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Abstract—The spatial correlation of the RF-powered nodes
that harvest enough energy plays a critical role in the per-
formance evaluation of large-scale wirelessly powered commu-
nication networks (WPCNs). However, such correlation is mostly
ignored in the literature for analytical tractability. In this paper,
we explore the correlation and propose a new point process,
named energized point process (EPP), as a model for the RF-
powered nodes that succeed in harvesting energy. Specifically,
we focus on the spatial correlation of the energy harvested from
a Poisson field of RF power sources. Two energy harvesting
models with different degrees of practicality are introduced to
concretize the EPP with the aim of visualizing the point process
of the energized nodes and characterizing its density and pair
correlation function theoretically. It turns out that for both
models the resulting process exhibits positive correlation. With
the first- and second-order statistics of the EPP, we use a fitted
Poisson cluster process to provide good approximations of the
success probability and area spectral efficiency in the information
transmission phase. Numerical results investigate the impacts of
the key parameters related to the energy transfer on the spatial
correlation of the EPP and the communication performance. An
important conclusion is that although the Poisson point process
has been so far the most widely used model for wirelessly powered
networks, it is inadequate due to the positive energy correlation.

Index Terms—Energy correlation; wirelessly powered com-
munication networks; wireless energy transfer; Poisson cluster
process; stochastic geometry.

I. INTRODUCTION

A. Motivation

As a new enabler for energy harvesting, wireless energy
transfer (WET) is anticipated to have important applications
in future energy-constrained wireless communication networks
[2]. This integration of RF-based energy harvesting in commu-
nication networks renders the spatial structure of transmitters
(including the RF sources and the RF-powered nodes) even
more crucial since it not only determines the mutual interfer-
ence and the signal-interference-plus-noise ratio (SINR) per-
formance in conventional communications but also the energy
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that can be harvested. As a consequence, stochastic geome-
try models for wirelessly powered communication networks
(WPCNs) have recently received widespread attention due to
their capability of capturing the irregularity and variability
of the node configurations in real networks and providing
theoretical insights [3–6].

The Poisson point process (PPP) has been by far the most
popular spatial model for various types of wireless networks [].
This is because the PPP model has several convenient features,
such as the independence between points and the simple form
of the probability generating functional (PGFL) [7]. Therefore,
the PPP model of RF transmitters permits a tractable analysis
for the energy outage probability [3] as well as the energy
meta distribution in the energy harvesting phase [8]. As for
the information transmission phase, the analysis in previous
works is mostly based on the assumption that the active RF-
powered nodes, which are the nodes that successfully harvest
energy from a Poisson field of RF transmitters, are formed
by independently thinning the Poisson distributed RF-powered
nodes [5, 6, 8]. Hence, the active RF-powered nodes are
assumed to also form a PPP. However, this does not seem
realistic since if a node succeeds in harvesting energy, a
nearby node will have a good chance of succeeding also,
and vice versa. In other words, the nodes that successfully
harvest energy from a Poisson field of transmitters are not
mutually independent but spatially correlated. Therefore, it is
important to fully characterize the spatial correlation of the
energy harvested from RF transmitters and the corresponding
effect on the performance of communication systems, which,
to our best knowledge, have not been studied in large-scale
settings previously.

B. Related Work

For WPCNs, the downlink wireless information and en-
ergy transfer has been extensively studied (see, e.g., [6, 9–
14]), where RF-powered nodes can harvest energy and re-
ceive information from the same RF signals concurrently.
Among these works, stochastic geometry has been widely
used for the performance characterization of simultaneous
wireless information and energy transfer-enabled networks due
to its tractability and capability of capturing the topological
randomness and irregularity [12–14]. However, these works
did not consider the cases where the energy transfer and
information transmission links are separated, which is another
interesting and important issue to be investigated in WPCNs
[2]. Naturally, stochastic spatial models become the preferred
choice (see, e.g., [3–5, 8, 15–17]). Recent related works can be
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divided into two categories: (1) PPP-based analysis of WPCNs
and (2) non PPP-based analysis of WPCNs.

PPP-Based Analysis of WPCNs: The authors of [3] studied
the feasibility region of network parameters including node
density and transmission power, under an outage constraint
at the base station (BS), in an uplink cellular network solely
powered by power beacons (PBs), where the locations of BSs
and PBs were modeled as two independent PPPs and the users
were uniformly distributed in the Voronoi cells formed by
the BSs. A similar setup was considered in [4] with focus
on secure D2D communications in a large-scale wirelessly
powered cognitive cellular network. The authors of [5] in-
vestigated the transmission probability of D2D transmitters
and the advantages of a cellular system with WET-enabled
D2D communication over that with BSs alone in downlink
transmission rate and the total energy cost, where the D2D
transmitters were powered by RF signals from both BSs and
PBs. In [8], we introduced the concept of the meta distribution
to WPCNs and derived fine-grained performance metrics in
terms of both the energy transfer and information transmission.
In both [5] and [8], the RF power sources and the RF-powered
nodes formed two independent PPPs. Researchers have also
used the PPP model to investigate WET in heterogeneous
cellular [18], relay [19], cognitive radio [20] and millimeter-
wave networks [21]. Due to the independence between points
in the PPP model, none of the aforementioned work considers
the spatial correlations between RF power sources or RF-
powered nodes, or the spatial correlation between the RF
power sources and the RF-powered nodes. Assuming spatial
independence, however, does not seem realistic considering
the geographical factors and the specific WET policies (e.g.,
omni-directional or directed energy transfer).

Non PPP-Based Analysis of WPCNs: There have been a few
works that focus on WPCNs in which the locations of either
the RF-powered nodes or the RF power sources are modeled
using a different point process than the PPP. For example,
a repulsive point process named β-Ginibre point processes
(β-GPP) [22] with the PPP as a special case was adopted
in [15] to investigate the performance of wireless sensor
networks with/without energy harvesting, where the spatial
distributions of the RF-powered sensors and the RF energy
sources follow two independent β-GPPs. In [16], the Poisson
cluster process (PCP) was adopted to model the locations of
backscatter transmitters in a wirelessly powered backscatter
communication network. In particular, the backscatter nodes
harvested energy from PBs located at the center of each cluster.
Applying stochastic geometry, the coverage probability and
transmission capacity were derived and optimized as functions
of backscatter parameters. Similar to [16], the authors in [17]
studied the uplink coverage and network throughput of a
WPCN with users located around PBs, forming a truncated
PCP with consideration of a practical transmission range.
The works in [15–17], however, do not consider the spatial
correlations between the RF power sources and the active
RF-powered nodes that succeed in energy harvesting, i.e.,
the harvested energy correlation in the spatial domain, which
circumvents some key analytical challenges that result from
the high correlation between the locations of the active RF-

powered nodes and the amount of energy they can harvest from
all sources of RF energy. These challenges will be handled
carefully in this paper, and accordingly, the communication
performance of such a WPCN with energy correlation in a
stochastic geometry framework will be studied in detail.

