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Abstract—The performance of wireless networks is fundamen-
tally limited by the aggregate interference, which depends on
the spatial distributions of the interferers, channel conditions,
and user traffic patterns (or queueing dynamics). These factors
usually exhibit spatial and temporal correlations and thus make
the performance of large-scale networks environment-dependent
(i.e., dependent on network topology, locations of the blockages,
etc.). The correlation can be exploited in protocol designs (e.g.,
spectrum-, load-, location-, energy-aware resource allocations)
to provide efficient wireless services. For this, accurate system-
level performance characterization and evaluation with spatial-
temporal correlation are required. In this context, stochastic
geometry models and random graph techniques have been used
to develop analytical frameworks to capture the spatial-temporal
interference correlation in large-scale wireless networks. The
objective of this article is to provide a tutorial on the stochastic
geometry analysis of large-scale wireless networks that captures
the spatial-temporal interference correlation (and hence the signal-
to-interference ratio (SIR) correlation). We first discuss the
importance of spatial-temporal performance analysis, different
parameters affecting the spatial-temporal correlation in the SIR,
and the different performance metrics for spatial-temporal anal-
ysis. Then we describe the methodologies to characterize spatial-
temporal SIR correlations for different network configurations
(independent, attractive, repulsive configurations), shadowing sce-
narios, user locations, queueing behavior, relaying, retransmission,
and mobility. We conclude by outlining future research directions
in the context of spatial-temporal analysis of emerging wireless
communications scenarios.

Index Terms—Large-scale wireless access networks, signal-to-
interference ratio (SIR), spatial-temporal correlation, point pro-
cess modeling, stochastic geometry.

I. INTRODUCTION

Wireless communications systems are evolving toward a
heterogeneous architecture (e.g., multi-tier and cell-free) with
the dense deployment of different types of access points (e.g.,
smallcells and hotspots) to enable pervasive wireless Inter-
net access [1]. The evolving wireless networks are expected
to provide seamless connectivity to ubiquitous and/or high-
mobility devices and users with millisecond delay and gigabits
per second data rate [2]. The ever-increasing demand for low-
latency high-reliability services from pervasive terminals will
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lead to an explosive increase in mobile traffic. To accommodate
the massive traffic volume, high network densification and
aggressive spatial frequency reuse will be required, which will
result in high levels of interference in the network.

A. Background of Stochastic Geometry and Objective

Signal propagation over a radio link is impaired by large-
scale path loss and shadowing, small-scale fading, as well as
co-channel interference from concurrent transmissions. Since
all of these effects are heavily location-dependent, the net-
work spatial configurations become a dominant factor that
determines the system-level performance. Hence, developing
tractable approaches for modeling large-scale wireless systems
and analyzing their statistical performance taking into account
the randomness (due to the above-mentioned factors) have
become compelling.

In this context, stochastic geometry [3] (also referred to as
geometric probability), a probabilistic analytical approach to
study (random) point configurations, has become a necessary
theoretical tool for the analysis and characterization of large-
scale wireless systems, including heterogeneous cellular net-
works [4]–[6], dynamic spectrum access systems [7], [8], wire-
less ad hoc networks [9]–[12], drone networks [13]–[15], vehic-
ular networks [16]–[18], and low earth orbit satellite networks
[19], [20]. Spatial-temporal aspects of mobile communications,
including the spatial distribution of network nodes, wireless
channels and traffic patterns have to be considered for system
development, resource allocation, performance evaluation and
optimization. The purpose of this paper is to provide a tutorial
on how to quantitatively analyze the effects of spatial and
temporal fluctuations of interference (resulting from the factors
above) on the system-level network performance.

B. Importance of Characterization of Signal-to-Interference-
plus-Noise Ratio Correlation

Wireless communications systems need to preserve the qual-
ity of radio links in time-varying environments. The signal-
to-interference-plus-noise ratio (SINR) statistics is commonly
used as the main measure of the quality of links [21], and
most of the performance metrics for system-level evaluation
(to be introduced in Section II-C) are based on the SINR. The
variation of the wireless environment (and hence the SINR)
is mainly attributed to two causes. On the one hand, the
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(a) Example 1: Temporal interference correlation in a static network.

(b) Example 2: Spatial interference correlation in
a full-duplex communication system.

(c) Example 3: Spatial-temporal interference correlation in a mobile network.

Fig. 1: Examples of interference correlation.

changes of the relative positions of communication devices
and surrounding obstructions affect the multipath propagation
and thus the received power of both desirable and interfering
signals. Also, variations in traffic patterns cause fluctuations in
the interference and hence the SINR.

Owing to the spatial-temporal fluctuations of network distri-
butions, wireless channels and traffic patterns, the interferences
and hence SINRs (at different locations and time instants) are
correlated. Although rapid channel fluctuations due to small-
scale fading can result in reduced interference correlation [22],

the correlation still exists due to large-scale path-loss and
shadowing [23]. For example, in a static network, as shown in
Fig. 1(a), if the ambient transmitters have data packets to send
during two time intervals, the interferences at the receiver are
temporally correlated. Besides, in a full-duplex communication
system as shown in Fig. 1(b), the interferences at the transceiver
pair are spatially correlated at any time instance. In a mobile
network, as shown in Fig. 1(c), the interference at the receiver is
spatially and temporally correlated. The causes of the temporal
and/or spatial interference correlation in the above examples all
arise from the fact that the interference comes from the same
group of transmitters. The interference correlation results in
the spatial-temporal correlation of transmission outage/success
[24]–[26], throughput [27], [28], mean local delay [29], [30],
etc., thus needs to be treated carefully in the designs of mobile
systems.

Since SINR correlation affects the performance at different
transmission attempts (e.g., when using an error recovery
method) and/or locations (e.g., in a relay-based system), an
accurate characterization of it is essential to the understanding
of wireless network performance. Information about SINR
correlation can be exploited to optimize the performance and
design of the system accordingly.

C. Related Work

Several survey and tutorial papers have focused on the
stochastic geometry analysis of wireless communication net-
works. In particular, reference [31] provides a survey of point
process models and stochastic geometry tools that have been
used to analyze static wired, wireless, ad hoc and cellular
networks prior to 2009. Reference [32] overviews the impact of
spatial modeling on the SINR-based performance metrics, i.e.,
connectivity, coverage area, and capacity of different types of
systems, including ad hoc, cellular and cognitive networks. The
survey in [33] comprehensively reviews the works on stochastic
geometry analysis of multi-tier and cognitive cellular systems
prior to 2013.

In addition to the above survey papers, tutorial papers on
the mathematical tools used for stochastic geometry analysis
of large-scale systems have also been written. Reference [34]
is the first tutorial on point process theory, random geometry
graphs, and percolation theory for interference characteriza-
tions in ad hoc networks. Targeting cellular networks, [35]
provides a tutorial on stochastic geometry analysis of both
downlink and uplink networks based on Poisson point process
(PPP) modeling. The focus is on characterizing interference
in different scenarios by exploiting the properties of the PPP
under Rayleigh fading assumption. As PPP modeling fails to
capture the spatial correlation among the random points, the
authors in [36] emphasize the use of repulsive point processes
to model cellular networks, where the base station locations
are usually planned with a moderate degree of irregularity
due to different development issues. To this end, the authors
present a tutorial on the SINR distribution analysis of downlink
cellular networks based on the β-GPP (Ginibre point process),
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Fig. 2: The suggested learning path for stochastic geometry analysis
in wireless networks.

which is a fairly tractable model for random points with spatial
repulsion. The tutorial in [37] focuses on a unifying analysis
of bit/symbol error probability, coverage outage probability,
and ergodic capacity in cellular networks. More recently, ref-
erence [40] systematically tutors the analytical techniques to
characterize interference, success probability and capacity in
Poisson networks. However, none of the existing survey and
tutorial papers focus on the stochastic geometry techniques
to characterize the spatial and temporal correlations in their
considered systems. Moreover, this is the first article to include
the refined-grained analysis tool of the signal-to-interference
ratio (SIR) meta distribution.

For a better understanding of the contents of this tutorial, we
recommend taking some prerequisite knowledge of stochastic
geometry regarding network analysis which has been compre-
hensively reviewed in the literature. The suggested learning
path and the recommended readings corresponding to the
prerequisite knowledge are shown in Fig. 2, which includes
the following.

• Primers [31]–[34], [38]–[41] that cover the technical con-
cepts of spatial models and their applications in modeling
wireless networks;

• Intermediate tutorials [33]–[35], [37], [39], [40] that tutor
the fundamental properties of spatial point processes (e.g.,
counting measure, superposition, thinning, and transforms)
and analytical methods to characterize the interference
distribution in different types of wireless networks (e.g.,
cellular and ad hoc networks);

• Advanced tutorials [40], [42]–[45] that lays out the higher-

order statistics of point processes for fine-grained analy-
sis (e.g., product/joint meta distribution) and up-to-date
analytical techniques (e.g., approximation and bounding
methods) to analyze complicated scenarios (e.g., with
spatial-temporal correlation) where the exact performance
characterization is of low tractability or unavailable.

D. Contributions and Organization

This tutorial aims to concisely present the analytical ap-
proaches for performance evaluation of large-scale wireless
networks taking into account various correlation causes and
effects, such as shadowing, traffic queueing, and spatial dis-
tribution of network nodes. We focus on the characterization
of the interference distribution and signal-to-interference ratio
(SIR)-based performance metrics1, e.g., success probability,
joint success probability, and moments of conditional success
probability (CSP) given the point process. For spatial point
process models, we additionally derive the asymptotic SIR gain,
which is the horizontal gap between a target SIR distribution
and a reference SIR distribution. This metric directly reflects the
variation of SIR due to the changes in the network model with
respect to (w.r.t.) the reference model. Furthermore, this metric
can be utilized to simplify the analysis of non-Poisson networks
based on the PPP [47] (to be introduced in Section III-B).

This tutorial considers the following correlation effects in
wireless networks.

• The spatial correlation (i.e., attraction and repulsion)
among the locations of the transmitters;

• The spatially-correlated shadowing experienced by the
links that traverse common obstacles (e.g., buildings);

• The spatially and temporally correlated queue status
among the transmitters due to the cross-interference im-
posed on each other over space and time;

• The spatial correlation experienced by users located in the
cell-center and cell-boundary regions;

• The temporal interference correlation between multiple
transmission attempts due to the correlation in the loca-
tions of the interferers over time;

• The spatial-temporal interference correlation among relay-
ing nodes in a multihop network due to the correlation in
the locations of the interferers over space and time;

• The spatial-temporal interference correlation in mobile
systems (i.e., where the users and/or base stations (BSs)
are mobile) due to the correlation among interferers’
locations over space and time.

This tutorial presents the methodologies of analyzing the
interference (and SIR) correlation and the effects of spatial-
temporal SIR correlations. For a thorough exposition of the ana-
lytical techniques, we demonstrate the step-by-step derivations

1Since in large-scale cellular networks, the impact of aggregate interference
typically dominates that of noise [6], [46], this tutorial focuses on analyzing
the interference-limited cases with the noise ignored. However, without loss of
generality, the same analytical approaches can also be applied to characterize
SINR-based performance metrics.
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TABLE I: Main differences between other survey and tutorial papers

Reference
(year)

Type of
Review

Examined systems Spatial models Target performance metrics Spatial-
temporal
correlation
analysis

Ad hoc Cellular Multihop Mobile Poisson Non-
Poisson

[31]
(2009)

Survey X X X Success probability, paging,
handover

No

[34]
(2009)

Tutorial X X Interference characterization,
outage probability, capacity,
and area spectral efficiency

No

[32]
(2010)

Survey X X X Success probability, coverage
area, capacity

No

[33]
(2013)

Survey X X Success probability, capacity No

[35]
(2016)

Tutorial X X Success probability No

[36]
(2016)

Tutorial X X Success probability No

[37]
(2017)

Tutorial X X X Interference characterization,
error probability, error rate,
outage probability, capacity,
and handover

No

[40]
(2021)

Tutorial X X X Interference characterization,
success probability, capacity

No

This work Tutorial X X X X X X Success probability, joint suc-
cess probabilities, conditional
success probabilities, moments
of conditional success prob-
ability given the point pro-
cess, SIR meta distribution,
SIR gain, interference correla-
tion coefficient

Yes

as well as numerical results2. The main differences between
our tutorial and the state-of-the-art discussed in the previous
subsection are summarized in Table I3. Herein, Poisson spatial
models refer to the PPP and binomial point process, while non-
Poisson spatial models refer to any point process whose points
are not independently distributed.

