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Meta Distribution of the SIR in Moving Networks
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Abstract—Moving networks (MNs) with moving base stations
(BSs) provide ubiquitous and constant services to cellular de-
vices/user equipment (UEs) in 5-th generation systems. Moving
BSs are mounted on top of vehicles. To describe the randomness
of the BSs, a tractable stochastic geometry model for MNs is
proposed. A definition of the conditional success probability and
meta distribution (MD) of the signal-to-interference ratio (SIR)
for MNs is proposed. The MD is used to assess the benefits
of MNs. In single-tier MNs with high mobility, we determine
the moments of the conditional success probability given the
point process for the calculation of the MD and the mean local
delay. The results show that the mean local delay is finite and
the variance is reduced to 0. A closed-form approximation of
the variance is proposed for general mobility levels. Using the
approximated variance, we propose a beta approximation of
the MD. The single-tier model is then extended to a two-tier
heterogeneous MN model. Tractable expressions of the mean
success probability and the variance for both the overall network
and the typical UE in each tier are obtained. They reveal that
moving BSs can reduce the variance among UEs while keeping
the mean success probability constant.

Index Terms—Moving network, stochastic geometry, Poisson
point process, meta distribution, SIR, mean local delay, coverage
probability, heterogeneous cellular networks.

I. INTRODUCTION

A. Motivation

Proposed by the European 5-th Generation (5G) project Mo-
bile and Wireless Communications Enablers for the Twenty-
twenty Information Society (METIS), the moving network
(MN) is a promising solution to provide ubiquitous and
constant services to cellular devices/user equipment (UEs) in
5G scenarios [1]. In MNs, moving base stations (BSs) are
deployed on top of vehicles (buses, trams, etc.). Motivated by
antenna design constraints, the outdoor antenna system of the
moving BS is assumed to be optimized for the moving back-
haul link to receive/transmit signals from/to macro BSs, and
intravehicular antennas are used for the UEs. The half-duplex
moving BSs are considered to have similar functionality as
the fixed BSs standardized in Long-Term Evolution (LTE).
The 3rd generation partnership project (3GPP) clarifies that
the moving BSs can exploit various smart antenna techniques
and advanced signal processing schemes for their device
size, available power, number of antennae, etc. [2]. A dense
deployment of moving BSs in MNs provides a significant
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number of moving access points for UEs. This flexible network
architecture greatly changes conventional cellular networks.

To assess the potential benefits of integrating moving BSs
in heterogeneous cellular networks (HCNs), the signal-to-
interference ratio (SIR) distribution plays a key role in eval-
uating the downlink performance, especially in interference-
limited networks. Stochastic geometry has been widely used
as an analytical approach to model and quantify the SIR
distribution in wireless networks [3]. It provides tools and
models like the Poisson point process (PPP) to describe the
randomness of node deployment quite accurately [4] and
obtain insightful theoretical results, especially in dense cellular
networks [5].

The conventional performance analysis for networks mod-
eled by a point process Φ focuses on the complementary
cumulative distribution (ccdf) of the SIR. The ccdf of the
SIR of the typical UE is interpreted as the standard (mean)
transmission success probability ps(θ) , P(SIR > θ). While
this average metric answers the question “What fraction of
UEs in a Poisson cellular network succeed in transmitting
given an SIR threshold θ?”, it does not reveal any information
on the reliabilities of individual links/UEs.

B. Meta Distribution

Recently, the meta distribution (MD) of the SIR has been
introduced as a performance metric that provides complete
spatial distributions rather than merely spatial averages. The
MD has been evaluated in both Poisson bipolar networks and
downlink cellular networks [6]. It is the distribution (ccdf)
of the conditional success probability Ps(θ). Ps(θ) is the
probability that the SIR at the origin exceeds threshold θ
given the BS process. The MD of the SIR is a two-parameter
distribution function defined as [6]

F (x) , F̄ (θ, x) = P(Ps(θ) > x), θ ∈ R+, x ∈ [0, 1], (1)

where x refers to the reliability. The conditional success
probability is defined as Ps(θ) , P(SIR > θ | Φ), given
a stationary point process Φ and averaging out the fading.
The random variable Ps(θ) describes the success probability
of the link between a user at the origin and its serving BS. For
ergodic point processes Φ, the MD gives the fraction of links
or users that can achieve an SIR of θ with reliability at least x.
Unlike the standard success probability, the MD answers some
key questions operators have, such as: “What is the fraction of
UEs in a cellular network achieve 90% link reliability given
an SIR threshold θ?” or “How will the mobility in MNs affect
the link reliability distribution among UEs?”.
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Since it seems infeasible to derive the meta distribution
directly, we focus on the b-th moments of the conditional
success probability, defined as

Mb(θ) , E(Ps(θ)
b). (2)

For the standard success probability, we have ps (θ) ≡
M1 , P (SIR > θ), i.e., the first moment of the condi-
tional success probability is the average transmission success
probability of the network. The variance of the conditional
success probability is another key performance metric, given
by var(Ps) = M2 −M2

1 . It quantifies the differences among
the UEs, i.e., the fairness of the network.

C. Related Work

Moving Networks in the METIS project refers to novel
concepts that focus on moving network nodes/terminals. Mov-
ing nodes provide better propagation conditions with less
shadowing and path loss [7]. The vehicular penetration loss
(VPL) can be 25-30 dB and more for frequencies above 6
GHz when radio signals are transmitted through the hull of a
vehicle [8]. Proper antenna deployment circumvents the VPL
and reduces the interference from moving BSs to UEs outside
the vehicle. Compared with fixed-relay transmission and direct
transmission, moving nodes enhance the performance for
vehicular UEs in a single-cell system [9]. It is shown in [10]
that moving BS transmission still outperforms transmission
assisted by a fixed relay as well as direct transmission based
on a two cell system model. By using a hexagonal grid model
for the moving BSs, researchers came to the conclusion that
moving BSs can improve the coverage probability of both
boundary extravehicular UEs and vehicular UEs [11]. How-
ever, the dense deployment of moving BSs greatly changes the
architecture of cellular networks. The conventional network
models like the hexagonal grid model and the single cell model
are oversimplified and ignore the irregularity of MNs.

With models like the PPP, stochastic geometry captures the
randomness of node deployment. It has been applied in a
growing number of studies such as the analysis of the cross-
tier handover in heterogeneous networks [12], throughput for
full-duplex wireless networks [13], and coordinated multipoint
joint transmission in heterogeneous networks [14]. With regard
to the MNs, researchers proposed basic analytical models for
MNs by utilizing stochastic geometry to obtain mathematical
expressions [15]–[18]. The temporal correlation of the outage
is analyzed for the design of new retransmission schemes with
correlation-awareness in mobile network [19]. These works
related to the SIR analysis in MNs only focus on the mean
success probability ps(θ) or outage probability, not on the MD.