C. Contributions

In this paper, we investigate the energy correlation in
wirelessly powered networks, i.e., the spatial correlation of
active RF-powered nodes, which are those that harvest enough
energy from the RF transmitters, or, equivalently, how likely
a node at a particular location succeeds in harvesting energy
when a nearby node succeeds. As discussed above, since
so far such energy correlation has not been studied, we
propose a new point process, named energized point process
(EPP), as a model to capture the critical influence of the
random field of harvested energy on the spatial distribution
of active RF-powered nodes. The amount of energy that can
be harvested strongly depends on the spatial configuration
of the RF power sources and the energy harvesting model.
We therefore concretize the EPP by focusing on the spatial
correlation of the energy harvested from a Poisson field of RF
power sources and considering two energy harvesting models
with different degrees of practicality.

We start with a simple model dependent on the large-
scale path loss alone, named path loss-based energy har-
vesting model (PLEHM), and then extend it to a practical
one that includes more factors such as the random channel
gains, random effects in the energy detection, and conversion
efficiency at the receiver, named practical energy harvesting
model (PEHM). Under the two models, we derive the first- and
second-order statistics (density and pair correlation function)
to characterize the spatial correlation of their corresponding
EPPs. We establish that the EPPs under both models exhibit
positive correlations, which means “attraction” exists between
the locations of active RF-powered nodes. To show the effect
of such spatial correlation caused by energy harvesting on
the communication performance, we further use a fitted PCP
to provide good approximations for the transmission success
probability and the area spectral efficiency.

We also investigate the impacts of key parameters including
the RF power source density λp, the energy threshold ξ,
and the portion of energy transfer time η on the energy
correlation as well as the communication performance. Our
findings suggest that (1) the three parameters λp, ξ, η have
strong effects on the spatial statistics of the EPP while the path
loss exponent α does not; (2) comparing PLEHM with PEHM,
the random factors in practical scenarios play a critical role
in determining the energy harvesting success probability and
hence the spatial characteristics of the energized RF-powered
nodes; (3) Due to the neglect of the energy correlation,
the conventional PPP-based results have significant deviations
from the exact EPP-based analytical results and simulations,
while the approximations provided by fitted PCPs are shown
to be extremely accurate and (4) η and ξ are key parameters
to balance the trade-off between the energy transfer and the
information transmission phases. For all system parameters,
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there is an optimal η or ξ achieving the maximal area spectral
efficiency.

The proposed EPP model is attractive for many scenarios
involving energy harvesting wireless communications such
as wirelessly powered ad hoc networks, wirelessly powered
cellular networks, and other IoT-inspired applications of the
future.

D. Organization

The rest of the paper is organized as follows. In Section
II, we introduce the EPP, two energy harvesting models and
the communication model. Section III presents the analytical
results for the energy harvesting phase, in particular, the first-
and second-order statistics of the EPP. Section IV details
the information transmission phase that covers the analysis
of the transmission success probability and the area spectral
efficiency. And Section V offers the concluding remarks.

II. SYSTEM MODEL

We consider a wireless network powered solely by ambient
RF transmitters (which may include dedicated power beacons,
cellular base stations, WiFi hotspots, etc.), where the locations
of RF transmitters and RF-powered nodes follow two point
processes Φp and Φd, respectively. We first formally define the
EPP, which is formed by the RF-powered nodes that succeed
in harvesting enough energy for subsequent transmission.

A. The Energized Point Process

Definition 1 (Energized point process, EPP). Let Φp and
Φd be two point processes. The energized point process Φe is
defined as

Φe ≜ {x ∈ Φd : E(x,Φp) = 1}, (1)

where E ∈ {0, 1} is the energy indicator function describing
whether enough energy can be harvested from Φp at location
x.

In this paper, the two point processes Φp and Φd are as-
sumed to be two independent homogeneous PPPs of densities
λp and λd, respectively. The resulting EPP is a dependent
thinning of Φd and can be viewed as a Cox process [7, Def.
3.3] with intensity field κ(x) = λdE(x,Φp).

B. Path Loss-Based Energy Harvesting Model (PLEHM)

Since the amount of the harvested energy depends strongly
on the locations of the nearby RF transmitters as well as
the propagation loss experienced by the RF signals, we first
consider a simplified energy harvesting model, where the
signals from RF transmitters merely experience the large-scale
path loss. Letting ℓ(x − y) ≜ ∥x − y∥−αp represent the path
loss between transmitter x and receiver y with exponent αp

for the energy transfer link, the harvested energy at x, which
is the aggregated received signal strength from all the RF
transmitters in Φp, is given by

ε(x,Φp) =
∑
y∈Φp

ℓ(y − x). (2)

Fig. 1. Comparison of the EPP (left) and PPP (right). For the EPP, the PEHM
is adopted with default parameter setting. For both point processes, the density
is 0.0922.

C. Practical Energy Harvesting Model (PEHM)

Furthermore, we consider a practical energy harvesting
model that includes more factors, such as channel gains,
random effects in the energy detection and conversion at the
receiver side as well as resource allocation for energy and
information transfer phases. The channel (power) gain between
transmitter x and receiver y is given by hxyℓ(x − y) where
hxy models the small-scale fading and ℓ(x − y) represents
the large-scale path loss as in PLEHM. We assume that all
fading coefficients are i.i.d. exponential (Rayleigh fading) with
E(hxy) = 1. The transmit power of the RF transmitters is
assumed to be one. Using the energy harvesting model in [23],
the harvested energy ε(x,Φp) at the RF-powered node x can
be quantified as

ε(x,Φp) =
νηρ

1 + F

∑
y∈Φp

hyxℓ(y − x), (3)

where the term ν
1+F captures the randomness1 in the detection

of the actual harvested energy, F follows an exponential
distribution with parameter ζ, and ν is chosen so that ν

1+F has
an expectation of 1, i.e., ν = 1

−ζeζ Ei(−ζ) , where Ei is the ex-
ponential integral function defined by Ei(x) = −

∫∞
−x e

−t/tdt.
ρ is the efficiency of the conversion from RF to DC power and
η is the fraction of a time slot allocated for energy harvesting.

Under both models, the energy indicator function is defined
as

E(x,Φp) ≜ 1(ε(x,Φp) > ξ), (4)

where ξ is the energy threshold and 1 is the indicator function.
This equation means an RF-powered node becomes active
if and only if the amount of energy it can harvest exceeds
the energy threshold. Note that (3) and (4) capture both
linear and non-linear harvesting models. If the actual harvested
energy is a non-linear function f of ε, where f is assumed
strictly monotonically increasing, then ξ in (4) merely needs
to be replaced by f−1(ξ) to capture the non-linearity. All the
subsequent analysis and results remain the same.

Fig. 1 shows a comparison between the realizations of
the PEHM-based EPP and PPP with the same density. It is

1This randomness can be understood as a random noise (e.g., electrical or
in the channel) in the detection of the actual harvested energy [23].
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TABLE I. Symbols and descriptions

Symbol Description Default value
Φp, λp RF transmitters PPP and density N/A, 0.1

Φd, λd RF-powered nodes PPP and density N/A, 1

Φe, λe Active RF-powered nodes EPP and density N/A,N/A

ε(x,Φp) The harvested energy at the RF-powered node x from RF transmitters Φp N/A

αp, αd The path loss exponent of the energy/information link 4, 4
pe, ps The success probability of the energy/information link N/A,N/A

pjoint(r) The joint success probability of energy harvesting N/A

ge(r) The pair correlation function of the EPP N/A

ξ, θ, τ The energy/SIR/spectrum efficiency threshold 1,1,1
η The portion of time in the energy transfer phase 0.5

ρ The efficiency of the conversion from RF to DC power 0.3 [23]
ζ The parameter for random effect in energy harvesting 0.01 [23]
ν The normalization factor for random effect in energy harvesting N/A

rd The distance of information link between the transmitter-receiver pair 1

λl, σ
2, c̄ The parameters of the fitted Thomas cluster process N/A,N/A,N/A

observed that the spatial distribution of the active RF-powered
nodes exhibits significant clustering relative to the PPP.