The organization of this tutorial and the relations among
different sections are shown in Fig. 3. We restrict the point
processes to the Euclidean spaces R and R2. However, the
same methodologies can be applied to analyze point processes
in higher dimensions without loss of generality. Section I intro-
duces the role of stochastic geometry analysis and highlights
the importance of spatial-temporal correlation characterization.
Section II explains the correlation effects of different network
factors that may affect the SIR-based network performance.
Sections III-VI present exact methodologies to analyze network
performance with correlations in node distribution, link distance
distribution, shadowing, and queueing, respectively. Moreover,
Sections VII and VIII present a performance characterization
with multiple transmission attempts (i.e., retransmission) and
multihop relaying, respectively, for correlated and indepen-
dent interference. Section IX characterizes the spatial-temporal
performance with mobility. Future directions and research

2Note that the analytical methodologies introduced in this tutorial come from
the referenced literature. The analytical results are either well-established or
direct extensions of the ones derived in the references.

3Herein, success probability refers to the complementary cumulative distri-
bution function (CDF) of the SINR/SIR.

challenges are then discussed in Section X followed by the
conclusion in Section XI. Additionally, for convenience, we
list the abbreviations used in Table II.

Notations: The notations defined in Table III are used
throughout this tutorial.

II. OVERVIEW OF SPATIAL-TEMPORAL PERFORMANCE
CORRELATION

This section first discusses the impact of SIR components
and then elaborates on the SIR correlation effects in wireless
networks and defines the performance metrics for spatial-
temporal performance analysis.

A. Parameters Impacting SIR Correlation

Let o denote the origin of Rd. The SIR at a target receiver
located at o expressed as

SIR =
PyhySy`(‖y‖)∑

x∈Φ! ιxPxhxSx`(‖x‖)
, (1)

where Φ! denotes the set of all the interfering transmitters, y the
location of the transmitter associated with the target receiver,
Px the transmit power of transmitter at x, hx (Sx) the fading
(shadowing) coefficient between the transmitter located at x and
receiver located at o, ` the path loss function, and ιx the state
indicator of the transmitter located at x which equals 1 and 0
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Fig. 3: Organization of this paper.

when the transmitter is on and off, respectively. The physical
implications of the SIR components are shown in Table IV.

The SIR varies due to the fading and shadowing effects and
system factors such as timing-varying traffic loads and positions
of transmitters and receivers. Their impacts are discussed below.

1) Spatial Distribution: The spatial distribution of the net-
work nodes can be categorized into three types: independent,
repulsive, and attractive.
• With independent distribution, the locations of the trans-

mitters are independent of each other. Spatial point process
models to characterize independent distributions include
PPP and binomial point process (BPP) [48] models.

• With repulsive distribution, the wireless transmitters trans-

mitting simultaneously are not too close to each other. The
repulsion may arise from planned deployment, physical re-
strictions (e.g., geographic exclusion and terrain occlusion)
and channel access control (e.g., carrier sense multiple
access (CSMA) [49]–[52] and licensed-user activity [7],
[53]) as shown in Fig. 4. Lattice processes [39], Ginibre
point processes [36], [54], [55], and Matérn hardcore
point processes [49], [56] are some well-known examples
of point process models to characterize this repulsive
behavior.

• Attractive distributions can be observed when wireless
transmitters are only clustered in certain regions, i.e., not
identically distributed over the entire plane, as illustrated



6

Fig. 4: Examples of wireless systems with spatially repulsive node locations.

in Fig. 5. This can be caused by the base station (BS)-
centric user gathering [57], (e.g., around open-access
WiFi spots) or due to user-centric BS deployment [58].
The Matérn cluster process [59], [60], Thomas cluster
process [57], Gauss-Poisson process [61], [62], Cox pro-
cess [16], [63], [64], and the Poisson hole process [7], [53]
are some representative point processes to model attractive
spatial distributions.

Additionally, a point process can be a mix of the above three
types. Whether a point process is of any type may depend on
the distance between the locations considered. For example, the
type I user point process introduced in [65] (for modeling user
distribution in cellular networks) is repulsive at short distances,
attractive at intermediate distances and eventually approaches
independence at larger distances.

For network performance analysis, a significant body of
literature adopts the independent distribution assumption for
simplicity and tractability (see [33] and references therein).
However, this assumption is too idealized to hold in practice as
most of the cellular networks are deployed under system-level
planning [66]. Due to factors such as geographical restriction,
access control and resource allocation, active network nodes

Fig. 5: Illustration of a wireless system with spatially attractive
deployment.

can exhibit a spatial pattern with a degree of correlation (i.e.,
repulsion or attraction) which cannot be ignored in performance
characterization.
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TABLE II: List of abbreviations

Abbreviation Description
PPP Poisson point process
PLP Poisson line process
BPP Binomial point process
MCP Matérn cluster process
GPP Ginibre point process
RDP Relative distance process
SINR Signal-to-interference-plus-noise ratio
SIR Signal-to-interference ratio
CSP Conditional success probability
JSP Joint success probability
MISR Mean interference-to-signal ratio
LSU Location-specific user
ASAPPP Approximate SIR analysis based on the PPP
MIMO Multiple-input and multiple-output
PDF Probability density function
CDF Cumulative distribution function
PCF Pair correlation function
PGFL Probability generating functional
MAC Medium access control
CSMA Carrier-sense multiple access
BS Base station
DF Decode-and-forward
HARQ Hybrid automatic repeat request
QSI Quasi-static interference
FVI Fast-varying interference
IoT Internet of Things
IoNT Internet of Nanothings
IoST Internet of Space Things
ML Machine learning

2) Locations of Receivers: In cellular networks, the trans-
mission performance of a mobile user is highly dependent on
its location w.r.t. the serving BS and interfering BSs [67].
Specifically, for a cell-edge user, the desired signal is weaker
and the interference signal is stronger compared to those for a
cell-center user (Fig. 6). Different techniques have been devel-
oped to strengthen the desirable signals and/or to mitigate the
interference of cell-edge users, e.g., through coordinated beam-
forming [68] and intercell interference coordination [69], [70].
With these techniques, resource allocation strongly depends
on the spatial variation of mobile users. Therefore, location-
dependent modeling of user performance is fundamental to
the understanding of spatial-temporal performance of these
systems.

3) Small-Scale Fading: Owing to small-scale fading, over
only a fraction of a wavelength, the signal power variation may
reach up to 40 dB [71]. The correlation of the signal strength
can be both temporal and spatial and is frequency depen-
dent [21]. The temporal correlation occurs due to movement of
environmental scatters. The spatial correlation is caused by cor-
related multipath components due to the common propagation
environment. However, small-scale fading is only correlated
over a short time duration and a small distance (e.g., several
wavelengths) in environments with moving scattering objects
that change the multipath propagation. Hence it is reasonable
to adopt independent and identically distributed (i.i.d.) small-
scale fading models for receiving antennas with wavelength
separation. This assumption is widely used in the existing

Fig. 6: Illustration of location-specific users.

Fig. 7: Illustration of correlated shadowing.

literature (see [33], [37] and references therein).
4) Shadowing: Compared to small-scale fading, shadowing

is correlated at a much larger time and space scale [72].
For example, in an urban environment, shadowing caused
by obstacles in communication paths can be geographically
correlated on a scale from 50 to 200 meters [21]. Moreover,
temporal shadow fades with variations below 1 dB (i.e., highly
correlated) over an IEEE 802.11ad channel can be commonly
measured in urban streets [73]. Fig. 7 demonstrates an example
of correlated shadowing. As the two links between the BS
and users experience a similar propagation environment, their
shadowing attenuations tend to be correlated. As evidenced by
experimental studies in [74] and [75], path attenuations in a
region are correlated due to shadowing effects. Therefore, cor-
related shadowing should be carefully treated when assessing
system performance that is heavily impacted by environmental
blockages.

5) Transmission Buffer Status: The buffer status (i.e., queue-
ing status) of each transmitter depends on the packet arrival
and service processes, and it impacts the activation of the
transmitters, and therefore, the mutual interference. In view of
this, the buffer statuses of the transmitters are interdependent,
leading to interacting queues. The queues are spatially coupled
since the mutual interference directly affects the transmission
success probability (i.e., service processes of the queues). Also,
the queues are temporally coupled since the current buffer status
is affected by the previous departure process. Due to the random
nature of channel fading and aggregate interference, the service
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TABLE III: Notations

Symbol Definition
 =
√
−1 The imaginary unit

≡ Equivalence relation
N, R, R+ Natural numbers, real numbers, and positive real numbers, respectively
Rd d-dimensional Euclidean space
o The origin of Rd
B(x,R) Disk of radius R centered at x
Φ Point process representing the nodes in the network
Φ! The set of interferers
Φ(A) The number of elements in Φ ∩A
, The definition operator
(d)
= Equivalence in distribution
1{·} Indicator function which equals 1 and 0 if the statement {·} is true and false, respectively
E[·] Expectation operator
E!
x[·] Expectation operator w.r.t. the reduced Palm measure at x

P[·] Probability measure
P!
x[·] Reduced Palm probability measure at x

V[·] Variance
| · | Modulus operator
‖ · ‖ Euclidean norm
Γ(·) Gamma function
γ(s, x) Lower incomplete gamma function, i.e., γ(s, x) =

∫ x
0 us−1e−udu

E(a) Exponential distribution with rate parameter a
P(a) Poisson distribution with rate parameter a
G(a, b) Gamma distribution with shape parameter a and scale parameter b
Det Determinant operator
2F1(., .; .; z) The Gauss hypergeometric function
fX(·), FX(·), LX(·) The probability density function (PDF), the cumulative distribution function, and Laplace transform of

random variable X .
W(·) The Lambert-W function, i.e., the inverse function of f(x) = xex

TABLE IV: SIR components

Component Representation Characterization
Φ Spatial distribution of interferers Spatial point process models (in Section III)
r1 = ‖x1‖ Contact distance distribution Location-dependent analysis of cellular models (in Section IV)
Sx Blockage Shadowing models (in Section V)
ιx Buffer status Queueing models (in Section VI)

Fig. 8: Illustration of the interacting queues.

processes can be very dynamic.
Fig. 8 depicts an example of the correlation between the

queues at two transmitters. Transmitter T1, which serves re-
ceiver R1, has a longer transmission link and a shorter in-
terference link compared to those of transmitter T2, which
serves receiver R2. On the one hand, the channel disparity

between the two communication links results in different packet
service rates. Compared to T2, T1 suffers from more severe
path loss and interference. Correspondingly, given a similar
traffic load T1 tends to vacate its queue more slowly and thus
remain active more frequently than T2. On the other hand,
the queue lengths of T1 and T2 determine the activation of
T1 and T2. In particular, if both transmitters are busy, their
transmissions will cause mutual interference, which slows down
the departure process. If one of the transmitters has an empty
queue, the other enjoys a speedy departure process. Due to
the interacting queues, transmissions in a large-scale system
inherently experience spatial and temporal correlation.

Finally, Fig. 9 summarizes the sources of SINR correlation
and their spatial-temporal impact discussed in this subsection.

B. Spatial-Temporal SIR Correlation and Network Scenarios

Even over independent fading channels, aggregated inter-
ference is spatially correlated when it comes from the same
group of interferers. Similarly, interference becomes temporally
correlated when common static interferers exist across time.
Spatially and temporally-correlated interference causes spatial-
temporal SIR correlation. When different transmission attempts
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Fig. 9: Sources of SINR correlation.

are affected by the same group of static interferers (e.g., the
same point process), it gives rise to a quasi-static interference
(QSI) scenario. By contrast, a fast-varying interference (FVI)
[76] scenario results when different transmission attempts are
affected by different sets of interferers4 (e.g., independent point
processes). As two extreme cases, QSI and FVI, respectively,
render the highest and lowest interference correlation caused
by the interferer locations.

Spatial-temporal SIR correlation affects the performance of
many practical systems, where the transmission performance
depends on the SIR measured over different space and time
spots. Typical examples of these systems include the following:
• Multihop relaying: The end-to-end performance of a mul-

tihop relaying system depends on the SIRs at the receivers
at different hops. The SIRs at different hops can be
correlated due to spatial-temporal interference correlation
(e.g., common interferers exist from one transmission to
another).

• Retransmission: The reliability of a retransmission scheme
or a multi-packet transmission scheme depends on the SIR

4The QSI and FVI assumptions can be used for modeling static and highly-
mobile network scenarios, where the interferers across different transmissions
remain the same and become completely different, respectively.

at the receiver during multiple transmissions. The SIRs
from different transmissions can are correlated if they
are subject to the interference from the same group of
transmitters.