To the best of our knowledge, the MD can not be calculated
directly. With the known moments of Ps, the exact MD can
be calculated by the Gil-Pelaez theorem by tedious numerical
integration of the imaginary moments. The numerical integra-
tion requires a careful selection of the range and step size. The
beta distribution is shown to be an efficient approximation to
the MD by matching its first and second moments [6]. This
method yields good results if the actual distribution is close to
a beta distribution. Very recently, research on the calculation of

the MD led to new approaches. The work [20] reconstructs the
MD from its moments using Fourier-Jacobi expansion. This
method uses the information contained in the higher moments
resulting in a better accuracy than the beta approximation,
but its convergence properties are unknown. Given that we
already have the moments of Ps, an efficient method based
on binomial mixtures is more promising for its simplicity and
uniform convergence properties [21]. It is based on a simple
linear transform of the moments of Ps.

Recently, the MD has been extended to more scenarios
[6], [22]–[29]. The paper on the MD [6] firstly obtained an
analytical expression for the exact MD and a closed-form
expression of the moments Mb of the conditional success
probability for both Poisson bipolar and cellular networks
with Rayleigh fading. The MD concept is also applied in the
performance evaluation of mm-wave device-to-device (D2D)
networks [22], the cellular network uplink and downlink with
fractional power control [23], the secrecy rate for a legitimate
link in the presence of eavesdroppers [24], Poisson networks
with interference cancellation at the receivers [25] and D2D
underlaid cellular networks [26]. Besides, an SIR MD analysis
is conducted for the homogeneous independent Poisson (HIP)
downlink model with biasing factors [27]. An MD analysis
for MNs is an open issue. Conventional cellular networks with
static transmitters can be considered as a special case of the
MNs by setting the speed to zero.

D. Contribution

We obtain the SIR MD for MNs and analyze a series
of key performance metrics. In MNs, the meta distributions
for the extreme cases with zero and infinite mobility are
derived, while the intermediate range of mobility is evaluated
by simulations, and tight approximations are obtained. The
main contributions of this paper are the following:
• We propose definitions of the conditional success proba-

bility and the MD for moving networks.
• For single-tier MNs with high mobility (speeds tending

to infinity), we show that the conditional success prob-
abilities degenerate to a deterministic quantity, i.e., the
variance tends to 0 and the MD to a step function.

• For single-tier MNs with general speed, a closed-form
approximation of the variance is given. To justify the ap-
proximation, we show by simulation that the interference-
to-signal ratios of a PPP before and after displacing the
points by twice the mean nearest-neighbor distance are
essentially uncorrelated. Using the approximated vari-
ance, we propose a beta approximation of the MD for
general speeds.

• We extend the single-tier model to two-tier heterogeneous
MNs. For the conditional high-mobility case in two-tier
MNs, we derive the standard success probability M1 and
the variance M2 −M2

1 for both the overall network and
the typical UE in each tier give that the serving BS from
tier 2 is fixed.

• From the theoretical and simulation results, we gain
insights on the benefits of MNs and the impact of other
network parameters like the density ratio, transmission
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power, and bias factor. An important conclusion is that
mobility mitigates the high variance brought by offload-
ing UEs from macro BSs while maintaining roughly the
same standard success probability.

Notations: The mean of the random variable X is denoted
by E[X]. The probability of event A is denoted by P[A]. The
Gaussian hypergeometric function is denoted by 2F1(., .; .; .).
The main symbols employed in this paper are explained in
Table I.

TABLE I
LIST OF SYMBOLS

Symbol Definition
Φi(t) PPP to constitute the i-th tier
λi(t) Intensity of BSs in the i-th tier
Pi Transmission power of BSs in tier i
α Path loss exponent
θ SIR threshold for success transmission
βi Range expansion bias for the i-th tier
v Speed of MBSs

p(i)|ri(t) Conditional access probability for tier i given ri(t)
p(i) Access probability for tier i

P
[v]
s (θ) Conditional success probability for MNs with speed v

P
[v]
s|(i)(θ) Conditional success probability conditioned on tier i

serving the user
P

[v]
s|(i),ri(t)

(θ) Conditional success probability conditioned on tier i
serving the user given ri(t)

M
[v]
b b-th moment of P [v]

s (θ) for MNs with speed v
M

[v]
b,(i)

b-th moment of P [v]
s (θ) for tier i

M
[v]
b|(i) b-th moment of P [v]

s (θ) conditioned on tier i serving
the user

M
′[∞]
b,(2)

b-th moment for tier 2 given that the serving BS is at
distance r2

M
′[∞]
b b-th moment for MNs given that the serving moving

BS is at distance r2
V [v] Variance of P [v]

s (θ) for MNs with speed v
V

[v]
|(i) Variance of P [v]

s (θ) for tier i

V ′[v] Variance of P [v]
s (θ) for MNs given that the serving

BS is at distance r2
V
′[v]
|(i) Variance of P [v]

s (θ) for tier i given that the serving
BS is at distance r2

II. SINGLE-TIER MOVING NETWORKS

A. System Model

A single-tier cellular network with mobility is considered
to analyze the effect of mobility. We assume the standard
path loss law with path loss exponent α = 2/δ > 2 and
Rayleigh fading h. At time t, BSs form a point process
Φ(t) , {x ∈ Φ0 : x + vxt}, t ∈ R, where Φ0 is a PPP
of intensity λ. The velocity vector vx of each point x is
random and i.i.d. for all x with identical speed ‖vx‖ = v and
random movement direction uniformly distributed in [0, 2π).
Accordingly, Φ(t) is a homogeneous PPP at each time t with
constant intensity λ. Besides, we suppose that each BS uses
an identical transmission power P and is active at all times.
The two extreme cases of mobility are the high-mobility case,
where v → ∞, and the static case v = 0, where the BSs
stay fixed forever. The single-tier static network (SN) is a
special case of this model by setting v = 0, resulting in

Φ(t) ≡ Φ0. The downlink association scheme is the nearest-
BS scheme, i.e., the typical UE at the origin is served by its
nearest BS x0(t) = arg min {x ∈ Φ(t) : ‖x‖}. The distance
from the serving BS to the typical UE located at the origin is
r(t) = ‖x0(t)‖.

The SIR of the typical UE assumed to be located at the
origin can be written as

SIR(t) =
Phx0(t)r(t)

−α∑
x(t)∈Φ(t)\{x0(t)}

Phx(t)‖x(t)‖−α
. (3)

where hx(t) denotes the Rayleigh fading between the typical
user at the origin and the BS at x(t), hx(t) is exponential with
mean 1 and i.i.d. for all points in the PPP and over time.