D. Communication Model

We assume that RF-powered nodes adopt a time-switched
“harvest-then-transmit” strategy in each time slot, and RF
transmitters use frequencies outside the data band and hence
cause no interference to the information transmission of RF-
powered nodes. Specifically, in each time slot, each RF-
powered node first uses a fraction η of the time slot to harvest
energy from RF transmitters and then transmits the informa-
tion to its corresponding receiver during the remaining fraction
1 − η of time if the harvested energy satisfies the minimum
requirement for signal transmission. Each RF-powered node
is assumed to be battery-less and utilize the instantaneously
harvested RF energy to supply its operation. It is also assumed
that each RF-powered node has a dedicated receiver at distance
rd in a random orientation, i.e., the RF-powered nodes and
their receivers form a Poisson bipolar network [7, Def. 5.8].
Hence, the active RF-powered nodes and their receivers form
a Cox bipolar network. The transmit power of the RF-powered
nodes is assumed to be one.

Table I summarizes the parameters of the network model
with their descriptions, and default values are given where
applicable.

III. ANALYTICAL CHARACTERIZATION OF THE EPP

In this section, we provide analytical results for the first-
and second-order statistics to characterize the EPP. Since a
translated and rotated version of Φe can be obtained by trans-
lating and rotating Φp and Φd, which are motion-invariant, Φe

is motion-invariant. As a result, the first-order statistic, i.e., the
density λe, is obtained by deriving the success probability pe
of the energy harvesting of the RF-powered node at the origin,
i.e., pe = P(E(o,Φp) = 1) and λe = peλd. For the second-
order statistic, the pair correlation function (pcf) g(x, y) [7,
Def. 6.6] is usually used to describe the degree of correlation
between two distinct points in the point process, and for a
motion-invariant process, the pcf depends only on the distance

r = ∥x− y∥, i.e., g(x, y) = g(r). The following lemma gives
a general expression of the pcf for the EPP.

Lemma 1. The pair correlation function of the EPP Φe is

ge(r) =
pjoint(r)

p2e
, (5)

where pjoint(r) ≜ P(E(o,Φp) = 1, E(zr,Φp) = 1) is the
joint success probability that both the two points at locations
zr = (r, 0) and o succeed in energy harvesting and thus are
retained in Φe.

Proof: According to [7, Lemma 6.9], the pcf is given by

g(r) =
1

2πr

d

dr
K(r), (6)

where K(r) is Ripley’s K function [7, Def. 6.8], defined as

K(r) ≜ 1

λ
E!
oΦ

(
b(o, r)

)
, (7)

where E!
o denotes the expectation with respect to the reduced

Palm distribution of Φ given that o ∈ Φ. We first calculate
E!
oΦe

(
b(o, r)

)
, i.e., the mean number of extra points within

distance r of the origin. A point of Φd at location x with
distance u = ∥x∥ is retained in Φe if E(x,Φp) = 1 under the
condition that E(o,Φp) = 1 (because the point at the origin
is already retained in Φe). And the motion-invariance of Φd

makes the condition of E(x,Φp) = 1 equivalent to that with
x = (u, 0). Since the density of the points in Φd at distance
u is 2πλdu, we have

E!
oΦe

(
b(o, r)

)
= 2πλd

∫ r

0

P(E((u, 0),Φp) = 1 | E(o,Φp) = 1)udu

=
2πλd
pe

∫ r

0

P(E((u, 0),Φp) = 1, E(o,Φp) = 1)udu. (8)

The final result is obtained by substituting (8) and (7) into (6).
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A. The PLEHM-based EPP

In this model, the harvested energy ε(x,Φp) at the RF-
powered node x merely depends on the large-scale path loss.
Unless otherwise stated, ε(x,Φp) is henceforth replaced by
ε(x) for the sake of brevity. To determine the first- and second-
order statistics of the PLEHM-based EPP, we need to first
derive the energy harvesting success probability of the RF-
powered node at the origin, which can be obtained through
the characteristic function method2 and the Gil-Pelaez theorem
[24]. For αp > 2, the characteristic function φε(o)(w) is given
by [7, Sec. 5.15],

φε(o)(w) = exp
(
− λpπΓ(1− δp)w

δpe−jπδp/2
)
, w ≥ 0,

(9)
where j ≜

√
−1 and δp ≜ 2/αp. Using the Gil-Pelaez theorem

[24], we have

pe =
1

2
+

1

π

∫ ∞

0

ℑ
(
e−jwξφε(o)(w)

)
w

dw

=
1

2
+

1

π

∫ ∞

0

e−λpπΓ(1−δp)wδp cos(δpπ/2)

×
sin

(
λpπΓ(1− δp)w

δp sin(δpπ/2)− wξ
)

w
dw.(10)

Since |φε(o)(w)| essentially decreases exponentially with w,
this integral can be evaluated very efficiently. For the special
case αp = 4, we have

φε(o)(w) = exp
(
− λpπ

3/2
√
we−jπ/4

)
, w ≥ 0, (11)

which is the characteristic function of a random variable with
inverse gamma distribution. In this case, the energy harvesting
success probability admits the closed-form expression

pe = 1− 1√
π
Γ
(1
2
,
π3λ2p
4ξ

)
. (12)

Fig. 2 plots the density of the PLEHM-based EPP as a
function of the energy threshold ξ for different path loss
exponents αp. It is observed that the density of the energized
RF-powered nodes is increased when the path loss exponent is
smaller. However, as ξ increases past the intersection point (at
ξ slightly larger than 5 dB), the situation is reversed. This is
because under a higher energy requirement, only those nodes
located within the disks with radius of 1 centered at the RF
power sources can succeed in energy harvesting. And in this
case, the unbounded path loss model with the propagation
distance smaller than 1 has an opposite effect of αp. However,
since the curves for ξ > 5 dB are quite close to each other, the
impact of the unbounded path loss model is negligible, and it
has superior tractability.

The pcf under this model can be obtained by the following
theorem. For notational convenience, we define ψ(t, r, θ) ≜√
t2 + r2 − 2rt cos θ.

Theorem 1. The joint success probability of two points within
distance r for PLEHM is given by

pjoint(r) = pe −
1

4

(
1− u(ξ)

)
, (13)

2The characteristic function of a random variable X is φX(w) ≜
E(ejwX).
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Fig. 2. The density of the PLEHM-based EPP versus ξ for different αp (λd =
1).

where

u(ξ) ≜ − 2

π2

∞∫
0

∞∫
0

1

w1w2
ℜ
[
φ(w1, w2)e

−jξ(w1+w2)

−φ(w1,−w2)e
−jξ(w1−w2)

]
dw1dw2 (14)

and

φ(w1, w2) ≜ exp
(
λp

∞∫
0

2π∫
0

(ejw1t
−αp+jw2ψ(t,r,θ)

−αp−1)tdtdθ
)
.