• Mobile networks: For a mobile user, transmissions could
occur at different spatial locations and times. The cor-
relation between the SIRs at the receiver for different
transmissions are dependent on the mobility.

The SIR correlation affects the performance metrics such
as temporal joint success probability (JSP) [77], end-to-end
success probability [78], the local delay [29], and joint SIR
meta distribution [43].

C. Metrics for Spatial-Temporal Performance Analysis

Definition 1. (Success Probability): The (average) success
probability of a user can be defined as the probability that
the user’s received SIR is greater than a threshold denoted by
θ [66], i.e.,

Ps = F̄SIR(θ) , P[SIR > θ], θ ∈ R+. (2)

where F̄SIR represents the complementary CDF of SIR.
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Definition 2. (Moments of Conditional Success Probability
given the Point Process): Let Ps|Φ(θ) = P

[
SIR > θ | Φ

]
represent the CSP given the point process Φ (abbreviated as
CSPΦ), which is averaged over the fading of all the links and
the random channel access (if applicable). The b-th moment of
Ps|Φ is defined as [79]

MPs(b) , E
[(
Ps|Φ(θ)

)b]
, b ∈ C. (3)

Note that the first moment of the CSPΦ is the average success
probability defined in (2), i.e., MPs

(1) ≡ Ps, and the variance
is V(Ps) =MPs(2)−M2

Ps
(1). Besides, the mean local delay,

defined as the average number of transmission attempts to
accomplish a success [80], is given by MPs

(−1). It is worth
mentioning that for static random networks and b ∈ N, the b-th
moment of the CSPΦ is equivalent to the JSP of b transmissions
of the same link [81] and JSP that the b antennas of a multiple-
antenna receiver all succeed in reception (i.e., SIR exceeds θ)
[82].

Definition 3. (SIR Meta Distribution): The SIR meta distribu-
tion is the complementary CDF of the CSPΦ, defined as [44],
[79]

F̄Ps
(θ, s) , P

[
Ps|Φ(θ) > s

]
, s ∈ [0, 1], (4)

where s represents the target success probability.

In ergodic point processes, the SIR meta distribution indi-
cates the fraction of links that can achieve successful transmis-
sion with probabilities greater than x in any realization of Φ.
Compared to the average success probability defined in (2), the
SIR meta distribution also characterizes the variability of link
success probabilities. For example, the inverse function of the
SIR meta distribution F̄−1

Ps
(p), p ∈ [0, 1], yields the success

probability x that a fraction 1 − p of the links achieve while
the rest do not.
Example: With θ = 1 and s = 0.9, F̄Ps

(1, 0.9) represents the
fraction of links/transmissions that achieve a receive SIR greater
than 1 with probability at least 0.9.

Definition 4. (SIR Gain): The SIR gain is the horizontal gap
between the complementary CDF of two SIR distributions.
Evaluated at the target success probability Pt, the SIR gain
is defined as [83, Eq. (1)]

G(Pt) ,
F̄−1

SIRtm
(Pt)

F̄−1
SIRrm

(Pt)
, Pt ∈ (0, 1), (5)

where F̄−1
SIR represents the inverse function of the complemen-

tary CDF of the SIR, and SIRtm and SIRrm denote the SIRs
of a target model and a reference model, respectively.

The SIR gain can be used to quantify the impact of a target
model on the SIR distribution w.r.t. that of a reference model.
An SIR gain greater or less than 1 indicates that the target
model can achieve the same success probability with a larger
or smaller SIR threshold, respectively, than the reference model.

In wireless networks, the SIR gain is usually not sensitive
to the target success probability to be evaluated [83], [84].
Therefore, the SIR gain can be approximated by the asymptotic
SIR gain evaluated in the high-reliability regime, i.e., Pt → 1
or θ → 0, defined as

G0 , lim
Pt→1

G(Pt), (6)

whenever the limit exists.
Note that a necessary and sufficient condition for the asymp-

totic SIR gain to exist is that the slopes of the two CDFs of
the SIR are asymptotically the same as θ → 0 [83].

Definition 5. (Joint Success Probability): Let x =
{xk}k∈{1,...,K} ∈ (Rd)K and t = {tk}k∈{1,...,K} ∈ NK
denote deterministic vectors of locations and time instances,
respectively, and SIRk denote the SIR measured at location
xk and time tk. The JSP is defined as the probability that
SIRi is greater than the corresponding SIR threshold θk for
all k ∈ {1, . . . ,K}. Given the locations x, times t, and the
target SIR thresholds θ = {θk}k∈{1,2,...,K} ∈ (R+)K , the JSP
is defined as

JK(θ,x, t)

, P[SIR1 > θ1,SIR2 > θ2, . . . ,SIRK > θK ], (7)

where SIRk denotes the SIR of the k-th transmission.

The SIR corresponding to the different transmissions can
exhibit spatial and/or temporal correlation, the effect of which
will be reflected in the JSP. The JSP can be for temporal, spatial,
or spatial-temporal transmission events. In particular, we have
• Temporal JSP of multiple transmission attempts occurring

at the same location but different time instances (e.g.,
multiple transmissions [81] and retransmissions [85] by
a transmitter);

• Spatial JSP of multiple transmission attempts occurring
at the same time but different locations (e.g., joint uplink
and downlink transmissions [86], [87]);

• Spatial-temporal JSP of multiple transmission events oc-
curring at different space and time intervals (e.g., for the
same mobile user [77]).

For a multihop communication scenario, the probability that
the transmissions at each hop are successful for a given packet
is referred to as the end-to-end success probability.

Definition 6. (Conditional Success Probability): The CSP is
the probability of achieving a successful transmission given that
K− 1 (K ≥ 2) such events have occurred. Given the locations
x, times t, and the target SIR thresholds θ, the CSP is given
by

CK(θ,x, t) =
JK(θ,x, t)

JK−1(θ,x, t)
, (8)

where JK(θ,x, t) is defined in (7).

The CSP reveals the dependence between two success-
ful transmission events. If the two events are positively
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correlated (spatially or temporally), one has C2(θ,x, t) >
J1(θ,x, t) [81]. Moreover, if the events are independent, one
has C2(θ,x, t) = J1(θ,x, t) =

√
J2(θ,x, t). Similar to the

definition of the JSP, the CSP of spatial events, temporal events,
and spatial-temporal events are referred to as spatial CSP,
temporal CSP, and spatial-temporal CSP, respectively.

Definition 7. (Product SIR Meta Distribution): Let
JK|Φ(θ,x, t) , P[SIR1 > θ1, . . . ,SIRK > θK | Φ] denote
the JSP of K transmissions given the point process. The
product SIR meta distribution is defined as the complementary
CDF of the JSP at locations x and times t given the point
process Φ [43, Eq. (11)], i.e.,

F̄JK(θ,x, t, s) , P
[
JK|Φ(θ,x, t) > s

]
, s∈ [0, 1]. (9)

Example: Let K = 2, θ = {θ1, θ2}, x = {x1, x2}, t =
{t1, t2}. Considering a stationary and ergodic point process
Ψ = {uj}j∈N representing the users, the product SIR meta
distribution measures the fraction of users for which the joint
probability that the SIR at their location u at time t1 exceeds
θ1 and the SIR at location u+ (x2−x1) at time t2 exceeds θ2

is larger than s.

Definition 8. (Joint SIR Meta Distribution): Let P (k)
s|Φ (θk) =

P
[
SIRk > θk | Φ

]
represent the CSPΦ at xk. The joint SIR

meta distribution is defined as the joint distribution of CSPΦ at
locations x and times t [43, Eq. (10)], i.e.,

F̄
(K)
Ps

(θ,x, t, s) , P
[ K⋂
k=1

{
P

(k)
s|Φ(θk) > sk

}]
, (10)

where s = {s1, s2, . . . , sK} ∈ [0, 1]K is the vector of target
success probabilities corresponding to the locations x.

Example: Let K = 2, θ = {θ1, θ2}, x = {x1, x2}, t = {t1, t2},
s = {s1, s2}. Considering a stationary and ergodic point
process Ψ = {uj}j∈N representing the users, the joint SIR
meta distribution measures the fraction of users that meet the
following conditions: 1) the probability that the SIR at the user
location u at time t1 exceeds θ1 is larger than s1 and 2) the
probability that the SIR at location u + (x2 − x1) at time t2
exceeds θ2 is larger than s2.

Definition 9. (Interference Correlation Coefficient): Let I(t)
x

denote the aggregated interference received at location x at time
t. The correlation degree of interference at two locations and
times can be quantified by the Pearson correlation coefficient
defined as [23, Eq. (2)]

ζt1,t2(u1, u2) ,

E
[
I

(t1)
u1 I

(t2)
u2

]
− E

[
I

(t1)
u1

]
E
[
I

(t2)
u2

]√
E
[(
I

(t1)
u1

)2]−E[I(t1)
u1

]2√E
[(
I

(t2)
u2

)2]−E[I(t2)
u2

]2 , (11)

where the numerator computes the covariance of I(t1)
u1 and I(t2)

u2

and the denominator is the product of the standard deviations
of I(t1)

u1 and I(t2)
u2 .

Fig. 10: Metrics for spatial-temporal performance analysis.

The interference correlation coefficient is a statistical mea-
sure that quantifies the extent to which the interferences at u1

and u2 are associated. The value of the interference correlation
coefficient ranges between 0 and 1. The coefficients of 0 and 1,
respectively, indicate no linear relationship and full correlation
between the interferences at u1 and u2.

Note that when the interferers are motion-invariant, one has
I

(t1)
o

(d)
= I

(t1)
u . In this case, ζ(‖u‖) can be simplified to [22,

Eq. (12)]

ζt1,t2(‖u1 − u2‖) ,
E
[
I

(t1)
u1 I

(t2)
u2

]
− E

[
I

(t1)
u1

]2
E
[(
I

(t1)
u1

)2]−E[I(t1)
u1

]2 . (12)

Definition 10. (Interference Coherence Time): The interference
coherence time is defined as the minimum time lag such that
the interference correlation coefficient is below a threshold ζth
[88, Eq. (35)], i.e.,

τct,min
{
τ = t2−t1 ∈ N | ζt1,t2 ≤ ζth

}
, ζth ∈ R+. (13)

Fig. 10 summarizes the above performance metrics for
spatial-temporal performance analysis.
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III. SPATIAL POINT PROCESS MODELS

This section formally defines some common point processes,
also referred to as random point fields, and illustrates how the
spatial distribution of the random points affects the network
performance. To evaluate the impacts of independent, attractive
and repulsive spatial configurations, we choose three represen-
tative point processes, namely, the Poisson point process (PPP),
the Matérn cluster process (MCP), and the β-Ginibre point
process (GPP), due to their tractability.
• In a PPP, each point is located independently from the

others.
• In an MCP, the locations of the random points have a

propensity to be clustering.
• In a β-GPP, the random points are scattered with repulsion.
This section considers both ad hoc and downlink cellular net-

works modeled based on the above point processes and analyzes
the interference correlation coefficient, success probability, SIR
meta distribution and SIR gain.

A. System Models

1) System Configurations: We focus on analyzing the per-
formance of a target in both ad hoc and downlink cellular
networks. The target receiver is considered to be at the origin
o ∈ R2 and attempts to decode the transmitted signals from the
associated transmitter subject to the aggregate interference.
• Ad hoc networks: The target receiver at o is served by

the transmitter located at xt ∈ R2, where ‖xt‖ = rt. The
target link is impaired by the interference from a random
field of interferers modeled by a stationary point process Φ
of intensity λ. Φ does not contain the serving transmitter
at xt.

• Downlink cellular networks: The transmitters (i.e., BSs)
form a stationary point process Φ with intensity λ. The
users are located according to a stationary point process
independent of the BS process. Each user is served by the
nearest BS in Φ.

In the networks considered, the transmitters stay active with
unit transmit power, i.e., there is no MAC scheme. All the
transmitters and receivers are equipped with one antenna. The
system employs universal frequency reuse. The channels of the
links experience i.i.d. block Rayleigh fading and power-law
path loss, i.e., d−α, where d and α > 2 are the link distance
and the path-loss exponent, respectively.

For the convenience of notation, the points in Φ are assumed
to be ordered from nearest to farthest to the origin, i.e., ‖xj‖ <
‖xj+1‖. Subsequently, the set of interferers in the ad hoc
networks and downlink cellular networks is Φ! = Φ = {xj}j∈N
and Φ! = Φ\{x1}, respectively. The distance from the j-th
nearest point in Φ to the origin is denoted as rj = ‖xj‖.