With increasing speed, the frequency of handovers from
one BS to another one increases. While the impact of such
handovers is beyond the scope of this paper, we note that
handovers in moving networks are easier to handle than
handovers in systems with maximum instantaneous-SIR BS
association, which is considered, e.g., in [30]. This is due
to the following two reasons: First, in moving networks, it
is predictable when another BS becomes the nearest one,
since the locations and directions of the mobile BSs can be
assumed known. Second, only users near the (moving) cell
edge are candidates for handoffs. In contrast, with maximum
instantaneous-SIR BS association, handovers can occur at any
user at any time, due to the rapid variations of the small-scale
fading, and they are impossible to predict. In addition, there
are many candidate BS that could become the serving one,
i.e., the handover mechanism needs to select from many.

B. Definition of the SIR MD in Moving Networks

The conditional success probability Ps(θ) can be viewed as
the temporal average over a certain number of coherence times.
In SNs, the averaging over the fading while conditioning on
BS point process Φ corresponds to a separation of temporal
and spatial scales. If the BSs are moving, the averaging also
includes the different BS locations over a time period. This
way, the concept of the MD can be extended to the case with
mobility. Here, we formally introduce the definition of the
conditional success probability for MNs.

Definition 1 (Conditional success probability for MNs) The
conditional success probability for MNs is defined as

P [v]
s (θ) ,

∫ 1

0

Eh1 (SIR(t) > θ) dt

=

∫ 1

0

P(SIR(t) > θ | Φ(t))dt,

(4)

where 1 (·) is the indicator function.

The characteristic function of X , logP
[v]
s (θ) is ϕX(u) ,

EejuX = Mju, j ,
√
−1, t ∈ R. The meta distribution can

be obtained from the Gil-Pelaez theorem [31] with the purely
imaginary moments Mju as

F̄ (θ, x) =
1

2
+

1

π

∫ ∞
0

=[e−ju log xMju]

u
du, (5)
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where =(z) denotes the imaginary part of the complex number
z. With the moments Mb in hand, the meta distribution can
be calculated for each value of x and θ.

C. Spatial Correlation of the Interference-to-Signal Ratio

The definition of the interference-to-average-signal ratio
IS̄R is first given in [32] as

IS̄R ,
I

Eh(S)
=

∑
x∈Φ\{x0}

hx ‖x‖−α

‖x0‖−α
, (6)

where I is the sum power of all interferers and S̄ = Eh(S) is
the signal power averaged over the fading. Its mean follows

as MISR , E

(
‖x0‖α ·

∑
x∈Φ\{x0}

‖x‖−α
)

, and the success

probability under Rayleigh fading can be expressed as the
Laplace transform of the IS̄R as

ps(θ) = P(h > θ IS̄R) = E
[
exp(−θ IS̄R)

]
. (7)

The IS̄R includes fading in the interferers’ channels. Since
the fading affects the spatial correlation, here we focus on
a version of the ISR that does not include fading, i.e., the
conditional mean IS̄R given the point process. This way, our
findings are more general and robust as they not depend on a
particular fading model.

We set v = 1 and let ISR∆ be the conditional mean
interference-to-signal ratio in Φ(∆), i.e., after displacing each
point by ∆ in a random direction:

ISR∆ , ‖x0(∆)‖α
∑

x∈Φ(∆)\{x0(∆)}

‖x‖−α.

Remark. The ( ISR∆)∆∈R are identically distributed since
Φ(t) is a PPP at all times.

Since ISR is a function of the distance ratio between the
serving and interfering BSs, exp(−θ ISR) is a good quantity to
measure the spatial correlation in the success probability. An
analytical derivation of E(e−θ ISR0e−θ ISR∆) seems impossible,
since this functional falls outside the classes of functionals
for which exact expressions exist. Instead, we resort to an
approximation that is based on the following intuition: Upon
displacing each point by twice the mean nearest-neighbor dis-
tance, the neighborhood around the origin changes drastically,
thus we can expect the correlation in the ISR to essentially
drop to zero.

Claim. In a PPP with intensity λ = 1, ISR0 and ISR1 are
essentially uncorrelated. More precisely, the linear correlation
coefficient of exp(−θ ISR0) and exp(−θ ISR1) is below 0.05
for α ≥ 3 and all θ.

To support this claim, simulations have been carried out
to explore the correlation of ISR0 and ISR∆. Figs 1(a) and
1(b) show the correlation between e−θ ISR0 and e−θ ISR∆ as
a function of ∆ for different values of θ and the correlation
between ISR0 and ISR∆ (dashed curve) for α = 4 and α = 3,
respectively. It is apparent that for θ = −10 dB, the correlation

between e−θ ISR0 and e−θ ISR∆ is essentially the same as the
correlation of ISR0 and ISR∆. Also, the coherence length
gets smaller as θ increases.
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Fig. 1. Correlation of exp (−θ ISR0) and exp (−θ ISR∆) where λ = 1.
The horizontal lines are drawn at |ρ| = 0.05.

Remarks:
• Let ρ(X,Y ) = cov(X,Y )/

√
var(X) var(Y ) be the lin-

ear correlation coefficient between the random variables
X and Y . As θ → 0, the correlation between e−θ ISR0 and
e−θ ISR∆ approaches the correlation of ISR0 and ISR∆,
i.e.,

ρ(e−θ ISR0 , e−θ ISR∆) ∼ ρ( ISR0, ISR∆), θ → 0.

The convergence happens fast, since, as θ → 0,

cov(e−θ ISR0 , e−θ ISR∆) ∼ θ2

and (naturally, for the above to hold)√
var(e−θ ISR0) var(e−θ ISR∆) = var(e−θ ISR0) ∼ θ2.

This is easy to show from the expansion e−x ∼ 1− x+
x2/2.

• The correlation of ISR0 and ISR∆ can be written as

ρ( ISR0, ISR∆) =
E(ISR0 ISR∆)− MISR2

var(ISR)
. (8)

The variance is

var(ISR) = E(ISR2)− MISR2 =
δ

2− δ
.
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This follows from Theorem 2 in [33], which states that

MISR = E(ISR0) =
δ

1− δ
, E(ISR2

0) =
δ

(1− δ)2(2− δ)
.

So the only unknown quantity in (8) is the expectation
of the product of ISR0 and ISR∆, which is an affine
function of ρ:

E( ISR0 ISR∆) = ρ var( ISR0) + MISR2

= ρ
δ

2− δ
+

δ2

(1− δ)2
.

Letting Q =
√
E(ISR0 ISR∆), we can express the

correlation coefficient as

ρ = (α− 1)(Q+ MISR)(Q− MISR).