(15)

Proof: The joint success probability is

pjoint(r) = 1− P(ε(o) ≤ ξ)− P(ε(zr) ≤ ξ)

+P(ε(o) ≤ ξ, ε(zr) ≤ ξ)
(a)
= 1− 2P(ε(o) ≤ ξ) + P(ε(o) ≤ ξ, ε(zr) ≤ ξ),(16)

where step (a) follows since ε(o) and ε(zr) are identically
distributed (but dependent) random variables. The joint distri-
bution of ε(o) and ε(zr) is obtained by [25]

P(ε(o) ≤ ξ, ε(zr) ≤ ξ) =
1

4

(
u(ξ) + 4P(ε(o) ≤ ξ)− 1

)
, (17)

where u(ξ) is given in (14) and φ(w1, w2) is the characteristic
function of ε(o) and ε(zr), given by

φ(w1, w2) ≜ E
[
exp(jw1ε(o) + jw2ε(zr))

]
. (18)

To derive the φ(w1, w2), we adopt a basic yet powerful
technique described in [7, Sec. 5.15], and after several ma-
nipulations, we have the result in (15). Then, the final result
can be obtained by substituting (17) into (16).

Since the exact expression of this joint success probability
involves four nested integrals, it is difficult to calculate di-
rectly and efficiently, which motivates us to find an effective
approximation to simplify the analytical result. For notational
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convenience, we define b(x,R) as the disk of radius R
centered at x, let

Vr(R) ≜ b(o,R) ∩ b(zr, R), b̃(zr, R) = b(zr, R) \ Vr(R),
(19)

and the intersection area of two disks of radius R at distance
r is

A(R, r) =

{
2R2 arccos

(
r
2R

)
− r

√
R2 − r2

4 if r ≤ 2R

0 otherwise.
(20)

The following corollary provides a simple approximation
by decomposing the event of jointly succeeding in energy
harvesting into several disjoint events.

Corollary 1. Let Rξ ≜ ξ−1/αp and βk ≜ kN(N !)−1/N/ξ,
where N is an integer that denotes the number of terms in the
approximation. Then the joint probability of two points within
distance r succeeding in energy harvesting for PLEHM can
be approximated by

pjoint(r) ≈ p1(r) + 2p2(r) + p3(r), (21)

where

p1(r) = 1− 2e−λpπR
2

+ e−λp

(
2πR2−A(Rξ,r)

)
,

p2(r) =
e−λpπR

2
ξ − e−λp(2πR

2
ξ−A(Rξ,r))

πR2
ξ −A(Rξ, r)

N∑
k=0

(−1)k
(
N

k

)
×e−2πλp

∫ ∞
Rξ

(1−e−βkt
−αp

)tdt
∫

b̃(zr,Rξ)

e−βk|x|−αp
dx,

p3(r) = e−λp

(
2πR2

ξ−A(Rξ,r)
) N∑
k=0

(−1)k
(
N

k

)
× exp

(
− 2πλp

∫ ∞

Rξ

(1− e−βkt
−αp

)tdt
)
. (22)

Moreover, the joint probability pjoint(r) in (21) becomes exact
as N → ∞.

Proof: See Appendix A.

Fig. 3 illustrates the pcfs of the PLEHM-based EPP for
different path loss exponent αp and energy threshold ξ, where
N = 20 for calculating the approximation in Corollary 1, and,
for comparison, the simulation curves are estimated through
the built-in function pcf in the R language. From this figure,
we can observe that the approximation in Corollary 1 is quite
close to the simulation result with the benefit of reducing
the complex four nested integrals in the exact result to two
nested integrals. An important observation is that all the pcfs
are larger than that in the PPP case and decrease with the
increase of r, which demonstrates the clustering behavior of
the active RF-powered nodes and shows that the correlation
between two active RF-powered nodes is weaker with a
longer inter-distance. Moreover, compared with αp, ξ is a
more critical parameter for determining the spatial correlation
between two energized RF-powered nodes. The higher the
energy requirement, the more obvious the clustering behavior.
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Fig. 3. The pcfs of the PLEHM-based EPP for different αp and ξ (N = 20).

B. The PEHM-based EPP

Under this model, we first give an asymptotic upper bound
on the density of the EPP, which is then proven to be very
accurate with well controlled and mathematically quantified
gaps.

Theorem 2. Let ξ̄ ≜ ξ/(ζνηρ) and

p̂e ≜ 1− exp
(
− πλp

πδp
sin(πδp)

ξ̄−δp
)
. (23)

The energy harvesting success probability for PEHM is upper
bounded as pe ≤ p̂e, and the density of the EPP follows λe ≤
λdp̂e. Furthermore, pe ≲ p̂e and λe ≲ λdp̂e, where ‘≲’ stands
for an asymptotic upper bound, i.e., ∃t > 0 s.t. pe < p̂e and
λe < λdp̂e, ∀ζ < t.

Proof: Letting Io ≜
∑
y∈Φp

hyoℓ(y), we have

pe = P
( νηρ

F + 1
Io ≥ ξ

)
≤ P

(
F ≤ νηρ

ξ
Io

)
= 1− E

[
exp

(
− Io/ξ̄

)]
(a)
= 1− exp

(
− πλp

πδp
sin(πδp)

ξ̄−δp
)
, (24)

where step (a) uses the Laplace transform of the interference
in Poisson networks [7, Sec. 5.17]. Hence, the density λe of
the EPP Φe is given by

λe = λppe ≤ λpp̂e. (25)

Next, we show the asymptotic property of the bound. Letting
Y = νηρIo/ξ, we have

pe−p̂e = P(F ≤ Y − 1)− P(F ≤ Y )

= P(F > Y )− P(F > Y − 1)

= EY
[(
e−ζY − e−ζ(Y−1)

)
1Y≥1 +

(
e−ζY − 1

)
1Y <1

]
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≥ EY
[(
e−ζ − 1

)
1Y≥1+

(
e−ζ − 1

)
1Y <1

]
= e−ζ − 1. (26)

Thus, for an arbitrary ζ, pe is bounded by

p̂e + e−ζ − 1 ≤ pe ≤ p̂e. (27)

Since pe → p̂e as ζ → 0, we have pe ≲ p̂e.
The following theorem provides analytical results for

bounding the joint success probability and approximating the
pcf of the EPP.

Theorem 3. Let

p̂joint(r) ≜ 1− 2 exp
(
− πλp

πδp
sin(πδp)

ξ̄−δp
)

+exp
(
− λp

∞∫
0

2π∫
0

χ(t, θ)tdtdθ
)
, (28)

where

χ(t, θ) = 1− 1

(1 + ξ̄−1t−αp)(1 + ξ̄−1ψ(t, r, θ)−αp)
. (29)

The joint success probability of two points within distance r
for PEHM is asymptotically upper bounded as pjoint(r) ≲
p̂joint(r) and the corresponding pcf is approximated as
ge(r) ≈ p̂joint(r)/p̂

2
e .