The SIR at the target receiver in an ad hoc and downlink
cellular network is given by, respectively, as

η =
ht‖xt‖−α∑
j∈N hj‖xj‖−α

(14)

and

η =
h1‖x1‖−α∑∞
j=2 hj‖xj‖−α

, (15)

where ht and hj denote the power fading coefficients from the
transmitters at xt, xj to the target receiver, which are exponen-
tial random variables with unit mean, i.e., ht, hj ∼ E(1). It is
noted that (14) represents the SIR of a specific receiver instead
of the typical receiver in ad hoc networks, while (15) is the
SIR of a user at the origin that, upon averaging over the base
station and user point processes, becomes the typical user in
the downlink cellular network, for any stationary point process
of users that is independent of the base station point process.

2) Spatial Configurations: We consider the homogeneous
PPP, MCP, and β-GPP, formally defined as follows.

Definition 11. (Homogeneous Poisson point process): A point
process Φ = {xj}j∈N ⊂ Rd is a homogenous PPP if it satisfies
two conditions: i) for any compact set B ⊂ Rd, the number
of points inside it follows a Poisson distribution with average
value being λ|B|; and ii) disjoint sets are independent in terms
of the number of points inside them.

Properties:

1) Density: For a homogeneous PPP, the first moment density
(or first-order density) and second moment density (or second-
order product density) are given, respectively, as [89]

ρ(1)(x) = λ, (16)

and

ρ(2)(x, y) =
(
ρ(1)(x)

)2
= λ2. (17)

The n-th moment density is the density pertaining to the n-th
order factorial moment measure, which, for n > 1, indicate
the spatial correlation. For example, ρ(1)(x)dx measures the
probability of having a point at x in some infinitesimal region
dx.

2) Contact Distance Distribution: Contact distance refers
to the distance between a reference location and the nearest
point in Φ [90]. The probability density function (PDF) and
CDF of the contact distance in a homogeneous PPP are given,
respectively, as [91]

fr1(r) = 2πλ exp(−λπr2) (18)

and

Fr1(r) = exp(−λπr2). (19)

3) Joint Distance Distribution: The joint PDF of the
distances to n nearest points is [92, Eq. (30)]

fr1,r2,...,rn(x1, x2, . . ., xn)=e−λπx
2
n(2λπ)nx1x2 . . . xn. (20)

4) Distance Ratio Distribution: Let %j = r1
rj
, j ∈ N, denote

the distance ratio of the nearest point to the j-th nearest point.
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The CDF and PDF of %j are given, respectively, by [93, Lemma
3]

F%j (%) = 1− (1− %2)j−1, % ∈ [0, 1] (21)

and

f%j (%) = 2(j − 1)%(1− %2)j−2, % ∈ [0, 1]. (22)

5) Probability Generating Functional (Product Func-
tional): For υ(x) ∈ [0, 1] and

∫
R2(1 − υ(x))dx < ∞, the

probability generating functional (PGFL) for the PPP is given
by [3, Eq. (4.8)]

E
[∏
j∈N

υ(xj)

]
= exp

(
− λ

∫
Rd

(
1− υ(x)

)
dx

)
. (23)

According to Slivnyak’s theorem [3, Theorem 8.10], the
reduced Palm distribution of the PPP is the same as its ordinary
distribution. Therefore, the conditional PGFL for the PPP can
also be expressed as (23).

Let ΦR =
{
x ∈ Φ\{x1} : ‖x1‖/‖x‖

}
⊂ (0, 1) denote the

relative distance process (RDP) of a PPP Φ. The PGFL of ΦR

is given by [84, Lemma 1]

E
[ ∏
%∈ΦR

υ(%)

]
=

1

1 + 2
∫ 1

0

(
1− υ(r)

)
r−3dr

, (24)

for functions υ(r) ∈ [0, 1] such that
∫
R+(1 − υ(r))r−3dr is

finite.
6) Sum Functional: For any measurable function g ≥ 0 on

Rd, the sum functional for a stationary point process is given
by Campbell’s Theorem [3, Theorem 4.1] as

E
[∑
j∈N

g(xj)

]
= λ

∫
Rd
g(x)dx. (25)

7) Sum-Product Functional: Let p , (p1, p2, . . . , pq) ∈ Nq ,
‖p‖1 ,

∑q
k=1 pk and {Mj}j∈N denote a set of i.i.d. random

marks associated with the points in Φ = {xj}j∈N. If gk(x) ∈
[0,∞), 1 ≤ k ≤ q, and υ(x) ∈ [0, 1] are measurable functions
for all x ∈ Rd, the sum-product functional for the PPP with
‖p‖1 > 0 is given by [42, Theorem 1]

E

[
q∏

k=1

(∑
j∈N

g(xj ,Mj)

)pi ∏
j∈N

υ(xj ,Mj)

]

= exp

(
− λ

∫
Rd

(
1− EMj

[
υ(x,Mj)

])
dx

)
×
‖p‖1∑
l=1

∑
N∈Npl

DN

l!

l∏
k=1

λ

∫
Rd

EM

[
υ(x,Mj)

×
q∏
i=1

fnkii (x,Mj)

]
dx, (26)

where DN ,
∏q
k=1

pk!∏l
i=1 mik!

and N p
l ⊂ Nq×l is the class

of all q × l matrices with the columns ‖n·i‖1 > 0, ∀i ∈
{1, 2, . . . , l} and the rows ‖nk·‖1 = pk, ∀k ∈ {1, 2 . . . , q}.

In the special case q = 1 and p = 1, the sum-product func-
tional for the PPP is given by the Campbell-Mecke Theorem [3,
Theorem 8.2] as

E

[∑
j∈N

g(xj ,Mj)
∏
j∈N

υ(xj ,Mj)

]

= exp

(
− λ

∫
Rd

(
1− EMj

[
υ(x,Mj)

])
dx

)
× λ

∫
Rd

EMj

[
g(x,Mj)υ(x,Mj)

]
dx. (27)

Definition 12. (Matérn cluster process): The MCP ΦM is
a doubly Poisson cluster process constructed from a parent
PPP Φp = {xj}j∈N with intensity λp with each point of Φp

substituted by a daughter cluster consisting of a PPP with an
average number of points c̄ within a disk of radius Rd centered
at that point.

Properties:

1) Density: For an MCP, the first moment and second
moment densities are given, respectively, by [3]

ρ(1)(x) = λ = λpc̄, (28)

ρ(2)(x, y) = λ2
pc̄

2 + λp
c̄2

π2R4
d

ARd
(‖x− y‖), (29)

ARd
represents the area of the intersection of two disks with

radius Rd at a distance r > 0 given as [3, Eq. (6.4)]

ARd
(r) =


2R2

d arccos(r/2Rd)− r
√
R2

d − r2/4,

0 ≤ r ≤ 2Rd,

0 otherwise.

(30)

2) Daughter Point Distribution: Each daughter point is
located uniformly within a disk of radius R around the origin
with the PDF given by [9, Eq. (5)]

fM(y) =

{
1

πR2
d
, if ‖y‖ ≤ Rd

0, otherwise.
(31)

3) Contact Distance Distribution: The PDF and CDF of
the contact distance in the MCP are given as (32) and (33),
respectively [90].

4) Probability Generating Functional: The PGFL for an
MCP is given as follows [9]:

E
[∏
j∈N

υ(xj)

]

= exp

(
− λ

∫
R2

[
1−M

(∫
R2

υ(x+ y)fM(y)dy

)]
dx

)
dy,

(34)

where M(t) = e−c̄(1−t) is the moment generating function of
the representative cluster in an MCP.

Let E!
o[·] denote the expectation operation based on the

reduced Palm measure [89] which takes the expectation for a



14

fM
r1 (r|x) =


2r

R2
d

, if 0 ≤ r ≤ Rd − x for ‖x‖ < Rd

2r

πR2
d

cos−1
(r2 + x2 −R2

d

2rx

)
, if Rd − ‖x‖ ≤ r ≤ Rd − ‖x‖ for ‖x‖ < Rd, and if ‖x‖ > Rd,

(32)

FM
r1 (r) = 1− exp

(
− λp

(∫
B(0,Rd)

[
1− exp

(
− c̄
(∫ min(r,Rd−x)

0

2y

R2
d

dy

+

∫ min(r,Rd+x)

min(r,Rd−x)

2y

πR2
d

cos−1
(y2 + x2 −R2

d

2yx

)
dy

))]
dx

+

∫
R2\B(0,Rd)

[
1− exp

(
− c̄

∫ min(r,Rd+x)

min(r,Rd−x)

2y

πR2
d

cos−1
(y2 + x2 −R2

d

2yx
dy
))]

dx

))
, (33)

point process conditioned at a point of the process at o without
including the point. The conditional PGFL of an MCP is [9,
Lemma 1]

E!
o

[∏
j∈N

υ(xj)

]

= exp

(
− λp

∫
R2

[
1−M

(∫
R2

υ(x+ y)f(y)dy

)]
dx

)
×
∫
R2

GM
d

(
υ(x− y)

)
fM(y)dy, (35)

where GM
d is the PGFL for the representative cluster given by

GM
d (υ) = M

(∫
R2

υ(x)fM(x)dx

)
. (36)

Definition 13. (β-Ginibre point process): A β-GPP ΦG
β =

{xj}j∈N is a determinantal point process with the kernel5 given
by [54]

Kβ,λ(x, y) = λe−
πλ|x−y|2

2β , x, y ∈ C, (37)

w.r.t. the Lebesgue measure on C [94].

Properties:

1) Density: For a β-GPP, the first moment density and the
second moment density of the β-GPP are given, respectively,
by [54]

ρ(1)(x) = det[Kβ,λ(x, x)] = λ, (38)

ρ(2)(x, y) = det

[
Kβ,λ(x, x̄) Kβ,λ(x, ȳ)
Kβ,λ(x̄, y) Kβ,λ(y, ȳ)

]
= λ2

(
1− exp

(
− πλ|x− y|

2

β

))
. (39)

5The kernel represents the interaction force among the points of the process.

2) Link Distance Property: Let λ represents the intensity
of ΦG

β . Let {Qj}j∈N be a set of independent gamma random
variables with PDF

fQj (q) =
qj−1e−

πλ
β q(

β
πλ

)j
Γ(j)

, (40)

i.e., Qj ∼ G(j, β/πλ). Then the set {‖xj‖2}j∈N is equivalent in
distribution with the set constructed by retaining each element
from {Qj}j∈N independently with probability β [96, Theorem
4.7.1].

Fig. 11(a), (b), (c), respectively, illustrate realizations of
MCP, PPP, and β-GPP. As shown by the realizations of MCP
and β-GPP, the point sets are attractive and repulsive, respec-
tively.

The correlation between the spatial points can be measured
by the pair correlation function (PCF). For a point process
Φ ⊂ Rd, the PCF is defined as g(x, y) , ρ(2)(x,y)

ρ(1)(x)ρ(2)(y)
. If

Φ is motion-invariant, the first moment density is the constant
intensity and the second moment density ρ(2)(x, y) only de-
pends on the difference r = ‖x − y‖. Hence, the PCF can be
expressed as g(r) = ρ(2)(r)

λ2 .
Let Φ(A) denote the number of points in Φ ∩ A. The

PCF quantifies the degree of correlation between the random
variables Φ(A) and Φ(B) in a non-centered way. If g(x, y) ≡ 1
then for disjoint A and B the covariance of Φ(A) and Φ(B)
is zero, which means the two variables are uncorrelated. For
spatial point processes, the PCF describes how a point is
surrounded by others. The PCF equals one if the points are
uncorrelated (e.g., as in the PPP), and is greater (smaller) than
1 if the points are attractive (repulsive).

The PCFs of the MCP, PPP and β-GPP are given, respec-
tively, as [3, Page 153], [54]

g(r) =


1 +

c̄ARd
(r)

λπ2R4
d

, MCP

1, PPP

1− exp(−r2/β)

πλ
, β-GPP,

(41)
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(a) Realization of an MCP (λp = 0.1, c̄ = 5 and Rd = 1).
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(b) Realization of a homogeneous PPP (λ = 0.5).
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(c) Realization of a β-GPP (λ = 0.5, β = 0.5).
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(d) Pair correlation functions (λ = 1, Rd = 1).

Fig. 11: Illustration of spatial point processes.

where ARd
(r) is given in (30).

Properties:

1) For r ≥ 2Rd, for an MCP, the PCF is the same as that of
the PPP, because two points with a distance greater than 2Rd

must belong to different clusters and thus are independent.
2) Given the intensity λ, the PCF of an MCP approaches that

of the PPP as c̄→ 0, since the points are less likely to belong
to the same cluster.

