf

)
g(0) +

T̄

Tf
g(Tf) =

T̄

Tf
. (65)

The final results are obtained by substituting the two bounds
of E[g(T̄ )] in (63).

APPENDIX C
PROOF OF THEOREM 7

Proof: From (36),

P(T̃ii > b) = 1−
∫ ∞

0

LĨ(b)(θbr
α)fr0(r)dr, (66)



13

where

Ĩ(b) =
∑
x∈Φ′

ℓ(x)hxBx1Qx>0η̃x(b), 0 < b ≤ Tf , (67)

and η̃x(b) = min{1, T̃x/b}. Given that r0 = r, the Laplace
transform of Ĩ(b) in cellular networks evaluated at s = θbr

α

is

LĨ(b)(θbr
α) = E

[
exp

(
− θbr

α
∑
x∈Φ′

ℓ(x)hxBx1Qx>0η̃x(b)
)]

= E
[ ∏
x∈Φ′

(
1− pε+

pε

1 + θbrα|x|−αη̃x(b)

)]

= exp

(
− 2πλpεE

[ ∞∫
r

θb(
r
t )

αη̃(b)

1 + θb(
r
t )

αη̃(b)
tdt
])

,(68)

where E in the last step performs expectation over T̃ due
to η̃(b) = min{1, T̃ /b}. For notational simplicity, letting
ϖ = θbr

αt−α, we define z(T̃ ) = 1
1+ϖmin{1,T̃ /b} and its 2nd

derivative is

d2z(T̃ )

d2T̃
=

{
2(ϖ/b)2

(1+ϖT̃/b)3
T̃ ≤ b

0 b < T̃ ≤ Tf ,
(69)

Thus z(T̃ ) is a convex function due to z(2)(T̃ ) ≥ 0 for
T̃ ∈ [0, Tf ]. Then, we have E[z(T̃ )] ≥ z(E(T̃ )) = z(µ̃), and
LĨ(b)(θbr

α) is lower bounded as

LĨ(b)(θbr
α) ≥ exp

(
− 2πλpε

∞∫
r

θb(r/t)
α min{1, µ̃

b }
1 + θb(r/t)α min{1, µ̃

b }
tdt

)
(a)
= exp

(
− πλpεr2F (α, θb min{1, µ̃/b})

)
, (70)

where step (a) follows from the same derivation as (39). Due
to the convexity of z(T̃ ), it is lower bounded as

z(T̃ ) ≤
(
1− T̃

Tf

)
z(0) +

T̃

Tf
z(Tf)

= 1− T̃

Tf
+

T̃

Tf

1

1 +ϖ
. (71)

Thus, E[z(T̃ )] ≤ 1 − µ̃
Tf

+ µ̃
Tf

1
1+ϖ and LĨ(b)(θbr

α) is upper
bounded as

LĨ(b)(θbr
α) ≤ exp

(
− 2πλpε

µ̃

Tf

∞∫
r

(
1− 1

1 + θbrαt−α

)
tdt

)
= exp

(
− πλpε

µ̃

Tf
r2F (α, θb)

)
. (72)

By substituting (71) and (72) in (66), the final results are
obtained.
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