D. MD for Single-Tier Moving Networks

In single-tier MNs, the standard success probability, the
conditional success probability, and the moments are denoted
as p[v]

s , P [v]
s and M [v]

b for general speeds v, respectively.
For the first moment of the conditional success probability

M1, we can take the expectation over the point process inside
the integral in the (4). Since Φ(t) is a PPP for all t, the mobility
of the BSs has no effect on the average SIR performance of
the MNs. Hence M [v]

1 does not depend on v, i.e., for all v,

M
[v]
1 ≡ p[0]

s (θ) =
1

2F1 (1,−δ; 1− δ;−θ)
=

1

F1(θ)
. (9)

where Fb(θ) , 2F1 (b,−δ; 1− δ;−θ) , b ∈ C, and 2F1

denotes the Gauss hypergeometric function.
To assess the benefits of mobility, we next analyze the

moments of the conditional success probability, the variance of
the conditional success probability, and the meta distribution
of the SIR for the MNs in the extreme case v →∞ compared
with the static case.

1) Static Case: In the static case, Φ(t) ≡ Φ0. The b-th
moments of the conditional success probability for SNs are
known from [6] as

M
[0]
b (θ) =

1

2F1 (b,−δ; 1− δ;−θ)
=

1

Fb(θ)
, b ∈ C. (10)

The variance of the conditional success probability follows
as

varP [0]
s (θ) = M2 −M2

1 =
1

F2(θ)
− 1

F2
1 (θ)

. (11)

2) High-Mobility Case: In the high-mobility case, we let
v → ∞ and thus the moving BSs follow an independent
homogeneous PPP for each time t. The UEs connect to many
different BSs within each time slot.

Proposition 1 (Moments for MNs in the high-mobility case)
The moments of the conditional success probability for MNs
in the high-mobility case are given by

M
[∞]
b (θ) =

1

Fb1(θ)
, b ∈ C. (12)

Proof: In the calculation of the conditional success prob-
ability Ps(θ) in the high-mobility case, the expectations that

involve the PPP and the fading are taken. The conditional
success probability for MNs with high mobility is obtained as

P [∞]
s (θ) =

∫ 1

0

P(SIR(t) > θ | Φ(t))dt

(a)
= EΦ [P(SIR(t) > θ | Φ(t))]

= P

h > θrα
∑

x∈Φ\{x0}

hx‖x‖−α


(b)
= EΦ

∏
x∈Φ\{x0}

1

1 + θ(‖x0‖/‖x‖)α

(c)
=

1

2F1 (1,−δ; 1− δ;−θ)
,

where (a) is due to the fact that by ergodicity, the time (the
path) average equals the ensemble average, (b) is derived by
averaging out the fading hi ∼ exp(1), and (c) follows from
the pgfl of the PPP [34]. Hence P

[∞]
s is deterministic, and

M
[∞]
b (θ) is simply its b-th power. It follows that as v → ∞,

the success probabilities for all the users become identical.
Combining (5) and (12), it can be seen that the meta

distribution of the SIR for MNs does not depend on the
transmission power and density of the moving BS.

The assumption λ = 1 means that for v = 1, the user
essentially perceives two independent network realizations
according to the conclusion from Sec. II-C. So we expect the
variance to drop to about 1/2 of its value in the static case. For
v = 2, the user perceives 3 independent realizations, so the
variance drops to 1/3, etc. Thus, we can propose a tractable
approximation of the variance for all speeds with the known
varP

[0]
s (θ).

Approximation 1 (Approximation of the Variance) A closed-
form approximation of the variance of the conditional success
probability for speed v is given by

varP [v]
s 'varP

[0]
s (θ)

1 + v
=

1

1 + v

(
1

F2(θ)
− 1

F2
1 (θ)

)
. (13)

The beta distribution with two parameters M [v]
1 and varP

[v]
s

has been verified to be an effective approximation of the MD
[6], [23], [27]. Since the exact variance for finite v seems
hopeless to derive, we use the approximated variance in (13)
to fit a beta distribution.

Approximation 2 (Beta Approximation) The beta approxima-
tion of the MD for speed v is

f(x) =
x

(β+1)−F1(θ)

F1(θ)−1 (1− x)β−1

B(β/(F1(θ)− 1), β)
, (14)

where B(·) is the beta function and β =
F2(θ)(1−F1(θ))2(v+1)

F1(θ)(F1(θ)2−F2(θ))
+ 1
F1(θ) − 1.

This approximation is justified as follows. The beta proba-
bility density function (pdf) for a given value x is

f(x) =
x
µ(β+1)−1

1−µ (1− x)β−1

B(µβ/(1− µ), β)
, (15)
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where B(·) is the beta function. The variance is given by

σ2 , varX =
µ(1− µ)2

β + 1− µ
.

Matching the mean µ = M
[v]
1 and approximated variance σ2 =

varP
[v]
s , the approximated parameter of the beta distribution

is derived as

β =
M

[v]
1

(
1−M [v]

1

)2

varP
[v]
s

−
(

1−M [v]
1

)
(a)
=
F2(θ)(1−F1(θ))2(v + 1)

F1(θ)(F1(θ)
2 −F2(θ))

+
1

F1(θ)
− 1, (16)

where (a) follows from substitutions based on the results from
(9) and the approximated variance for speed v in (13). Based
on M [v]

1 and β, the beta approximation of the MD for speed
v is given in (14).

In addition to the theoretical analysis of the special cases
v = 0 and v → ∞, simulations have been conducted for the
intermediate range of speed v to demonstrate the accuracy of
the approximation. Throughout the simulations in this section,
without loss of generality, P and λ are set to 1 since the
meta distribution is independent of the transmission power
and density according to the results above. To simplify the
simulation procedure, the averaging w.r.t. the Rayleigh fading
is done analytically, i.e., the simulation is only used to average
over the random geometry of the network. We produce 10000
PPP realizations of Φ0, and then produce 40 time slots in
the observation time interval [0, 1] for each chosen speed v.
The nodes in each realization Φ0 are set as the start points.
The locations of nodes are updated in every time slot. We
calculate the SIR of the typical user of in every time slot.
The simulation results are obtained over the 10000× 40 data
points for each chosen v. Besides the figures of M1 and
variance, figures of the empirical MD for the static case and
chosen maximum speed vmax are produced. The simulation
parameters are: speed v ∈ [0, vmax], vmax = 50, and SIR
threshold θ = 3 dB. For a path loss exponent of 4, the
simulation region is [0, 16]

2 with about 256 BSs, while for
α = 3, the simulation region is extended to [0, 40]

2 with about
1600 BSs.
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Fig. 2. Variance of Ps(θ) with difference speeds v in MNs where λ = 1,
α = 4 and θ = 3 dB.

Fig. 2 shows the simulated variance of the conditional
success probability for networks with different speeds and its
approximation. With the increasing mobility of the BSs, the
variance is decreasing to 0. Shown as the dashed curve, the
approximation provides an accurate fit to the simulation for
all speeds v.