3) For a PPP, the PCF is not affected by the intensity since
the points are independently distributed.

4) For a β-GPP, the PCF approaches that of the PPP as β → 0
or λ→∞.

Fig. 11(d) shows the PCFs of the spatial point processes and
demonstrates the properties discussed above.

3) Validity: The validity of the point process approximation
of real-world cellular networks has been demonstrated in the
literature. In particular, an early study in [95] found that the
success probability of an actual cellular network (with a degree
regularity) is lower-bounded by that of a Poisson network
(with complete randomness). More importantly, reference [83]
revealed that adding a horizontal SIR threshold shift from 0
dB to 3.4 dB to the success probability in a Poisson network
yields a tight approximation of that in any network with a
spatial layout from complete randomness to perfect regularity
(i.e., triangular lattice). Hence, the analysis of an actual cellular
network can be performed based on that of a Poisson network
with a horizontally shifted SIR threshold calibrated to the
regularity of the topology.

The validity of the β-GPP to model actual cellular networks
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has been rigorously explored. The studies in [54], [97] show
that the repulsion parameter β that adjusts the degree of
repulsion among points can be numerically fitted with the
data set from actual network deployments. The simulations
demonstrate that the success probabilities from β-GPP analysis
closely approximates the ones from simulations with the actual
deployment topologies. Hence, it is valid to employ either a
horizontally shifted PPP or the fitted β-GPP to analyze actual
cellular networks.

B. Performance Analysis

1) Spatial-Temporal Interference Correlation in Ad Hoc
Networks: We first investigate the correlation of interference
observed at two locations o and u in two time slots t1 and t2,
respectively, with the interferers distributed as the three types
of point processes considered. As PPP, MCP and β-GPP are
motion-invariant, the spatial-temporal interference correlation
can be measured by the Pearson correlation coefficient defined
in (12).

As can be seen from (12), the expectation and the second
moments of I(t1)

o and the mean product of I(t1)
o and I(t2)

u are
needed to quantify the interference correlation. However, these
two quantities do not exist because of the singularity of the
path-loss function `(x). To cope with this issue, we follow the
approach in [9] by defining `ε(x) = 1

ε+‖x‖α , α > 2, ε > 0,
such that `(x) = limε→0 `ε(x).

The expectation of I(t1)
o can be derived as

E
[
I(t1)
o

] (a)
= E

[
Io
]

= E
[∑
j∈N

hj`ε(xj)

]
= E

[
h
] ∫

R2

`ε(x)ρ(1)(x)dx

(b)
= 2πλ

∫ ∞
0

x

ε+ xα
dx

(c)
= δπ2λεδ−1 csc(δπ), (42)

where (a) follows since MCP, PPP, and β-GPP are all motion-
invariant and the superscript (t1) is dropped for conciseness,
(b) applies the conversion from Cartesian to polar coordinates,
and (c) substitutes 2

α with δ.
If the densities of the interferers following a PPP, MCP, and

β-GPP as given in (16), (28), and (38), respectively, are the
same, we can observe from (42) that the three point processes
cause the same mean interference at an arbitrary location. This
indicates that spatial attraction and repulsion do not affect the
first moment of the interference.

We then continue to derive the second moment of I(t1)
o as

E
[(
I(t1)
o

)2]
= E

[(∑
j∈N

hj`ε(xj)

)2
]

=E

[∑
j∈N

h2
j`

2
ε(xj) +

j 6=i∑
j,i∈N

hjhi`ε(xj)`ε(xi)

]

= E[h2]

∫
R2

`2ε(x)ρ(1)(x)dx

+ E[h]2
∫
R2

∫
R2

`ε(x)`ε(y)ρ(2)(x, y)dxdy

= 2δλπ2(1− δ)εδ−2 csc(δπ)

+

∫
R2

∫
R2

`ε(x)`ε(y)ρ(2)(x, y)dxdy. (43)

By plugging in the second moment density ρ(2)(x, y) for the
MCP, PPP, and β-GPP given, respectively, in (29), (17), (39),
we obtain the second moment of the interference in (44), where
Ī2

PPP is

Ī2
PPP = 2δλπ2(1− δ)εδ−2 csc(δπ)

+ δ2π4λ2ε2δ−2 csc(δπ)2. (45)

Table V shows the variance of the interference with different
fields of interferers. It can be observed that the MCP and
the β-GPP cause larger and smaller interference variance than
the PPP, respectively, as illustrated in Fig. 12. Moreover, it
can be found that, for an MCP, given the interference density
λ = λpc̄, the variance increases when the points are more
densely clustered (i.e., with smaller cluster density λp and a
larger average number of points c̄ within each cluster).

Similarly, we have the mean product of I(t1)
o and I(t2)

u , t1 6=
t2, as

E
[
I(t1)
o I(t2)

u

]
= E

[∑
j∈N

h
(t1)
j `ε(xj − o)

∑
i∈N

h
(t2)
i `ε(xi − u)

]

=E

[∑
j∈N

h
(t1)
j h

(t2)
j `ε(xj)`ε(xj − u)

+

j 6=i∑
j,i∈N

h
(t1)
j h

(t2)
i `ε(xj)`ε(xi − u)

]

= E[h]2
∫
R2

`ε(x)`ε(x− u)ρ(1)(x)dx

+ E[h]2
∫
R2

∫
R2

`ε(x)`ε(y)ρ(2)(x, y)dxdy, (46)

which is an integral function of the first and second moment
densities. Subsequently, (46) can be obtained by following the
derivation of the second moment of interference as in (47).

Finally, by inserting the expectation, second moment, and
mean interference product given in (42), (43), and (46), re-
spectively, into (12), we have the spatial-temporal interference
correlation coefficient in the following theorem.

Theorem 1. The spatial-temporal correlation coefficient with
interferers distributed as MCP, PPP, and β-GPP and path-loss
function `ε(x) = 1

ε+xα is given by (48), where $MCP(Rd, c̄)
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E
[(
I(t1)
o

)2
]

(a)
=


Ī2

PPP +
λc̄

π2R4
d

∫
R2

(∫
R2

`ε(x)`ε(y)ARd
(‖x− y‖)dx

)
dy, MCP

Ī2
PPP, PPP

Ī2
PPP − λ2

∫
R2

(∫
R2

`ε(x)`ε(y)

(
exp

(
− πλ‖x− y‖2

β

))
dx

)
dy, β-GPP.

(44)

TABLE V: Variance of Interference

Point
Process

E[I2
o ]− E[Io]2

MCP δπ2λ(1− δ)εδ−2 csc(δπ) + λc̄
π2R4

d

∫
R2

( ∫
R2 `ε(x)`ε(y)ARd

(‖x− y‖)dx
)
dy

PPP δπ2λ(1− δ)εδ−2 csc(δπ)

β-GPP δπ2λ(1−δ)εδ−2 csc(δπ)−λ2
∫
R2

( ∫
R2 `ε(x)`ε(y) exp

(
−πλ‖x−y‖2/β

)
dx
)

dy
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Fig. 12: Interference variance in ad hoc networks with different fields
of interferers (`(x) = 1

1+xα
and Rd = 1).

and $β-GPP(λ) are given, respectively, by

$MCP(Rd, c̄)

=
c̄

π2R4
d

∫
R2

(∫
R2

`ε(x)`ε(y)ARd
(‖x− y‖)dx

)
dy,

and

$β-GPP(λ)

=λ

∫
R2

(∫
R2

`ε(x)`ε(y) exp

(
− πλ‖x−y‖

2

β

)
dx

)
dy.

Remark 1: The interference correlation coefficient for the MCP
is greater than for the PPP, since

ζMCP(‖u‖)− ζPPP(‖u‖) =
(C2 − C1)$MCP(Rd, c̄)

C2(C2 +$MCP(Rd, c̄))

(a)
> 0,

where (a) holds as $MCP(Rd, c̄) > 0 and C2 − C1 ≥ 1/2
[9], and C1 =

∫
R2 `ε(x)`ε(x − u)dx and C2 = 2δπ2(1 −

δ)εδ−2 csc(δπ).

Remark 2: The interference correlation coefficient for the β-
GPP is smaller than for the PPP, since

ζβ-GPP(‖u‖)− ζPPP(‖u‖) =
(C1 − C2)$β-GPP(λ)

C2(C2 −$β-GPP(λ))

(a)
< 0,

where (a) holds as C1 < C2 and C2 > $β-GPP (since exp
(
−

πλ‖x− y‖2/β
)
< 1).

Fig. 13 shows the spatial-temporal correlation coefficient for
different fields of interferers, which illustrates the properties
discussed above.

2) Moments of the CSPΦ in Ad Hoc Networks: Next, we
derive the moments of the CSPΦ in three different random fields
of interferers by following the methodology in [79]. For this,

• We start by obtaining the CSPΦ by averaging out the
randomness of channel gains for a given point process
Φ and a link distance.

• We then derive the moments of the CSPΦ by averaging
over the spatial distributions of the interferers in the
different random fields. Specifically,

– after averaging over the channel gains of the contact
link and interfering links based on their distributions,
the moments of the CSPΦ can be represented by the
expectation of the product of a function w.r.t. the
locations of the interferers, i.e., E

[∏
x∈Φ f(x)

]
.

– the expectation for Matérn cluster and Poisson fields
of interferers can be derived based on the PGFLs of
MCP and PPP given in (34) and (23), respectively,
and that for the β-Ginibre field of interferers can be
derived based on the distributions of the distances of
the interfering links given in (40).

Theorem 2. The moments of the CSPΦ for a Matérn cluster
field, Poisson field and β-Ginibre fields of interferers are given
by (49), where

Vb(x, θ) =

∫
B(0,Rd)

(
1

1+θrαt ‖x− y‖−α

)b
dy. (50)

Proof. See Appendix A.
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E
[
I(t1)
o I(t2)

u

]
=



λ

∫
R2

`ε(x)`ε(x− u)dx+ δ2π4λ2ε2δ−2 csc(δπ)2 +
λc̄

π2R4
d

×
∫
R2

(∫
R2

`ε(x)`ε(y)ARd
(‖x− y‖)dx

)
dy, MCP

λ

∫
R2

`ε(x)`ε(x− u)dx+ δ2π4λ2ε2δ−2 csc(δπ)2, PPP

λ

∫
R2

`ε(x)`ε(x− u)dx+ δ2π4λ2ε2δ−2 csc(δπ)2

−λ2

∫
R2

(∫
R2

`ε(x)`ε(y) exp

(
− πλ‖x− y‖2

β

)
dx

)
dy, β-GPP.

(47)

ζ(‖u‖) =



∫
R2 `ε(x)`ε(x− u)dx+$MCP(Rd, c̄)

2δπ2(1− δ)εδ−2 csc(δπ) +$MCP(Rd, c̄)
, MCP∫

R2 `ε(x)`ε(x− u)dx

2δπ2(1− δ)εδ−2 csc(δπ)
, PPP∫

R2 `ε(x)`ε(x− u)dx−$β-GPP(λ)

2δπ2(1− δ)εδ−2 csc(δπ)−$β-GPP(λ)
, β-GPP,

(48)
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Fig. 13: Correlation coefficient in ad hoc networks with different fields
of interferers (λ = 0.1, ε = 1 and Rd = 1).

Fig. 14 shows the average success probabilities (i.e.,
MPs

(1)) in ad hoc networks with different fields of interferers.
In order to reveal the entire SIR distribution, we plot the
success probabilities in the Möbius homeomorphic (MH) scale.
The conversion from linear scale to MH scale is given by the
function xMH = x

1−x [98], which maps the one-sided infinite
support [0,∞) to the unit interval [0, 1). It can be observed
that, in ad hoc networks, spatial repulsion and attraction among
the interferers result in lower and higher success probabilities,
respectively, compared to the independently located interferers.
This can be intuitively understood from the fact that stronger
spatial attraction (repulsion) increases the chance that the

interferers are located further away (closer to) the target receiver
(as shown in Fig. 11).

Subsequently, we investigate the temporal dependence of
successful transmissions by evaluating the temporal CSP, i.e.,
MPs(2)/MPs(1), in Fig. 15. It can be found that the CSP
increases when the interferers are more clustered (i.e., with
smaller Rd or larger c̄) and decreases when the interferers are
more scattered (i.e., with larger β). The reason is that spatial
attraction and repulsion cause a lower and higher intensity
of aggregated interference at the target receiver, and thus a
transmission attempt is more likely to succeed given a previous
successful transmission.