Proof: Letting Izr ≜
∑
y∈Φp

hyzrℓ(y − zr), we have

pjoint(r) = P(ε(zr) > ξ, ε(o) > ξ)

≤ P
(
Fo ≤

νηρ

ξ
Io, Fzr ≤ νηρ

ξ
Izr

)
= E

[(
1− e−Io/ξ̄

)(
1− e−Izr/ξ̄

)]
= 1− 2e

−πλp
πδp

sin(πδp)
ξ̄−δp

+ E
[
e−(Io+Izr )/ξ̄

]
,

(30)

where the PGFL of the PPP yields

E
[
e−ξ̄(Io+Izr )

]

= E
[ ∏
x∈Φp

1(
1 + ξ̄−1ℓ(x)

)(
1 + ξ̄−1ℓ(x− zr)

)]

= exp
(
− λp

∞∫
0

2π∫
0

χ(t, θ)tdtdθ
)
. (31)

The asymptotic upper bound can be proved with a similar
approach as in the proof of Thm. 2, and the pcf of the EPP is
approximated through Lem. 1.

Fig. 4 shows the density of the PEHM-based EPP with the
comparison between the analytical and simulation results. The
analytical bounding result for the density is shown to provide
an accurate approximation to the simulation result. In addition,
the density of the EPP becomes smaller with the increase of
ξ or the decrease of λp.

Fig. 5 illustrates the pcfs of the PEHM-based EPP, where,
similar to Fig. 3, the simulations are also estimated through
the built-in function pcf in the R language. It shows that the
analytical results in Thm. 3 provide a tight approximation;
the small gap between the analytical and simulated curves
vanishes as r increases, and also with increasing λp. The
slightly larger gap for small λp is a consequence of the fact that
for small densities, it quickly becomes unlikely that a point
of the EPP has a neighbor within distance r, which makes it
harder to accurately estimate the pcf. Also, the pcf function
in R is implemented according to the definition in (6), which
includes a division by r and a derivative of the estimated K(r)
w.r.t. r, and these operations are not numerically robust at
small r. Furthermore, we observe that all the pcfs are larger
than in the PPP case, which again demonstrates the clustering
behavior of the active RF-powered nodes and the correlation is
monotonically decreasing with r. Moreover, a smaller λp or a
larger ξ leads to a larger pcf for a fixed r, which means that the
correlation between two active RF-powered nodes is stronger
with a smaller λp or a larger ξ. This is because whether an
RF-powered node succeeds in harvesting enough energy is
chiefly determined by its nearby (especially the nearest) RF
transmitters, and it is more likely for different RF-powered
nodes to have the same nearby (nearest) RF transmitters in a
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Fig. 7. The comparison of pcf for PLEHM- and PEHM-based EPPs
with η = ρ = 1.

sparse deployment of RF transmitters.

C. Comparison Between PLEHM- and PEHM-based EPPs

An interesting question is what role the random factors (in-
cluding small-scale fading and the randomness in the detection
of the harvested energy) play in the spatial characteristics of
the EPP, i.e., the random effects on the energy correlation. To
answer this question, we compare the first- and second-order
statistics of the PLEHM- and PEHM-based EPPs.

Fig. 6 gives the density as a function of ξ for the two EPPs.
It can be seen that the randomness has a strong effect on the
density of the EPP due to the introduction of uncertainties to
the energy transfer link. According to the energy harvesting
model in PEHM (Eq. (4) in Sec. II-C), there are mainly
two random factors, i.e., the small-scale fading hxy and the
randomness in the detection ν

1+F , where hxy and F follow two
exponential distributions with expectations of 1 and ζ. Since
the probabilities of hxy < 1 and ν

1+F < 1 are about 0.632
and 0.79, respectively, the number of the nodes that harvest
enough energy in PEHM is smaller than that in PLEHM.

Fig. 7 compares the pcfs between PLEHM and PEHM for
different λp. Different from the first-order statistic, the pcfs of
the two models are quite close to each other when λp = 0.1,
which indicates that under a large density of RF power sources
these random factors have little effect on the energy correlation
since for a sufficiently large number of ambient RF power
sources, the energy success probability is high enough so that
the EPP in this case has weak energy correlation between two
energized nodes. In contrast, when λp becomes small (e.g.,
λp = 0.02), the energy correlation becomes stronger and the
effect of randomness becomes more evident, especially for
small r.

IV. ANALYSIS OF THE INFORMATION TRANSMISSION
PERFORMANCE

For the information transmission phase, the properties of
the desired signal and the interference strongly depend on

the spatial distribution of the active RF-powered nodes, which
determines the signal-to-interference ratio (SIR) and, in turn,
the communication performance. Therefore, to fully investi-
gate the effect of the energy correlation on the communication
performance, in this section, we analyze the transmission suc-
cess probability as well as the area spectral efficiency for both
PLEHM and PEHM in an EPP-based wireless communication
network.

A. Transmission Success Probability

The transmission success probability is defined as the com-
plementary cumulative distribution function (ccdf) of the SIR,
i.e., P (θ) ≜ P(SIR > θ), where θ is the SIR threshold.
Since the EPP is a stationary point process, we condition
on the typical RF-powered node to be located at the origin,
i.e. o ∈ Φe, and the corresponding typical receiver is at
z = (rd, 0). Letting Φ!

e = Φe\{o} and ℓ(x−z) = ∥x−z∥−αd

for the information transmission link, the received signal-to-
interference ratio (SIR) of the typical receiver is given by

SIR =
ℓ(rd)hoz
I(z)

, (32)

where I(z) =
∑
x∈Φ!

e

ℓ(x− z)hxz . With signals subject to

Rayleigh fading, the transmission success probability is the
Laplace transform of I(z) evaluated at s = θrαd

d , given by

ps(θ) = LI(z)
(
θrαd

d

)
, (33)

and the Laplace transform of I(z) is

LI(z)(s) = E
[
exp

(
− s

∑
x∈Φ!

e

ℓ(x− z)hxz

)]
= EΦ!

e

( ∏
x∈Φ!

e

1

1 + sℓ(x− z)

)
= E!

o

( ∏
x∈Φe

1

1 + sℓ(x− z)

)
, (34)
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TABLE II. The parameter values of the fitted TCPs

PLEHM-based EPP PEHM-based EPP
αp 3 4 3 4 λp 0.05 0.1 0.1 1
ξ 1 1 5 5 ξ 1 0.2 1 1
λl 0.1563 0.1258 0.0941 0.0998 λl 0.0616 0.1437 0.1288 3.0022

σ2 0.4446 0.3305 0.1327 0.1464 σ2 0.1288 0.2807 0.1279 0.1116
c̄ 2.4970 2.4349 1.2493 1.4005 c̄ 0.7498 1.3270 0.7011 0.2038

where E!
o denotes the expectation with respect to the reduced

Palm distribution of the EPP, given that there is an active RF-
powered node at the origin.

Due to the dependent thinning, an exact calculation of the
success probability under the EPP model seems unfeasible.
Thus, we resort to approximating the EPP with two common
point processes, namely, the PPP and PCP, which have explicit
PGFL expressions. The benefits of such approximations is to
provide an accurate yet tractable analysis of the performance
in the information transmission phase in wirelessly powered
networks, which can hardly be obtained by either the PLEHM-
or PEHM-based EPP directly.