(a) v = 0 (b) v = 1

(c) v = 5 (d) v = 20

Fig. 3. Empirical pdf of the conditional success probability and its beta
approximation (dashed curve) for v = {0, 1, 5, 20} with θ = −5 dB, where
λ = 1 and α = 4.

Fig. 3 show the empirical MD and its beta approximation
(dashed curve) for the different speeds. These figures indi-
cate how the distribution becomes more concentrated with
increasing v. If M1 < 1/2 (and small v), all beta distributions
have positive skewness. However, the empirical distribution
for M1 < 1/2 with v = 1 or v = 2 shows (significant)
negative skewness. In this case, the actual distribution can not
be captured by the beta family of distribution. To obtain a
more realistic mean success probability M1, the SIR threshold
is set to −5 dB in Fig. 3. For M1 > 1/2, the skewness of the
beta distribution is negative, and so is the skewness of the
empirical distribution. It is notable that for M1 > 1/2, the
beta approximation from Approx. 2 gives a good fit to the
meta distribution for all speeds.

E. Local Delay

The mean local delay M−1 is the −1-st moment of the
conditional success probability [35]. It is defined as the mean
number of transmission attempts before the first successful
transmission if the transmitter is allowed to keep transmitting.
In static Poisson cellular networks, the mean local delay has
a phase transition at the critical value θ = 1/δ − 1, i.e., the
mean local delay is finite when θ < 1/δ − 1 and infinite
for θ ≥ 1/δ − 1. An infinite mean local delay means that a
significant fraction of UEs in the network suffers from high
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delay. The mean local delay of the typical UE for SNs follows
as [6]

M
[0]
−1(θ) =

1− δ
1− δ(1 + θ)

, θ <
1

δ
− 1. (17)

Base on the (12), the mean local delay M−1 of the typical
UE for MNs in the high-mobility case is given by

M
[∞]
−1 (θ) = F1(θ). (18)

Based on the analysis of M−1(θ), we conclude that in
the high-mobility case, the mean local delay is simply
1/P(SIR > θ); in the static case, conditioning on Φ, the −1-st
moment of the conditional success probability is calculated,
and the expectation w.r.t. the point process yields the local
delay EΦ (1/P(SIR > θ | Φ)).
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Fig. 4. Analytical results of mean local delay M−1(θ) in two extreme cases
of mobility v = 0, ∞ where α = 4.

Fig. 4 shows the theoretical results for the mean local delay
for v = 0 and v →∞, and the critical value of phase transition
θ in SNs can be observed. The mean local delay in MNs is
finite and much smaller than in SNs especially when the SIR
threshold θ approaches the critical value. The introduction of
the moving BS can eliminate holes in the coverage of cellular
SNs. Since every UE will be served by its passing moving
BSs, mobility reduces the fraction of users with high delay.

III. TWO-TIER HETEROGENEOUS MOVING NETWORKS

A. System Model

Here, we consider a heterogeneous cellular network com-
posed of two independent network tiers, namely a static macro
BS tier (tier 1) and a moving BS tier (tier 2). According
to the deployment in a dense urban scenario, tier 1 and tier
2 are accurately modeled by two independent homogeneous
PPPs Φ1(t) ≡ Φ1 and Φ2(t) with intensities of λ1 and λ2,
respectively. Each BS in tier i (i = 1, 2) uses an identi-
cal transmission power Pi. All BSs are active at all times.
The moving BS tier Φ2(t) corresponds to single-tier MNs
described in Sec. II. When v = 0, this model reduces to a
conventional heterogeneous cellular network (HCN) with two
stationary tiers, i.e., a heterogeneous SN.

The 3GPP standardized channel propagation model for
HCNs including distance-based path loss and Rayleigh fading
is applied [36]. Based on evaluation assumptions in the 3GPP

standard for HCNs [36], we let the path loss exponent of each
tier be α and define δ , 2/α.

For a UE located at the origin, we define Ti(t) to be the
transmitter of the tier i that results in the strongest average
received signal power at time t, i.e.,

Ti(t) , arg min
x(t)∈Φi(t)

{‖x(t)‖}. (19)

The distance from the typical UE at the origin to the nearest
transmitter in the i-th tier is denoted as ri(t) = ‖Ti(t)‖ at time
t. Because the transmitters form an independent PPP at each
time, ri(t) is a random variable with time-invariant pdf

fri(t)(u) = 2πλiue
−πλiu2

. (20)

We assume the open access strategy where the UEs are
allowed to connect to any tier without restriction. Load bal-
ancing is taken into consideration by introducing a parameter
called the range expansion bias βi. The association scheme
is based on the maximum biased-received-power (MBRP)
βiPiri(t)

−α. The positive biasing factor βi implies that even
for a lower received power from the i-th tier, UEs are biased
to associate with tier i. Specifically, the typical UE is served
by the i-th tier if and only if

βiPiri(t)
−α > βjPjrj(t)

−α, j 6= i. (21)

B. First Moment and Variance of the Conditional Success
Probability for MNs

Here we analyze the moments of the conditional success
probability as v → ∞ and contrast it with the static case
v = 0.

The SIR of the typical UE assumed to be located at the
origin and served by the i-th tier at time t can be written as

SIRi(t) =
PihTi(t)r

−α
i (t)

2∑
k=1

∑
x∈Φk(t)\{Ti(t)}

Pkhx‖x‖−α
. (22)

The ratios of density, transmission power, and bias factor
determine the probability that the typical UE is associated with
a particular tier and the SIR. We define

λ̂ ,
λ2

λ1
, P̂ ,

P2

P1
, B̂ ,

β2

β1
, G , λ̂(P̂ B̂)

δ
. (23)

Such parametrization is sensible since only the ratios of the
densities, transmission powers, and bias factors matter.

It follows that, given ri(t), the conditional access probabil-
ities that the typical UE associates with the i-th tier are

p(1)|r1(t) = e−πλ2(P̂ B̂)δr2
1(t), (24)

p(2)|r2(t) = e−πλ1(P̂ B̂)−δr2
2(t). (25)

The access probability that the typical UE associates with
the i-th tier has been derived in [37, Lemma 1], which is here
slightly reformulated as

p(1) =
1

1 + λ̂(P̂ B̂)δ
=

1

1 +G
, (26)

p(2) =
1

1 + λ̂−1(P̂ B̂)−δ
=

1

1 +G−1
. (27)
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1) Static Case: In the case v = 0, the conditional success
probability is conditioned on the static tiers Φ1 and Φ2.
The b-th moments and variance of the conditional success
probability of the typical UE served by tier i and in the overall
network are known from [27, Cor. 2] for Poisson two-tier
cellular networks.