Furthermore, we investigate the SIR meta distribution for a
target link in ad hoc networks. According to the Gil-Pelaez the-
orem [99], the exact SIR meta distribution can be represented
as an integral function of the moments of the CSPΦ as

F̄ (θ, x) =
1

2
+

1

π

∫ ∞
0

=
(
e−u log xMu(θ)

)
u

du, (51)

herein =(z) is the imaginary part of z and  =
√
−1 denotes

the imaginary unit.
Fig. 16 shows the SIR meta distribution in ad hoc networks

with different fields of interferers. Compared with the success
probability in Fig. 14, the SIR meta distribution gives the entire
distribution of the CSPΦ. For example, for a 0.5 MH SIR
threshold, although the average success probability for PPP is
slightly greater than that of β-GPP, the percentage of the links
achieving 90% reliability in PPP is higher than twice of that in
β-GPP.

3) Moments of the CSPΦ in Downlink Cellular Networks:
With Rayleigh fading, the exact moments of the CSP given ΦM

and ΦG
β can be obtained using the following steps [79]:
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MPs
(b) =



exp

(
− λp

∫
R2

(
1− exp

(
− c̄+ c̄Vb(x, θ)

πR2
d

))
dx

)
, MCP

exp

(
− πλθδr2

t

Γ(1− δ)Γ(b+ δ)

Γ(b)

)
, PPP

∫ ∞
0

e−πλq/β
(

β

1 + θrαt q
−α/2 + 1− β

)b∏
j≥1

(πλ/β)j

Γ(j)
qj−1dq, β-GPP

(49)
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Fig. 14: Success probability in different ad hoc networks (λ = 0.1,
rt = 1, and Rd = 1. The curves and markers correspond to the
analytical and simulation results, respectively.).

• Deriving the CSPΦ by averaging over the randomness of
the channel gains of the contact link and interfering links
based on the PDF of the exponential distribution due to
Rayleigh fading;

• Deriving the moments of the CSPΦ by deconditioning on
the spatial distributions of the interferers in the different
random fields and contact distance. Specifically,

– The spatial randomness of the interferers in Matérn
cluster and Poisson downlink networks is averaged
out based on the reduced PGFL of MCP and PPP,
respectively, given in (35) and (23), and that in
Ginibre downlink networks is averaged out based on
the PDF of the distances of the interfering links given
in (40);

– Based on the nearest-BS associated rule, the contact
distances in Matérn cluster, Poisson, and Ginibre
downlink networks are averaged out based on their
PDFs given in (32), (18), and (40), respectively.

For non-Poisson networks, since deriving the exact downlink
success probability is tedious (if not impossible) and the re-
sulting expressions are cumbersome, we use an approximation
method, referred to as Approximate SIR analysis based on
the PPP (ASAPPP) method [47], [100], [101], to simplify the

evaluation of the SIR distribution. ASAPPP provides an ap-
proximate SIR distribution in a non-Poisson network, obtained
from the SIR distribution in a Poisson network along with a
horizontal shift (in the dB scale). This method is based on the
insight that when the disparity between the target system model
and the Poisson model purely lies in the spatial configuration of
the points, shifting the SIR threshold θ of the Poisson model by
a coefficient G0 results in a close approximation of the success
probability and the meta distribution of the target system model.
The subscript in G0 indicates that the shift is calculated when
θ approaches 0. In other words, the ASAPPP method becomes
exact as θ → 0. As shown in [84], ASAPPP yields a very good
approximation across the whole SIR distribution and is barely
susceptible to the fading and path-loss models.

The asymptotic gain G0 can be obtained by taking the
ratio of the mean interference-to-signal ratios (MISRs) of the
considered point process to that of the PPP as [83]

G0 =
MISRPPP

MISR
=

2

α− 2

1

MISR
, (52)

where MISR is defined as

MISR , E

[∑∞
k=2 ‖xk‖−α

‖x1‖−α

]
, (53)

and MISRPPP is the MISR in Poisson downlink networks, which
can be obtained by utilizing the distance ratio distribution as
follows [83].

MISRPPP =

∞∑
j=2

E
[(

r1

rj

)α]

=

∞∑
j=2

E
[
%αj
]

(a)
=

∞∑
j=2

∫ 1

0

%α2(j − 1)%(1− %2)j−2d%

=

∞∑
j=2

Γ(1 + α/2)Γ(j)

Γ(j + α/2)

=
2

α− 2
, (54)

where (a) follows the PDF of %j given in (22).
The numerical value of G0 can be obtained easily from

Monte Carlo simulations for a given network geometry, i.e.,
λp, c̄, and Rd for the MCP and λ and β for the β-GPP. Note
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Fig. 15: Temporal CSP in ad hoc networks with non-Poisson fields of interferers (α = 4).
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Fig. 16: SIR meta distribution in ad hoc networks with different fields
of interferers. (θ = 0.5 MH, rt = 1, λ = 0.1, and Rd = 1. The
curves and markers correspond to the analytical and simulation results,
respectively.)

that, as found in [4], the MISR-based gain of the β-GPP can
be accurately approximated as

G0 ≈ 1 + β/2, (55)

which is insensitive to the network density and path-loss
exponent [84]. Therefore, the success probability of the typical
user in a β-GPP network is approximately identical to that in
a Poisson network with the SIR threshold scaled from θ to
θ/(1 + β/2).

Fig. 17 and Fig. 18, respectively, confirm the effectiveness
of the ASAPPP method for approximating the SIR distribution
and the SIR meta distribution in MCP and β-GPP downlink
networks. As expected, for both types of networks, the ASAPPP
method yields a more accurate approximation of SIR distribu-

tion as the SIR threshold decreases. For the MCP model, we
can observe that the ASAPPP method is more accurate when
ΦM is less clustered (e.g., with smaller c̄ given λ). When the
network is more clustered (e.g., when c̄ = 10), there exists an
observable gap between the approximation and the simulation
results for both success probability and SIR meta distribution.
The reason is that a higher degree of clustering results in a
slowly growing rate of the asymptotics [101]. Moreover, for the
β-GPP, the insignificant disparity between the simulation and
the approximation results can be ascribed to the approximation
of the MISR-based gain given in (55).

Next, in Fig. 19(a) and Fig. 19(b), we evaluate the temporal
CSPs for MCP and β-GPP downlink networks, respectively.
We observe that the CSP decreases slightly when the network
becomes more clustered (i.e., with larger c̄ and/or smaller
Rd with fixed λ) and increases slightly when the network
becomes more repulsive (i.e., with larger β). However, the
curves are almost flat, i.e., the temporal CSPs in Matérn cluster
and Ginibre downlink networks are generally non-sensitive to
attractiveness and repulsiveness of the spatial points.

C. Summary and Discussion
We have analyzed the impact of the spatial distribution

of transmitters on the interference correlation coefficient and
success probability. Specifically, we have presented the deriva-
tions of spatial-temporal interference correlation coefficient and
success probability and SIR meta distribution of a target link
in MCP, PPP, and β-GPP fields of interferers. We have also
introduced an approximation of the success probabilities and
SIR meta distributions in non-Poisson networks based on the
analysis of a Poisson network by scaling the SIR threshold.
The main lessons learned are as follows.
• With non-Poisson fields of interferers, the spatial-temporal

interference is more and less correlated when the inter-
ferers are distributed more attractively and repulsively,
respectively.
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Fig. 17: The ASAPPP approximation of non-Poisson cellular net-
works (α = 4, λ = 0.1, Rd = 4).
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Rd = 5).
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Fig. 19: Temporal CSP in non-Poisson cellular networks (α = 4, λ = 0.1).

• Compared with a Poisson field of interferers, the Matérn
cluster and β-Ginibre field of interferers increases and
decreases the success probability of a target link, respec-
tively. Moreover, the successful transmission events are
more and less temporally-correlated when the locations of
the interferers are more clustered and scattered, respec-
tively.

• Compared with a Poisson downlink network, the Matérn
cluster and Ginibre downlink networks render a lower and
a higher success probability, respectively. Additionally,
the successful transmission events are less and more
temporally-correlated when the interferers are more attrac-
tive and repulsive, respectively.

Open Technical Issues: The point process models presented

in Section III have been adopted to characterize the general
spatial features (e.g., independence, repulsion and clustering)
of wireless networks. In addition to these generic models,
some point process models have been established for some
specialized network scenarios. For example, reference [102]
proposes an energized point process to model the spatial
distribution of wireless-powered devices. The model exhibits
spatial correlation of the RF-powered nodes that can harvest
sufficient energy from a Poisson field of RF sources. Besides,
reference [103] introduces a Poisson rain process to model
cellular networks with spatial-temporal traffic. Specifically, the
model employs a space-time PPP to model traffic arrives
which are then assigned to PPP-distributed BSs based on
different allocation schemes. Future efforts should be dedicated
to developing point processes that incorporate spatial-temporal
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features (e.g., fading, shadowing, blockage, and renewable
energy arrivals) for more specific system models.

IV. LOCATION-DEPENDENT ANALYSIS OF CELLULAR
MODELS

The locations of the users play a crucial part in their perfor-
mance. Conditioning the regions (e.g., cell center and boundary)
of the user of interest allows a location-dependent analysis
[104], [105] for a location-specific user (LSU) in cellular
networks. The objective of this section is to demonstrate the
effect of the location of the target user on the SIR distribution.
For this, we derive the moments of the CSPΦ and the SIR gain
for an LSU in different regions.

A. System Models

For a stationary point process Φ ⊂ R2 of BSs, let xj(u) ∈ Φ
represent the location of the j-th nearest BS to the LSU at u.
Under the nearest-BS association principle, x1(u) and x2(u)
are the locations of the associated (serving) BS and the nearest
interfering BS to the LSU, respectively. The region of a user’s
location can be defined by the relationship between the link
distances to the associated BS and to the nearest interfering
BS.

For ρ ∈ [0, 1], the regions of cell-center user and cell-
boundary user are defined, respectively, as

Rc , {u ∈ R2 : ‖x1(u)− u‖ ≤ ρ‖x2(u)− u‖},
Rb , {u ∈ R2 : ‖x1(u)− u‖ > ρ‖x2(u)− u‖}.

The area fraction of a region can be determined by the
probability that an arbitrary location, say o, falls into that
region, which solely depends on ρ. For the analysis, we focus
on the case where Φ is a PPP.

The area fractions of Rc and Rb can be obtained based on
the CDF of %2 (given in (21)) as

P[o ∈ Rc] = P[%2 ≤ ρ] = F%2
(ρ) = ρ2

and

P[o ∈ Rb] = 1− P[o ∈ Rc] = 1− ρ2.

Moreover, in the special cases when a cell-boundary user
has two or three equidistant closest BSs, it is referred to as an
edge user or a vertex user, respectively. The regions of the edge
users (one-dimensional) and vertex users (zero-dimensional) are
defined, respectively, as

Re = {u ∈ R2 : ‖x1(u)− u‖ = ‖x2(u)− u‖},
Rv = {u ∈ R2 : ‖x1(u)− u‖ = ‖x2(u)− u‖

= ‖x3(u)− u‖}. (56)

Note that in a two-dimensional homogeneous PPP there exists
no location with more than three nearest BSs almost surely [89].

In the following, we explore and the performance at five
different types of typical users: (i) The standard typical user,
whose performance represents the average of all users; it is

referred to in this section as the typical general user; (ii)
the typical cell-center user, whose performance represents the
average of all cell-center users; (iii) the typical cell-boundary
user, whose performance represents the average of all cell-
boundary users; (iv) the typical cell-edge user whose perfor-
mance represents the average of all locations on the cell edges;
and (v) the typical vertex user, whose performance represents
the average of all vertex points of the cells.

In Poisson cellular networks, the PDF of the contact distance
of the typical vertex user is given by [106], [107]

fv
r1(r) = 2(λπ)2r3 exp(−λπr2). (57)

The success probability of the typical cell-center and cell-
boundary users can be defined, respectively, as

F̄ c
η (θ) = P[η > θ | o ∈ Rc],

and F̄ b
η (θ) = P[η > θ | o ∈ Rb]. (58)

Fig. 20 shows a realization of network partitions of a Poisson
network with unit intensity, where the locations of the BSs
are represented by the black circles. White and cyan regions
represent the cell-center regions Rc and cell-boundary regions
Rb, respectively. The blue triangle markers represent the region
of the vertex users and blue lines represent the region of the
edge users.
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Fig. 20: Illustration of network partitions in a two-dimensional Poisson
network for ρ = 0.8.