• PPP Approximation: As a baseline model, we first
approximate the EPP with a PPP using the first-order
statistic λe. From Slivnyak’s theorem [7], conditioning on
a point at the origin does not change the distribution of
the rest of the process, and the reduced Palm distribution
is the same as the distribution of the original PPP. Hence,
LI(z)(s) is approximated by

LIPPP(s) = exp
(
− λe

∫
R2

1

1 + s−1ℓ−1(x)
dx

)
. (35)

When ℓ(x) = ∥x∥−αd , the Laplace transform can be
simplified as

LIPPP(s) = exp
(
− λeπ

πδd
sin(πδd)

sδd
)
, (36)

and the success probability is approximated as

ps(θ) ≈ exp
(
− λe

π2δd
sin(πδd)

r2dθ
δd
)
. (37)

• PCP Approximation: From the above discussion, the
points in the EPP are clustered. The PCP also exhibits
clustering and, in addition, leads to tractable results. Thus
we provide another approximation of the EPP with a
fitted PCP, namely the Thomas cluster process (TCP) [7,
Def. 3.5], through matching the first- and second-order
statistics.
The first-order statistic matching yields

λe = λlc̄, (38)

where λl is the density of parent points of the cluster
process and c̄ is the average number of points in a cluster.
For the TCP with variance σ2, the pcf is [7, Section 6.4]

gT(r) = 1 +
1

4πλlσ2
exp

(
− r2

4σ2

)
, (39)

where λl and σ are obtained using curve-fitting and c̄ is
then determined using (38). By using the fmincon func-
tion (minimizing the constrained nonlinear multivariable

function) in Matlab, we fit the pcf of the TCP to the
approximative analytical pcf of the EPP for different ζ
and λp. The fitting parameters of the TCP for PLEHM-
and PEHM-based EPP are listed in Tables II, Fig. 3 and 5
also illustrate the fitted pcf curves of the TCP. The results
show that the EPP can be closely approximated by the
TCP.
Through the fitted TCP, I(z) can be approximated by the
interference in Poisson cluster networks. According to
[26, Eq .(34)], the Laplace transform of the interference
is

LIPCP(s) = exp

{
−λl

∫
R2

[
1− exp(−c̄ν(s, y, z))

]
dy

}
×
∫
R2

exp(−c̄ν(s, y, z))f(y)dy, (40)

where

ν(s, y, z) =

∫
R2

f(x)

1 + (sℓ(x− y − z))−1
dx, (41)

and f(x) is the probability density function of the node
distribution around the parent point. For the TCP, we have

f(x) =
1

2πσ2
exp

(
−∥x∥2

2σ2

)
. (42)

Substituting (40) into (33), the success probability is
approximated as ps(θ) ≈ LIPCP(θr

αd

d ).
Fig. 8 illustrates the success probabilities with PPP and PCP

approximations for PLEHM- and PEHM-based EPPs with dif-
ferent energy threshold ξ. From the figure, we can observe that
the success probability improves as ξ increases, because the
higher the energy threshold, the smaller the number of active
RF-powered nodes, and thus the less interference suffered by
the receiver. More importantly, the results show that the EPP-
based transmission success probability, either the PLEHM-
based EPP shown in Fig. 8(a) or the PEHM-based EPP shown
in Fig. 8(b), can be approximated by the TCP-based results
extremely well while the results in the PPP case are overly
optimistic. The reason lies in the higher-order statistics of the
EPP, which govern the interaction between nodes and strongly
affect the success probability of the information transmission.
Therefore, compared with the PPP, the PCP is a more suitable
model for capturing the actual topology of the energized nodes,
due to the positive energy correlation.

B. Area Spectral Efficiency

In addition to the transmission reliability (i.e., the success
probability), which is a link-level performance, it is necessary
to investigate the area spectral efficiency which is another
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Fig. 8. The success probability with PPP and PCP approximations to the EPP.
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Fig. 9. The area spectral efficiency for the PEHM-based EPP.

fundamental performance metric to characterize the network-
level transmission effectiveness. Under fixed-rate transmission,
the area spectral efficiency is expressed as

S(τ) = λeps(θ)τ

= λdpe(ξ)ps(2
τ/(1−η) − 1)τ, (43)

where τ ≜ (1− η) log2(1 + θ) denotes the required spectrum
efficiency of the RF-powered nodes. Since the energy harvest-
ing success probability pe increases with η while the success
probability ps of the information transmission decreases with
η, the area spectral efficiency is expected to capture the
trade-off between the energy transfer and the information
transmission phases.

Fig. 9 explores the behavior of S(τ) as a function of η and
ξ for different ξ and λp, respectively. It is observed that the
approximations of the fitted TCP match the simulation results
of the EPP very well, which again demonstrates the clustering

behavior induced by the energy correlation.

In Fig. 9(a), for each value of ξ, there is an optimal η
achieving the maximal area spectral efficiency. It is interesting
to observe that there is an intersection point ηi between the
two curves: when η < ηi, the area spectral efficiency of ξ = 1
is significantly higher than that of ξ = 5 since the density of
the EPP in the former case is higher than the latter case; while
when η > ηi, the result is just the opposite because in this case
the densities of ξ = 1, 5 are almost the same but the EPP under
ξ = 5 would cause stronger interference due to its stronger
clustering than that under ξ = 1. This observation indicates
that there is an important trade-off between the energy success
probability and the information success probability and ξ is a
key parameter that determines the density and the clustering
degree of the EPP.

Similar to Fig. 9(a), for the given system parameters, there
is always an optimal ξ achieving the maximal area spectral
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efficiency, shown in Fig. 9(b). In addition, the optimal value
of ξ increases with the density of the RF transmitters λp. As ξ
increases, the energy harvesting success probability and thus
the density λe of active RF-powered nodes decrease, leading to
an increase of the information transmission success probability
ps. However, since the area spectral efficiency is determined
by λe and ps simultaneously, this figure also illustrates the
key trade-off between the density of active RF-powered nodes
(resulting from the energy harvesting success probability) and
the information transmission success probability in terms of
another key parameter, ξ.

V. CONCLUSIONS

Since the locations of the RF-power sources are a com-
mon source of randomness, the harvested energy is naturally
correlated at nearby RF-powered node locations. To fully
explore the energy correlation, a new point process, named
EPP, is introduced as a model for the RF-powered nodes that
successfully harvest enough energy. Under the assumption of
Poisson distributed RF power sources and the two energy
harvesting models, i.e., PLEHM and PEHM, we derived the
first- and second-order statistics of the PLEHM- and PEHM-
based EPPs. The key insight is that the EPP exhibits clustering,
in other words, the energy harvested at nearby RF-powered
nodes are positively correlated, which makes the interference
in the communication phase stronger than in the mutually
independent case.

Using the EPP to model the active RF-powered nodes,
the information transmission success probability and the area
spectral efficiency were investigated. Moreover, an approxi-
mation by a fitted TCP turns out to be matching the exact
EPP-based result extremely accurately, while the PPP-based
approximation, in contrast, has an obvious deviation. Among
the system parameters, the energy threshold and the portion of
the energy transfer time are the most influential parameters that
have strong effects on the spatial correlation of the energized
RF-powered nodes as well as the energy and information trans-
mission performance, which should be set judiciously. Overall,
both the analysis and approximation show that “attraction”
exists between the energized node locations, and the widely
used PPP-based model as well as the results derived from it
deviate significantly from the exact ones.