2) High-Mobility Case: In the case v →∞, due to the high
mobility of the moving BSs in tier 2, the conditional success
probability for two-tier heterogeneous MNs is obtained by
averaging over the moving BS process Φ2(t) in addition to
the fading.

Given the static macro BS process and that the typical UE
connects to tier i, the conditional success probability in the
high-mobility case is given by

P
[∞]
s|(i)(θ) ,P(SIRi > θ | Φ1)

=P

(
PihTi(t)ri(t)

−α

2∑
k=1

∑
x∈Φk\Ti(t)

Pkhx‖x‖−α
> θ | Φ1

)

=P

hTi(t) > θ

2∑
k=1

∑
x∈Φk\Ti(t)

hx
Pk
Pi

rαi (t)

‖x‖α
| Φ1


(a)
=E

e−θ 2∑
k=1

∑
x∈Φk\Ti(t)

hx
Pk
Pi

rαi (t)

‖x‖α

| Φ1

 ,

where (a) follows since hi ∼ exp(1). By averaging over the
fading hx ∼ exp (1), the above expression is further developed
for tier i (i = 1, 2).

P
[∞]
s|(1)(θ) =

∏
x∈Φ1\T1(t)

1

1 + θ
rα1 (t)
‖x‖α

EΦ2

∏
x∈Φ2\T1(t)

1

1 + θP̂
rα1 (t)
‖x‖α

(a)
= e−πλ2P̂

δB̂δ−1µθ2F1[1,1−δ;2−δ;−θB̂−1]r2
1(t)

·
∏

x∈Φ1\T1(t)

1

1 + θ
rα1 (t)
‖x‖α

(b)
=e−πλ2P̂

δB̂δ(F1( θB̂ )−1)r2
1(t)
∏

x∈Φ1\T1(t)

1

1 + θ
rα1 (t)
‖x‖α

, (28)

P
[∞]
s|(2)(θ) = EΦ2

∏
x∈Φ1\T2(t)

1

1 + θ
P̂

rα2 (t)
‖x‖α

∏
x∈Φ2\T2(t)

1

1+θ
rα2 (t)
‖x‖α

(c)
= Er2(t)

[
e−πλ2µθ2F1[1,1−δ;2−δ;−θ]r2

2(t)

·
∏

x∈Φ1\T2(t)

1

1+θP̂−1 r
α
2 (t)
‖x‖α


(d)
=

∞∫
0

e−πλ2(F1(θ)−1)r2 ∏
x∈Φ1\T2(t)

1

1+ θ
P̂

rα

‖x‖α
fr2(t)(r)dr

= Er2(t)

[
P

[∞]
s|(2),r2(t)

]
, (29)

where P [∞]
s|(2),r2(t) = e−πλ2(F1(θ)−1)r2

2(t)
∏

x∈Φ1\T2(t)

1

1+ θ
P̂

rα2 (t)

‖x‖α
,

(a) and (c) follow from the PGFL of the PPP and the identity

2F1 (b,−δ; 1− δ,−z) ≡ 1+

∞∫
1

(
1−
(

1 + z
1

t
1
δ

)−b)
dt, (30)

(b) and (d) follow from the identity

F1(x)− 1 ≡ 2F1 [1, 1− δ; 2− δ;−x] · xµ, (31)

where µ , δ
1−δ .

The moments of the typical UE served by tier i (i = 1, 2)
follow as

M
[∞]
b,(1) = EΦ1

[
p(1)|r1(t) · P bs|(1)(θ)

]
, (32)

M
[∞]
b,(2) = p(2)EΦ1

[(
P

[∞]
s|(2)(θ)

)b]
= p(2)EΦ1

[(
Er2(t)

[
P

[∞]
s|(2),r2(t)(θ)

])b]
. (33)

Conditioned on the typical UE served by the i-th tier, the
b-th moments of the MD is denoted as Mb|(i). The b-th mo-
ments of the conditional success probability for heterogenous
MNs in the high-mobility case are

M
[∞]
b =

2∑
k=1

M
[∞]
b,(k) = p(1) ·M

[∞]
b|(1) + p(2) ·M

[∞]
b|(2). (34)

For the scenario that the UE nearby a bus/metro station
connects to the a parked (stationary) bus/metro, we introduce
the network modeling assumption that the serving BS from
tier 2 is fixed. Given that the serving BS is at distance r2, the
moments corresponding to this conditional high-mobility case
follow as

M
′[∞]
b,(2) = EΦ1

[
p(2)|r2(t) ·

(
P

[∞]
s|(2),r2(t)(θ)

)b]
. (35)

Based on this modeling assumption above, we derive the
tractable first moment and variance for MNs in the conditional
high-mobility case.

Theorem 1 (The first moment for MNs with range expansion)
In the conditional high-mobility case, the first moment of the
conditional success probabilities conditioned on tier i serving
the typical user and for overall network of the heterogenous
MN with range expansion are given by

M
[∞]
1|(1) =

1 +G

F1(θ) +GF1(θB̂−1)
, (36)

M
′[∞]
1,(2) =

1 +G−1

F1(θ) +G−1F1(θB̂)
, (37)

M
′[∞]
1 =

1

F1(θ) +GF1( θ
B̂

)
+

1

F1(θ) + F1(θB̂)
G

. (38)

Proof: See Appendix A.

Corollary 1 (The first moment for MNs without range
expansion) In the conditional high-mobility case, the first
moments of the conditional success probabilities conditioned
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on tier i serving the typical user and for overall network with
P̂ = B̂ = 1 are derived from Thm. 1 as

M
[∞]
1|(1) = M

′[∞]
1|(2) = M

′[∞]
1 =

1

F1(θ)
. (39)

Proof: This can be easily obtained by setting B = 1 in
(45).

Remark. As shown in Thm. 1, it is remarkable that the
standard success probabilities conditioned on tier i serving
the typical user and for overall network in MNs with range
expansion are the same as for SNs [27, Eq. (38)-(40)]. This
shows that the mobility of the BSs does not improve the
average success probability. The M1s in single-tier MNs and
multi-tier MNs without range expansion are the same, which
implies that the multi-tier architecture does not improve the
standard success probability.

Theorem 2 (Variances for MNs with range expansion) Given
that the serving moving BS is fixed, the variances of the
conditional success probabilities conditioned on tier i serving
the typical user and for the overall network in the conditional
high-mobility case are

V
[∞]
|(1) =

1 +G

F2(θ) +G
(
F1

(
θ
B̂

)
−1
) −

 1 +G

F1(θ) +GF1

(
θ
B̂

)
2

,

(40)

V
′[∞]
|(2) =

1 +G−1

F1(θ)− 1 +
F2(θB̂)

G

−

(
1 +G−1

F1(θ) + F1(θB̂)
G

)2

, (41)

V ′[∞] =
1

F2(θ) +G
(
F1

(
θ
B̂

)
− 1
) +

1

F1(θ)− 1 +
F2(θB̂)

G

−

(
1

F1(θ) +GF1( θ
B̂

)
+

1

F1(θ) + F1(θB̂)
G

)2

.