B. Performance Analysis

1) Cell-Center and Cell-Boundary User: We start by show-
ing how to obtain the b-th moments of the CSPΦ for cell-center
and cell-boundary users, denoted as Mc

Ps
(b) and Mb

Ps
(b),

respectively. The methodology of obtaining the former is to
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derive the SIR meta distribution for the typical general user
by conditioning its location to be in the cell-center and cell-
boundary regions [104], [105]. Such conditioning restricts the
distribution regions of interferers which will be reflected in the
lower bounds of the integrals after applying the PGFL of PPP.

Based on this approach, we obtain Mc
Ps

(b) in the following
theorem.

Theorem 3. The moments of the CSPΦ for the typical cell-
center user, i.e., the typical general user conditioned on Rc, in
a Poisson downlink network with Rayleigh fading are

Mc
Ps

(b) =
1

2F1(b,−δ; 1− δ;−ραθ)
, (59)

where δ = 2/α.

Proof. See Appendix B.

Remark 3: The SIR gain of the typical cell-center user
compared to the typical general user is ρ−α, which is easily
obtained by comparing (59) with the moments of the CSPΦ for
the typical general user in a Poisson downlink network given
as [79]:

MPs(b) =
1

2F1(b,−δ; 1− δ;−θ)
. (60)

Remark 4: A fraction x = ρ2 of users who have the lowest
distance ratio of the associated BS to the interfering BS has an
SIR gain of −5α log10 x dB.

Applying the law of total probability, the moments of the
CSPΦ for the typical general user can be expressed as follows:

MPs(b) =E
[
P
[
η > θ

]b]
=E
[
P
[
η > θ

]b ∣∣ o ∈ Rc

]
P
[
o ∈ Rc

]
+ E

[
P
[
η > θ

]b ∣∣ o ∈ Rb

]
P
[
o ∈ Rb

]
=Mc

Ps
(b)P

[
o ∈ Rc

]
+Mb

Ps
(b)
(

1− P
[
o ∈ Rc

])
.

Then, the moments of the CSPΦ for the typical cell-boundary
user are given by

Mb
Ps

(b) =
MPs

(b)−Mc
b(θ)P[o ∈ Rc]

1− P[o ∈ Rc]

=
MPs(b)− ρ2Mc

Ps
(b)

1− ρ2
. (61)

We then have the following corollary by using (60) and (59)
in (62).

Corollary 1. The moments of the CSPΦ of the typical cell-
boundary user, i.e., o ∈ Rb, in a Poisson downlink network
with Rayleigh fading are

Mb
Ps

(b) =
1

(1− ρ2) 2F1(b,−δ; 1− δ;−θ)

− ρ2

(1− ρ2) 2F1(b,−δ; 1− δ;−ραθ)
, (62)

where δ = 2/α.

2) Edge User: An edge user can be considered as an
asymptotic case of a cell-boundary user when ρ → 1, i.e.,
P[o ∈ Rb] → 0. In this case, the cell-boundary user is
equidistant from the serving BS and the nearest interferer, i.e.,
on the cell edge. Therefore, the performance of the typical cell-
edge user can be obtained from the asymptotics of the typical
cell-boundary user as ρ→ 1.

By taking the limit ρ → 1 of Mb
Ps

(b) in (62), we have the
moments of the CSPΦ for the typical edge user as follows:

Me
Ps

(b)
(a)
= lim

ρ→1
Mb

Ps
(b)

=
1

2F1(b,−δ; 1− δ;−θ)

− bθ 2F1(b+ 1, 1− δ; 2− δ;−θ)
(1− δ) 2F1(−b,−δ; 1− δ;−θ)2

, (63)

where (a) follows from L’Hôpital’s rule.
After some mathematical manipulations, we haveMe

Ps
(b) in

the following corollary.

Corollary 2. With Rayleigh fading, the moments of the CSPΦ

for the typical edge user in a Poisson downlink network are

Me
Ps

(b) =
1

(1 + θ)b2F1(b,−δ; 1−δ;−θ)2
, b ∈ C (64)

where δ = 2/α.

Remark 5: Compared with MPs
(b) in (59), Me

Ps
(b) in (64)

can be expressed as Me
Ps

(b) =
MPs (b)2

(1+θ)b
, ∀b ∈ R+. Me

Ps
(b) is

smaller than MPs
(b) and their gap depends only on θ and b.

3) Vertex User: Finally, we compute the performance of
the typical vertex user, which represents the worst-case per-
formance. To obtain the moments of the CSPΦ, denoted as
Mv

Ps
(b), we follow the derivation steps similar to those for the

typical general user with the condition that the user is equidis-
tant from the serving BS and the two nearest interfering BSs
[105]. Under this condition, the contact distance is averaged
out based on its PDF given in (57). With this methodology, we
have Mv

Ps
(b) given in the following theorem.

Theorem 4. With Rayleigh fading, the moments of the CSPΦ

for the typical vertex user in a Poisson downlink network are

MPs
(b) =

1

(1 + θ)2b
2F1(b,−δ; 1− δ;−θ)2

, (65)

where δ = 2/α.

Proof. See Appendix C.

Remark 6: Compared with (117), the success probability of
the typical vertex user in (65) can be expressed as Mv

Ps
(b) =

Me
Ps

(b)

(1+θ)b
. Mv

Ps
(b) is smaller than Me

Ps
(b) due to the two

equidistant closest interfering BSs.
Fig. 21 depicts the average success probabilities (i.e.,
MPs

(1)) of the LSUs. It is straightforward that the success
probability monotonically decreases with ρ. The weighted mean
of the success probabilities for the typical cell-center user and
the typical cell-boundary user with the same value of ρ are
equal to that of the typical general user.
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Fig. 21: Success probability of LSUs in Poisson downlink networks (λ = 1, α = 4).
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Fig. 22: The temporal CSP of LSUs.

4) Temporal Effect of Location Dependence: Next, we inves-
tigate how location dependence affects the temporal correlation
among different successful transmission events by evaluating
the CSP MPs (2)

MPs (1) . Fig. 22 shows how the CSP varies with ρ. It
is found that the CSP for the typical cell-center user is greater
than the typical cell-boundary user. Moreover, for both typical
cell-center and cell-boundary users, their CSPs decrease with
ρ. The reason is that the successful transmission events are
more temporally correlated when the received signal dominates
the interference. Such temporal correlation decreases when the
interference becomes stronger.

5) SIR Gain: Next, we investigate the asymptotic SIR gain
to illustrate the SIR improvement over the typical general user
due to location dependence. The MISR of the typical cell-center

user can be derived as

MISRRc =

∞∑
i=2

E
[(

r1

ri

)α
| o ∈ Rc

]
(b)
= E

[(
r1

r2

)α
| o ∈ Rc

] ∞∑
i=2

E
[(

r2

ri

)α]
,

=
E
[(

r1
r2

)α
, o ∈ Rc

]
ρ2

∞∑
i=2

E
[(

r2

ri

)α]
, (66)

where (b) holds as the condition that the typical general user is
in the cell-center region, i.e., o ∈ Rc, only affects the relative
distance between r1 and r2.

The first expectation in (66) can be derived based on the joint
distribution of r1 and r2 as

E
[(r1

r2

)α
, o ∈ Rc

]
=

∫ ρ

0

fv2(v)vαdv =
2ρ2+α

2 + α
. (67)

The second expectation in (66) can be obtained by exploiting
the distribution of the distance ratios of a PPP as

∞∑
j=2

E
[(

r2

ri

)α]
=

∑∞
j=2 E

[(
r1
ri

)α]
E
[(

r1
r2

)α]
(c)
=

2 + α

2

∞∑
j=2

∫ 1

0

vαi fi(v)dv

=
2 + α

2

∫ 1

0

vα2v−3dv

=
α+ 2

α− 2
, (68)

where (c) follows the distribution of %2.
Plugging (67) and (68) into (66) yields

MISRRc
=

2ρα

α− 2
. (69)
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Subsequently, with MISRPPP and MISRRc
given in (54) and

(69), respectively, the SIR gain of the typical cell-center user
can be obtained as

GRc =
MISRPPP

MISRRc

= ρ−α. (70)

Similarly, the SIR gains of different LSUs can be obtained as
in Table VI.
Remark 7: Since α > 2 and ρ ∈ [0, 1], the SIR gain of the
typical cell-center user is greater than or equal to one, and
the equality holds when ρ = 1. Moreover, the SIR gain of
the typical cell-boundary user is smaller than or equal to one
and the equality holds when ρ = 0. It can be found that the
influence of ρ on the SIR gain of the typical cell-center user
is much more significant than that of the typical cell-boundary
user. Moreover, the gap between the SIR gains of the typical
edge user and vertex user increases with α.

C. Summary and Discussion

We have discussed the impact of the relative distance of a
random user on its performance in Poisson downlink networks.
Based on the relationship between the contact distance and the
distance to the two nearest interferers, a user can be categorized
as cell-center, cell-boundary, cell-edge, and vertex user. We
present the derivations of the moments of the CSPΦ for the
typical cell-center, cell-boundary, cell-edge and vertex users
in two-dimensional Poisson downlink networks. To show the
direct impact of the location on the SIR, we also derive the
SIR gain of the four types of users. The major lessons learned
are as follows.
• The gaps among the b-th moments of the CSPΦ for the

typical cell-center, cell-edge and vertex users depend only
on b and the SIR threshold θ, i.e., Mc

Ps
(b) = (1 +

θ)bMe
Ps

(b) = (1 + θ)2bMv
Ps

(b), ∀b ∈ R+.
• The successful transmission events are more temporally

correlated for the typical cell-center user than the typical
cell-boundary user.

• The SIR gains for the typical cell-center and cell-boundary
user depend on the path-loss exponent and location depen-
dence coefficient ρ while those for the typical cell-edge
and vertex user only depend on the path-loss exponent.

Open Technical Issues: In the literature, a location-dependent
analysis has been carried out [105], and BS cooperation
schemes have been designed based on the location-dependent
modeling [104]. However, the location-dependent performance
for Poisson uplink networks remains unexplored. Characteriz-
ing the location-dependent uplink user is more challenging as
the uplink model is not fully tractable [65]. Another interesting
direction is to analyze the performance of LSUs in non-Poisson
cellular networks, e.g., when the transmitters exhibit repulsive
or attractive distribution.

Additionally, cell-free communication systems where
densely deployed BSs could simultaneously serve a number of
users have emerged as a practical solution for future-generation
communication systems. In such an infrastructure, the BS

cooperation schemes need to take into account the user
locations. For example, it is more meaningful to assign more
resources for cell-boundary users to improve their success
probabilities. Thus, location-dependent analysis is the key to
the design of BS cooperation schemes in cell-free massive
MIMO systems.

V. SPATIALLY CORRELATED AND INDEPENDENT
SHADOWING

The main objective of this section is to investigate the effect
of correlated and independent shadowing in large-scale systems
based on stochastic geometry analysis.

A. System Model

To model the effect of shadowing, we consider that the whole
plane is partitioned into a set of deterministic shadowing cells
S = {Sk ⊂ R2}k∈N in which the transmitters experience
similar shadowing. We consider an ad hoc network with a
Poisson field of interferers Φ introduced in Section III-A as
an example system model for the analysis in this section.

The channel gain from xj ∈ Φ to o is hjSj`(‖xj‖), where
hj and Sj are the fading coefficient and shadowing coefficient,
respectively, from xj to o, and `(‖xj‖) = ‖xj‖−α is the path-
loss function. With a Poisson field of interferers, the aggregated
interference at the receiver of interest is

Io =
∑
j∈N

hjSj`(‖xj‖), (71)

and the SIR follows as

η =
htSt`(‖xt‖)

Io
, (72)

where St denotes the shadowing coefficient of the link under
consideration.

Let c(j) be the cell index that xj resides in, i.e., c(j) = k
if xj ∈ Sk. We consider the extreme cases of (fully) correlated
and independent intra-cell shadowing. In independent shadow-
ing, the Sc(j) are all independent and distributed with CDF
Fc(j). In correlated shadowing, Sc(j) and Sc(i) are independent
only if c(j) 6= c(i), and Sc(j) = Tk for all xj ∈ Sk. By
choosing Fk, different shadowing properties can be assigned
to the individual cells.

B. Performance Analysis

We first characterize the Laplace transform of the interfer-
ence. Then, based on it, we derive the mean and variance of
the interference. Furthermore, we obtain the moments of the
CSPΦ under both correlated and independent shadowing.