APPENDIX A
PROOF OF COROLLARY 1

Proof: In PLEHM, the energy indicator is given by

E(x,Φp) = 1(
∑
y∈Φp

ℓ(y − x) > ξ). (44)

Thus a node necessarily succeeds in harvesting enough energy
if there is at least one RF transmitter within a distance Rξ. The
event that two nodes jointly succeed in energy harvesting can
be partitioned into the following four disjoint events according
to whether these two nodes have a nearby RF transmitter
within a distance Rξ, given by{

ε(o) > ξ, ε(zr) > ξ
}
=

4∪
i=1

Ai, (45)

where

A1 =
{
Φp

(
b(o,Rξ)

)
> 0,Φp

(
b(zr, Rξ)

)
> 0

}
,

A2 =
{
Φp

(
b(o,Rξ)

)
= 0,Φp

(
b(zr, Rξ) \ Vr(Rξ)

)
> 0

}
∩
{
ε(o) > ξ

}
,

A3 =
{
Φp

(
b(o,Rξ) \ Vr(Rξ)

)
> 0,Φp

(
b(zr, Rξ)

)
= 0

}
∩
{
ε(zr) > ξ

}
,

A4 =
{
Φp

(
b(o,Rξ) ∪ b(zr, Rξ)

)
= 0, ε(o) > ξ, ε(zr) > ξ

}
.

For event A1, it is partitioned into two disjoint events: one is
that at least one RF transmitter falls in Vr(Rξ); the other is
that at least one RF transmitter respectively falls in b(o,Rξ) \
Vr(Rξ) and b(zr, Rξ) \ Vr(Rξ), conditioning on that no RF
transmitter falls in Vr(Rξ). According to the total probability
law, we have

P(A1) = 1− e−λpA(Rξ,r)

+e−λpAR(r)
(
1− e−λp(πR

2−A(Rξ,r))
)2

= 1− 2e−λpπR
2

+ e−λp

(
2πR2−A(Rξ,r)

)
. (46)

For event A2 and A3, due to the symmetry of o and zr, we
have P(A2) = P(A3). Letting

Ã2 =
{
Φp

(
b(o,Rξ)

)
= 0,Φp

(
b(zr, Rξ) \ Vr(Rξ)

)
> 0

}
, (47)

the corresponding probability is

P(A2) = P(Ã2)P(A2 | Ã2)

= e−λpπR
2
ξ

(
1− e−λp(πR

2
ξ−A(Rξ,r))

)
︸ ︷︷ ︸

P(Ã2)

×P
(
ℓ(x0) + Σx∈Φ̃p(Rξ)

ℓ(x) > ξ
)
, (48)

where Φ̃p(Rξ) = Φp \ b(o,Rξ), and x0 is an RF transmitter
uniformly and randomly distributed in the region b̃(zr, Rξ) =
b(zr, Rξ)\Vr(Rξ). Letting ε̃ = Σx∈Φ̃p(Rξ)

ℓ(x) and γ̃(n, x) =
γ(n, x)/Γ(n), we have

P
(
ℓ(x0) + ε̃ > ξ

)
(a)
= lim

N→∞
P
(
U <

ℓ(x0) + ε̃

ξ

)
= lim

N→∞
Eγ̃

(
N,

Nℓ(x0) + ε̃

ξ

)
(b)
≈ E

[(
1− e−β

ℓ(x0)+ε̃
ξ

)N]
=

N∑
k=0

(−1)k
(
N

k

)
E
[
e−βk

ℓ(x0)+ε̃
ξ

]
,

(49)

where step (a) introduces a dummy gamma distributed random
variable U ∼ Gamma(N, 1/N) that converges to 1 as N →
∞, and step (b) yields an approximation by using the finite N
and the tight upper bound of the incomplete gamma function
in [27] with β = N(N !)−1/N . To evaluate the expectation in
(49), by substituting βk = βk/ξ, we have

E
[
e−βk

(
ℓ(x0)+ε̃

)]
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= E
[
e−βkℓ(x0)

]
E
[
e−βk ε̃

]
= E

[
e−βkℓ(x0)

]
E
[ ∏
x∈Φ̃p(Rξ)

e−βk|x|−αp
]

=

∫
b̃(zr,Rξ)

e−βk|x|−αp
dx

πR2
ξ −A(Rξ, r)

× exp
(
− 2πλp

∫ ∞

Rξ

(1− e−βkt
−αp

)tdt
)
. (50)

For event A4, letting Ã4 =
{
Φp

(
b(o,Rξ) ∪ b(zr, Rξ)

)
= 0},

we have

P(A4) = P
(
Ã4

)
P
(
ε(o) > ξ, ε(zr) > ξ | Ã4

)
< P

(
Ã4

)
P
(
ε(o) > ξ | Ã4

)
< e−λp

(
2πR2

ξ−A(Rξ,r)
)
P
(
Σx∈Φ̃p(Rξ)

ℓ(x) > ξ
)
.(51)

Using the same approach as in (49), we obtain

P
(
Σx∈Φ̃p(Rξ)

ℓ(x) > ξ
)
≈

N∑
k=0

(−1)k
(
N

k

)
× exp

(
− 2πλp

∫ ∞

Rξ

(1− e−βkt
−αp

)tdt
)
.

(52)

REFERENCES

[1] N. Deng and M. Haenggi, “Energy correlation in wirelessly powered net-
works,” in IEEE International Conference on Communications (ICC’19),
Shanghai, China, May 2019.

[2] S. Bi, C. K. Ho, and R. Zhang, “Wireless powered communication:
opportunities and challenges,” IEEE Communications Magazine, vol. 53,
no. 4, pp. 117–125, Apr. 2015.

[3] K. Huang and V. K. N. Lau, “Enabling wireless power transfer in cellular
networks: Architecture, modeling and deployment,” IEEE Transactions
on Wireless Communications, vol. 13, no. 2, pp. 902–912, Feb. 2014.

[4] Y. Liu, L. Wang, S. A. R. Zaidi et al., “Secure D2D communication
in large-scale cognitive cellular networks: A wireless power transfer
model,” IEEE Transactions on Communications, vol. 64, no. 1, pp. 329–
342, Jan. 2016.

[5] L. Shi, L. Zhao, K. Liang, and H. Chen, “Wireless energy transfer
enabled D2D in underlaying cellular networks,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 2, pp. 1845–1849, Feb. 2018.

[6] S. Akbar, Y. Deng, A. Nallanathan et al., “Simultaneous wireless infor-
mation and power transfer in K-tier heterogeneous cellular networks,”
IEEE Transactions on Wireless Communications, vol. 15, no. 8, pp.
5804–5818, Aug. 2016.

[7] M. Haenggi, Stochastic geometry for wireless networks. Cambridge
University Press, 2012.

[8] N. Deng and M. Haenggi, “The energy and rate meta distributions in
wirelessly powered D2D networks,” IEEE Journal on Selected Areas in
Communications, vol. 37, no. 2, pp. 269–282, Feb. 2019.

[9] T. D. Ponnimbaduge Perera, D. N. K. Jayakody, S. K. Sharma et al.,
“Simultaneous wireless information and power transfer (SWIPT): Recent
advances and future challenges,” IEEE Communications Surveys &
Tutorials, vol. 20, no. 1, pp. 264–302, First quarter 2018.

[10] Z. Na, Y. Wang, X. Li et al., “Subcarrier allocation based simultaneous
wireless information and power transfer algorithm in 5G cooperative
OFDM communication systems,” Physical Communication, vol. 29, pp.
164–170, Aug. 2018.