(42)

Proof: See Appendix B.

Corollary 2 (Variance for MNs without range expansion)
Given the serving BS from tier 2 is fixed, the variances of the
conditional success probabilities conditioned on tier i serving
the typical user and for overall network with P̂ = B̂ = 1 are

V
[∞]
|(1) = V

′[∞]
|(2) = V ′[∞] =

1 + λ̂

F2(θ) + λ̂ (F1 (θ)− 1)
− 1

F2
1 (θ)

.

(43)

Proof: Follows directly from Thm. 2.

Remark. As shown in Cor. 2, the variances for tier i and
overall the network are the same when P̂ = B̂ = 1. The curves
of both tiers and overall network coincide, which means the
two tiers and overall network have the same SIR statistics,
which are a function of the path loss exponent α, threshold θ,
and density ratio λ̂.
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Fig. 5. M1 and variance of tier i in MNs given the serving moving BS
is fixed and SNs where α = 4, P̂ = 1/4, λ̂ = 100, B̂ = 6 dB. Here,
p(1) = 1%, p(2) = 99%.

Fig. 5 displays M1 and the variance conditioned on tier
i serving the typical user and for overall network in a two-
tier heterogeneous MN with v → ∞ and SN with v = 0,
respectively. The curves of M (i)

1 of tier i for MNs and SNs
coincide. It can be seen that the (maximum) variance is lower
in MNs than in SNs. The UEs, especially the cell-edge UEs
that suffer from poor communication performance due to the
long distance from all the fixed transmitters, will be served
by their passing moving BSs sometimes due to the mobility
of BSs. The moving BSs cover the holes in the coverage
of conventional heterogeneous cellular networks and leads to
a concentration in the per-user success probabilities, thereby
increasing the fairness.
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Fig. 6. M
[∞]
1 and variance of overall network for MNs given the serving

moving BS is fixed and SNs with λ̂ = {1, 100}, where α = 4, P̂ = 1/4,
B̂ = 6 dB. Here, p(1) = 50%, p(2) = 50% when λ̂ = 1, p(1) = 1%,
p(2) = 99% when λ̂ = 100.

Simulations have been carried out with different ratios of
moving BS and macro BS intensity, path loss exponents, and
bias factors. M1 and variance for the overall network in a
two-tier heterogeneous MN given the serving moving BS is
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fixed and SN with different metrics are shown in Fig. 6,
Fig. 7, and Fig. 8. In Fig. 6, it can be seen that for a bias
factor ratio of 6 dB, the density ratio has a relatively small
impact on the standard success probabilities. As the density of
tier 2 increases, the variances of the overall network in both
MNs and SNs decrease. A dense deployment of access points
can help mitigate the variance while maintaining roughly the
same M1. Especially, increasing the number of moving BSs
reduces the variance significantly compared to that of static
BSs. With the tool of the MD, we can conclude that a dense
deployment of moving BSs can bring some fairness benefits
while maintaining the level of the standard success probability.
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Fig. 7. M [∞]
1 and variance M2−M2

1 of the overall network for MNs given
the serving moving BS is fixed and SNs with path loss exponents α = {3, 4}
where λ̂ = 10, P̂ = 1/4, B̂ = 0 dB.
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Fig. 8. M [∞]
1 and variance M2−M2

1 of the overall network for MNs given
the serving moving BS is fixed and SNs with bias factor ratios B̂ = {0, 6} dB
where λ̂ = 10, P̂ = 1/4, α = 4.

As shown in Fig. 7, the simulation results for heterogeneous
MNs in two extreme cases are almost the same as that for
single-tier MNs. In heterogeneous MNs with large path loss,
UEs have a higher standard success probability than MNs
with small path loss while high-mobility BSs can decrease
the higher variance. Since biasing means offloading, offloading

from the macro BS tier to the moving BS tier will harm both
the M1 and variance of the entire network as shown in Fig. 8.
The fairness enhancement brought by the mobility will narrow
in MNs with range expansion.
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Fig. 9. Maximum variance M2−M2
1 of the overall network for MNs given

the serving moving BS is fixed and SNs with intensity ratios λ̂ where α = 4,
P̂ = {1, 1/40}, B̂ = 0 dB.

As can be seen from Fig. 9, the maximum variance of
the overall network for MNs given that the serving BS is at
distance r2 drops with the increasing of the intensity ratio
λ̂. Without range expansion, the maximum variance for SNs
stays constant and is higher than for MNs. The decrease of
the maximum variance will eventually slow down and stabilize
when the intensity of moving BSs is much higher than that
of macro BSs. The maximum variance of the MNs is lower
than that of the SNs, and the gap will be wider with the
increasing the ratio of intensity. Though the range expansion
means offloading, larger range expansion biases will result in
greater variances of success probability among the UEs. When
the ratio of the moving BS and macro BS intensity is relatively
small, the harm brought by offloading is more significant than
the benefit brought by increasing the intensity of MRs.

IV. CONCLUSION

In this paper, the moving BSs are integrated in the conven-
tional cellular network models, forming MNs in the heteroge-
neous 5G networks. To obtain fine-grained information on the
SIR, we develop an SIR MD framework for the analysis of
MNs. In MNs, the system model is described by stochastic ge-
ometry with a tractable mobility model. Firstly, the conditional
success probability and MD for moving networks is defined.
The conditional mean IS̄R is defined and used to capture the
correlation before and after the points of a PPP have been
displaced. We derived the b-th moments of the conditional
success probability for the single-tier MNs. With the b-th
moments in hand, key performance metrics such as the exact
MD, variance M2

1 −M2 and local delay can be calculated in
closed-form. A closed-form approximation of the variance for
general speeds is proposed. Using the approximated variance,
we propose a beta approximation of the MD for general
speeds. From the results, we can conclude that the variance
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goes to 0 as the speed of moving BSs v →∞. For intermediate
speeds, simulations have been carried out to study the variance,
local delay, and the meta distribution. The simulation results
show that given an SIR threshold θ, the variance decreases
sharply with increasing speed v and verify the accuracy of the
proposed approximation of the variance. Moving BSs narrow
the performance gap among UEs brought by large path loss
exponent and high SIR threshold. For M1 > 1/2, a beta
approximation based on the approximated variance is valid
for all speeds. The receiver in the single-tier MNs has a finite
mean local delay that is much smaller than in SNs. It is notable
that the variance with v = 1

2
√
λ

is essentially the same as that
with v →∞, namely 0.

The single-tier MN model is then extended to the two-tier
heterogeneous MNs. Using the conditional success probability
given the point process of moving BSs, the standard suc-
cess probability and variance conditioned on tier i serving
the typical user and for overall network are derived given
that the serving moving BS is fixed. Simulations have been
carried out with different ratios of moving BS and macro BS
intensity, path loss exponents and bias factors. By increasing
the intensity of moving BSs within certain range, the success
probability gap among UEs can be narrowed down with the
standard success probability remaining constant. When the
transmission power of the moving BS is comparable to that
of the macro BS, the fairness among the UEs will benefit
more from the deployment of MNs. Although offloading from
moving BSs to small cell BSs will widen the maximum
variance among the UEs, the mobility of BSs results in lower
variance among UEs in heterogeneous cellular networks.

Overall, the MD of the SIR in MNs extends the analytical
framework for HCNs and offers new and interesting insights
when the BSs are mobile. It helps assess the benefits of
MNs and provides guidelines for the network optimization and
design.

APPENDIX A
PROOF OF THEOREM 1

In the conditional high-mobility case, the first moment of
the conditional success probability of the typical UE served
by the i-th (i = 1, 2) tier is obtained as

M
[∞]
1,(1) = EΦ1

[
p(1)|r1(t) · P

[∞]
s|(1)

]
(a)
= Er1(t)

[
p(1)|r1(t)e

−(F1(θ)−1+G(F1( θB̂ )−1))πλ1r
2
1(t)
]

(b)
=

∞∫
0

exp
(
−u
(
F1(θ) +GF1(θB̂−1)

))
du

=
1

F1(θ) +GF1(θB̂−1)
,

M
′[∞]
1,(2) = EΦ1

[
Er2(t)

[
p(2)|r2(t) · P

[∞]
s|(2),r2(t)

]]
= Er2(t)

[
p(2)|r2(t)e

−πλ2r
2
2(t)(F1(θ)−1)

· EΦ1

∏
x∈Φ1\T2(t)

1

1 + θP̂−1 r
α
2 (t)
‖x‖α



=

∞∫
0

e−πλ1(P̂ B̂)−δr2
2(t)e−πλ2r

2
2(t)F1(θ)

· EΦ1

∏
x∈Φ1\T2(t)

1

1 + θP̂−1 r
α
2 (t)
‖x‖α

d(πλ2r
2
2(t))

(c)
=

∞∫
0

e−πλ2r
2
2(t)(F1(θ)+G−1F1(θB̂))d(πλ2r

2
2(t))

(d)
=

∞∫
0

exp
(
−u
(
F1(θ) +G−1F1(θB̂)

))
du

=
1

F1(θ) +G−1F1(θB̂)
,

where (a) and (c) follow from the PGFL of PPP and the
identify in (30). (b) and (d) are by using the substitution
u = πλir

2
i (t).

Conditioned on the typical user associating with the i-th
tier, the first moments of the conditional success probabilities
in the conditional high-mobility case are given by

M
[∞]
1|(1) =

1 +G

F1(θ) +GF1(θB̂−1)
, (44)

M
′[∞]
1|(2) =

1 +G−1

F1(θ) +G−1F1(θB̂)
. (45)

According to (34), the 1-st moment of the MD for the
overall MNs can be obtained in (38).

APPENDIX B
PROOF OF THEOREM 2

In the conditional high-mobility case, the variance of the
conditional success probability given that the typical UE is
served by tier i can be expressed as

V
′[∞]
|(i) = varP

[∞]
s|(i) = M

[∞]
2|(i) −

(
M

[∞]
1|(i)

)2

. (46)

Given the static macro BS, the second moment of the
conditional success probability for the typical UE served by
the tier 1 in the conditional high-mobility case is obtained as

M
[∞]
2,(1) = EΦ1

[
p(1)|r1(t) ·

(
P

[∞]
s|(1)

)2
]

= EΦ1

[
p(1)|r1(t)e

−2πλ2(P̂ B̂)
δ
(F1(θB̂−1)−1)r2

1(t)

·
∏

x∈Φ1\T1(t)

1(
1 + θ‖x‖−αrα1 (t)

)2

]

(a)
= Er1(t)

[
p(1)|r1(t)e

−2πλ2(P̂ B̂)
δ
(F1(θB̂−1)−1)r2

1(t)

·
∞∫

r1(t)

2πλ1

[
1− 1(

1 + θx−α1 rα1 (t)
)2 ]x1dx1

]

(b)
=

∞∫
0

e

−zG(F1( θB̂ )−1)−z

1+
∞∫
1

1− 1(
1+θu

−α
2

)2

du


dz
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(c)
=

∞∫
0

e−z(F2(θ)+G(F1(θB̂−1)−1))dz

=
1

F2(θ) +G
(
F1

(
θB̂−1

)
− 1
) , (47)

Given the static macro BS and that the serving BS is fixed,
the second moment of the conditional success probability for
the typical UE served by the tier 2 in the conditional high-
mobility case is obtained as

M
′[∞]
2,(2) = EΦ1

[
Er2(t)

[
p(2)|r2(t) ·

(
P

[∞]
s|(2),r2(t)

)2
]]

= Er2(t)

[
p(2)|r2(t)e

−2πλ2r
2
2(t)(F1(θ)−1)

· EΦ1

∏
x∈Φ1\T2(t)

1(
1 + θP̂−1 r

α
2 (t)
‖x‖α

)2


(d)
=

∞∫
0

e−πλ2r
2(G−1+F1(θ)−1)

· e

∞∫
r

−2πλ1

[
1− 1

(1+θP̂−1x
−α
1 rα)

2

]
x1dx1

d(πλ2r
2)

(e)
=

∞∫
0

e

−u(F1(θ)−1)− u
G

1+
∞∫
1

1− 1(
1+ θ

B̂
t
− 1
δ

)2

dt


du

(f)
=

∞∫
0

e−u(F1(θ)−1+G−1F2(θB̂))du

=
1

F1(θ)− 1 +G−1F2

(
θB̂
) , (48)

where (a) and (d) follow from the PGFL of the PPP, (b) is by
using the substitution u =

x2
1

r2
1(t)

, (e) is by using the variable

substitution t = (P̂ B̂)
1
δ x2

1r
−2 and z = πλ2r

2, (c) and (f)
follow from the identity (30).

Conditioned on the typical UE connecting to the i-th tier, the
second moments of the conditional success probability given
that the serving BS is fixed are

M
[∞]
2|(1) =

1 +G

F2(θ) +G
(
F1

(
θB̂−1

)
− 1
) , (49)

M
′[∞]
2|(2) =

1 +G−1

F1(θ)− 1 +G−1F2

(
θB̂
) . (50)

According to the definition of the variance in (46), the
variances of the conditional success probabilities for each tier
in the conditional high-mobility case can be obtained based
on the known first and second moments for each tier.
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