[11] Z. Na, J. Lv, M. Zhang et al., “GFDM based wireless powered
communication for cooperative relay system,” IEEE Access, vol. 7, pp.
50 971–50 979, 2019.

[12] O. Georgiou, “Simultaneous wireless information and power transfer
in cellular networks with directional antennas,” IEEE Communications
Letters, vol. 21, no. 4, pp. 885–888, Apr. 2017.

[13] M. Di Renzo and W. Lu, “System-level analysis and optimization of
cellular networks with simultaneous wireless information and power
transfer: Stochastic geometry modeling,” IEEE Transactions on Vehicu-
lar Technology, vol. 66, no. 3, pp. 2251–2275, Mar. 2017.

[14] A. I. Akin, I. Stupia, and L. Vandendorpe, “On the effect of blockage
objects in dense MIMO SWIPT networks,” IEEE Transactions on
Communications, vol. 67, no. 2, pp. 1059–1069, Feb. 2019.

[15] H. Kong, P. Wang, D. Niyato, and Y. Cheng, “Modeling and analysis
of wireless sensor networks with/without energy harvesting using Gini-
bre point processes,” IEEE Transactions on Wireless Communications,
vol. 16, no. 6, pp. 3700–3713, Jun. 2017.

[16] K. Han and K. Huang, “Wirelessly powered backscatter communication
networks: Modeling, coverage, and capacity,” IEEE Transactions on
Wireless Communications, vol. 16, no. 4, pp. 2548–2561, Apr. 2017.

[17] L. Chen, W. Wang, and C. Zhang, “Stochastic wireless powered
communication networks with truncated cluster point process,” IEEE
Transactions on Vehicular Technology, vol. 66, no. 12, pp. 11 286–
11 294, Dec. 2017.

[18] A. H. Sakr and E. Hossain, “Analysis of K-tier uplink cellular networks
with ambient RF energy harvesting,” IEEE Journal on Selected Areas
in Communications, vol. 33, no. 10, pp. 2226–2238, Oct. 2015.

[19] I. Krikidis, “Simultaneous information and energy transfer in large-scale
networks with/without relaying,” IEEE Transactions on Communica-
tions, vol. 62, no. 3, pp. 900–912, Mar. 2014.

[20] S. Lee, R. Zhang, and K. Huang, “Opportunistic wireless energy
harvesting in cognitive radio networks,” IEEE Transactions on Wireless
Communications, vol. 12, no. 9, pp. 4788–4799, Sept. 2013.

[21] C. Psomas and I. Krikidis, “Energy beamforming in wireless powered
mmWave sensor networks,” IEEE Journal on Selected Areas in Com-
munications, vol. 37, no. 2, pp. 424–438, Feb. 2019.

[22] N. Deng, W. Zhou, and M. Haenggi, “The Ginibre point process as
a model for wireless networks with repulsion,” IEEE Transactions on
Wireless Communications, vol. 14, no. 1, pp. 107–121, Jan. 2015.

[23] X. Lu, I. Flint, D. Niyato et al., “Self-sustainable communications with
RF energy harvesting: Ginibre point process modeling and analysis,”
IEEE Journal on Selected Areas in Communications, vol. 34, no. 5, pp.
1518–1535, May 2016.

[24] J. Gil-Pelaez, “Note on the inversion theorem,” Biometrika, vol. 38, pp.
481–482, Dec. 1951.

[25] N. Shephard and N. G. Shephard, “From characteristic function to
distribution function: A simple framework for the theory,” Econometric
Theory, vol. 7, no. 4, pp. 519–529, 1991.

[26] R. Ganti and M. Haenggi, “Interference and outage in clustered wireless
ad hoc networks,” IEEE Transactions on Information Theory, vol. 55,
no. 9, pp. 4067–4086, Sept. 2009.

[27] H. Alzer, “On some inequalities for the incomplete gamma function,”
Mathematics of Computation, vol. 66, no. 66, pp. 771–778, 1997.

Na Deng (S’12-M’17) received the Ph.D. and B.S.
degrees in information and communication engineer-
ing from the University of Science and Technology
of China (USTC), Hefei, China, in 2015 and 2010,
respectively. Currently she is an Associate Professor
at Dalian University of Technology, Dalian, China.
In 2013-2014, she was a Visiting Student in Prof.
Martin Haenggi’s group at the University of Notre
Dame, Notre Dame, IN, USA, and in 2015-2016
she was a Senior Engineer at Huawei Technologies
Co., Ltd., Shanghai, China. Her scientific interests

include networking and wireless communications, green communications, and
network design based on wireless big data.



13

Martin Haenggi (S’95-M’99-SM’04-F’14) received
the Dipl.-Ing. (M.Sc.) and Dr.sc.techn. (Ph.D.) de-
grees in electrical engineering from the Swiss Fed-
eral Institute of Technology in Zurich (ETH) in
1995 and 1999, respectively. Currently he is the
Freimann Professor of Electrical Engineering and a
Concurrent Professor of Applied and Computational
Mathematics and Statistics at the University of Notre
Dame, Indiana, USA. In 2007-2008, he was a visit-
ing professor at the University of California at San
Diego, and in 2014-2015 he was an Invited Professor

at EPFL, Switzerland. He is a co-author of the monographs “Interference in
Large Wireless Network” (NOW Publishers, 2009) and “Stochastic Geometry
Analysis of Cellular Networks” (Cambridge University Press, 2018) and
the author of the textbook ”Stochastic Geometry for Wireless Networks”
(Cambridge, 2012), and he published 15 single-author journal articles. His
scientific interests lie in networking and wireless communications, with

an emphasis on cellular, amorphous, ad hoc (including D2D and M2M),
cognitive, and vehicular networks. He served as an Associate Editor of the
Elsevier Journal of Ad Hoc Networks, the IEEE Transactions on Mobile
Computing (TMC), the ACM Transactions on Sensor Networks, as a Guest
Editor for the IEEE Journal on Selected Areas in Communications, the IEEE
Transactions on Vehicular Technology, and the EURASIP Journal on Wireless
Communications and Networking, as a Steering Committee member of the
TMC, and as the Chair of the Executive Editorial Committee of the IEEE
Transactions on Wireless Communications (TWC). From 2017 to 2018, he
was the Editor-in-Chief of the TWC. Currently he is an editor for MDPI
Information. For both his M.Sc. and Ph.D. theses, he was awarded the ETH
medal. He also received a CAREER award from the U.S. National Science
Foundation in 2005 and three awards from the IEEE Communications Society,
the 2010 Best Tutorial Paper award, the 2017 Stephen O. Rice Prize paper
award, and the 2017 Best Survey paper award, and he is a Clarivate Analytics
Highly Cited Researcher.


	Introduction
	Motivation
	Related Work
	Contributions
	Organization

	System Model
	The Energized Point Process
	Path Loss-Based Energy Harvesting Model (PLEHM)
	Practical Energy Harvesting Model (PEHM)
	Communication Model

	Analytical Characterization of the EPP
	The PLEHM-based EPP
	The PEHM-based EPP
	Comparison Between PLEHM- and PEHM-based EPPs

	Analysis of the Information Transmission Performance
	Transmission Success Probability
	Area Spectral Efficiency

	Conclusions
	Appendix A: Proof of Corollary 1
	Biographies
	Na Deng
	Martin Haenggi