1) Laplace Transform of the Interference: To analyze the
interference distribution, we start by characterizing the Laplace
transform of the aggregated interference at the target receiver at
the origin with correlated and independent shadowing, denoted
by ICor

o and IInd
o , respectively, by following the methodology

in [108]. Similar to the derivation steps of the moments of
the CSP given a Matérn cluster field of interferers presented
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TABLE VI: MISR and SIR gain of location-specific users

User Location MISR SIR Gain
Typical general user 2/(α− 2) 1
Typical cell-center user 2ρα/(α− 2) ρ−α

Typical cell-boundary user 2(1−ρα+2)/(α−2)(1−ρ2) (1−ρ2)/(1− ρα+2)
Typical edge user (α+ 2)/(α− 2) 2/(α+ 2)
Typical vertex user 2α/(α− 2) 1/α

in Appendix A, we first express the Laplace transform as the
expectation of the product of a function of the locations of the
interferers given the distribution of the shadowing coefficients.
Then, by the PGFLs of MCP given in (34), we convert the
expectation into an integral expression as a function of the
shadowing coefficients. Subsequently, the randomness of the
shadowing can be averaged out by conditioning on that the
daughter points in each cluster are associated with the same and
independent shadowing coefficients with correlated shadowing
and independent shadowing, respectively.

Based on this methodology, the Laplace transforms of ICor
o

and IInd
o are given in the following theorem.

Theorem 5. In a Rayleigh fading environment with a Poisson
field of interferers, the conditional Laplace transform of the
interference at the target receiver is

LICor
o

(s) =∏
k∈N

ETk

[
exp

(
−λ
∫
Sk

(
1− 1

1+s`(‖x‖)Tk

)
dx

)]
, (73)

with correlated shadowing, and

LIInd
o

(s) =∏
k∈N

exp

(
−λ
∫
Sk

(
1− ETk

[
1

1+s`(‖x‖)Tk

])
dx

)
, (74)

with independent shadowing.

Proof. See Appendix D.

According to Jensen’s inequality, i.e., the convex transforma-
tion of an expectation equals or exceeds the expectation over
the convex transformation, we have the inequality in (75). Fur-
thermore, since exp(−x) is a completely monotone function,
we readily obtain the following observation by comparing (73)
and (74).

Remark 8: For all s > 0, LICor
o

(s) > LIInd
o

(s).
2) Mean and Variance of Interference: Due to the singularity

of the path-loss function `(x), we adopt `ε(x) = 1
ε+‖x‖α , α >

2, ε > 0, to evaluate the mean and variance of interference,
similar to Sec. III-B1. As the mean of a random variable can
be derived by taking the first-order derivative of its Laplace
transform w.r.t. s and setting s = 0, i.e., E[X] = −dLX(s)

ds |s=0,
we can easily obtain the mean interference as

E
[
IInd
o

]
= E

[
ICor
o

]
= λ

∑
k∈N

E[Tk]

∫
Sk

1

ε+ ‖x‖α
dx,

which shows that the mean interference at the typical receiver
with independent shadowing and correlated shadowing are
identical, i.e., IInd

o = ICor
o .

The same result can also be obtained from Campbell’s
Theorem [3, Thm. 4.1], which shows that it holds for all
stationary point processes with an arbitrary fading model.

As the second moment of a random variable can be derived
by evaluating the second derivative of its Laplace transform
w.r.t. s at s = 0, the variance of IInd

o can be obtained based on
the Laplace transform as [108]

V[IInd
o ] = E

[(
IInd
o

)2]− E
[
IInd
o

]2
=

d2LIInd
o

(s)

d2s2

∣∣
s=0
−
(

dLIInd
o

(s)

ds

∣∣
s=0

)2

= 2λ
∑
k∈N

E
[
T 2
k

] ∫
Sk

1(
ε+ ‖x‖α

)2 dx

+ λ2
∑
k∈N

E[Tk]2
(∫

Sk

1

ε+ ‖x‖α
dx

)2

. (76)

In the same manner, the variance of ICor
o can be derived as

V[ICor
o ] = 2λ

∑
k∈N

∫
Sk

E
[
T 2
k

](
ε+ ‖x‖α

)2 dx

+ λ2
∑
k∈N

E[Tk]2
(∫

Sk

1

ε+ ‖x‖α
dx

)2

+ λ2
∑
k∈N

V[Tk]

(∫
Sk

1

ε+ ‖x‖α
dx

)2

(a)
= V[IInd

o ]+λ2
∑
k∈N

V[Tk]2
(∫

Sk

1

ε+‖x‖α
dx

)2

︸ ︷︷ ︸
>0

, (77)

where (a) follows from (76). Comparing (76) and (77) yields
the following observation.

Remark 9: The variance of the interference at the typical
receiver with correlated shadowing is greater than that with
independent shadowing, i.e., V[ICor

o ] > V[IInd
o ].

3) Moments of the CSPΦ: Given the point process Φ, the
CSP is

P[η > θ | Φ] = P
[
htStr

−α
t

Io
> θ

∣∣∣ Φ

]
(a)
= ESt,(Sj)

[∏
j∈N

(
1 +

θrαt r
−α
j Sj

St

)−1
]
,
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ETk
[

exp

(
− c̄

∫
Sk

(
1− 1

1 + s`(‖x‖)Tk

)
dx

)]
> exp

(
− c̄

∫
Sk

(
1− ETk

[
1

1 + s`(‖x‖)Tk

]
dx

))
. (75)

where (a) follows the derivations of (109) in Appendix A.
Then, the moments of the CSPΦ can be represented as

MPs(b) = E

[∏
j∈N

(
1+

θrαt r
−α
j Sj

St

)−b]
.

By following the same methodology to the proof of Theo-
rem 5, we have MPs

(b) derived in the following theorem.

Theorem 6. In a Rayleigh fading environment, the conditional
moments of the CSPΦ under correlated shadowing and inde-
pendent shadowing are given, respectively, by (78) and (79),
shown on the top of the next page.

Remark 10: It follows from Remark 8 that with Rayleigh
fading, the moments of the CSPΦ under correlated shadowing
are greater than that with independent shadowing.

Next, we numerically evaluate the network performance
under correlated and independent shadowing assumptions. We
assume Tk = κNk(x) [108], where κ is the attenuation factor
accounting for the signal loss while penetrating a blockage
(e.g., a wall) and Nk(x) represents the number of blockages
between x and the receiver of interest. Nk(x) is assumed
to be a Poisson random variable for each link [109], i.e.,
Nk(x) ∼ P(λb‖x‖), where λb denotes the blockage density.
With correlated shadowing, the transmitters in the same cell
Sk are associated with the same shadowing coefficient Tk =
κNk(dk,o), Nk(dk,o) ∼ P(λbdk,o), where dk,o represents the
distance between the center of Sk and the origin. Differently,
with independent shadowing, the transmitters at xj ∈ Sk are
associated with i.i.d. shadowing coefficients Sj = κNk(dk,o),
Nk(dk,o) ∼ P(λbdk,o). Besides, we assume that the link
between the target receiver and the serving transmitter is subject
to no shadowing, i.e., St = 1. For the spatial configuration of
the shadowing cells, we consider the example in Fig. 23, where
S = {Sk}k∈N is a set of squares with length L. It is worth
noting that the analytical framework can be extended to other
types of point processes by changing the distribution of points
as long as |Sk| <∞, i.e., the point process has a finite number
of points in each shadowing cell almost surely.

Figure 24 illustrates the success probability, i.e., MCor
Ps

(1)
and MInd

Ps
(1), as a function of the SIR threshold. It can be

observed that the success probability with correlated shadowing
is greater than that with independent shadowing, which agrees
with Remark 10. Moreover, the gap between the success prob-
abilities with correlated and independent shadowing decreases
as the cell size (i.e., L2) becomes smaller, as in this case
the signals from the interferers experience nearly independent
shadowing even with the correlated shadowing model.

Furthermore, to evaluate the temporal effect of shadowing,
we evaluate the temporal CSP with both correlated and indepen-
dent fading, i.e.,

MCor
Ps

(2)

MCor
Ps

(1)
and

MInd
Ps

(2)

MInd
Ps

(1)
, as shown in Figure 25.

We can observe that correlated shadowing results in more tem-
poral dependence between two successful transmission events.
The gap of CSPs between correlated and independent shadow-
ing decreases as the cell size L2 becomes larger. Moreover,
the dependence between two successful temporal transmission
events increases as the cell size becomes smaller, especially
when the SIR threshold is small. The reasons for the above
observations can be ascribed to the adopted shadowing model,
which essentially leads to exponential path loss.

C. Summary and Discussion
In this section, we have established an analytical framework

to model the interference distribution and success probabilities
in networks with spatially-correlated shadowing and spatially-
independent shadowing. In particular, the analytical framework
characterizes deterministic shadowing cells where the transmit-
ters inside are associated with the same shadowing effects. The
key lessons learned are as follows.
• Spatially-correlated shadowing generates the same inter-

ference as but higher variance than spatially-independent
shadowing.

• The moments of the CSPΦ under spatially-correlated
shadowing is greater than that with spatially-independent
shadowing. The performance increase reduces when the
cell size shrinks.

• The successful transmission events are more temporally
correlated with spatially-correlated shadowing than with
spatially-independent shadowing.

Open Technical Issues: Most of the existing literature, e.g.,
[108], [110]–[113], only investigates network performance un-
der the assumptions that the shadowing coefficients of the
interferers in the same shadowing cells are either fully spatially
correlated or independent. However, in practice, the interferers
in the same shadowing cell may only experience partially
correlated shadowing effect due to their location difference.
More accurate shadowing models need to be developed by
taking into account the properties (e.g., shape, density and
mobility) of the obstacles that may exhibit location-dependency
(e.g., urban and rural areas). Moreover, temporal shadowing
variation due to mobility of obstacles (e.g., vehicles), access
points (e.g., drone hot spots) or users is an important factor to
be investigated in practical systems.

Different from the deterministic shadowing cells introduced
in this section, reference [114] introduces a correlated shadow-
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MCor
Ps

(b) =
∏
k∈N

ETk,Tc(t)

[
exp

(
−λ
∫
Sk

(
1−

(
1

1+θrαt ‖x‖−αTk/Tc(t)

)b)
dx

)]
, (78)

MInd
Ps

(b) =
∏
k∈N

ETc(t)

[
exp

(
−λ
∫
Sk

(
1− ETk

[(
1

1+θrαt ‖x‖−αTk/Tc(t)

)b])
dx

)]
. (79)

Fig. 23: Configuration of shadowing cells for simulations.

ing model dependent on the Poisson Voronoi cell. This model is
suitable for studying coverage-oriented cellular networks where
BSs deployment is configured to guarantee the cell-boundary
users to acquire sufficient signal strength. An intriguing future
direction is to extend the study of cell-dependent correlated
shadowing to capacity-oriented cellular networks.

VI. SPATIAL-TEMPORAL INTERACTIONS BETWEEN
QUEUES

The majority of the existing literature heavily relies on
the assumption that each transmitter always has packets in
the buffer to send out, which does not characterize random
traffic flows. While the temporal randomness of the traffic
flows complicates the analysis, it is nevertheless essential to
understanding system-level performance. This is due to the
fact that the traffic patterns in the evolving wireless networks
are getting increasingly more dynamic and heterogeneous. The
main difficulty of random traffic characterization originates
from the correlation among the buffer statuses of different
transmitters, often referred to as interacting queues [115],
[116]. Since the queues interact spatially and temporally, an
exact analysis of the mutual interference is quite challenging.

A. System Model

We consider both Poisson downlink networks (as introduced
in Section III-A) and Poisson bipolar networks [3, Def. 5.8].
In a Poisson downlink network, the transmitters (i.e., BSs)
and receivers (i.e., users) are distributed following independent
homogeneous PPPs, denoted as ΦB = {xj}j∈N and Φu with
intensity λB and λu, respectively. The points in ΦB are assumed

to be ordered from nearest to farthest to the origin, i.e.,
‖xj‖ < ‖xj+1‖. It is assumed that each user is associated with
its nearest BS for downlink transmission. In a Poisson bipolar
network, the transmitters are distributed as a homogeneous PPP
Φ with intensity λ. Each transmitter is paired with one receiver
in a uniformly random direction with a link distance rt. Without
loss of generality, we study the performance of the typical
receiver, conditioned to be at the origin, in both models.

We consider a discrete-time transmission and queueing
model. Specifically, the data transmissions are divided into
equal-duration time slots. We consider fixed-length data packets
and assume it takes exactly one time slot to send out one
packet. If a transmitter is scheduled for transmission, it can
only send out the accumulated packet(s) that arrived prior to the
transmission. In light of queueing, we assume that the incoming
packets at each queue are stored in a buffer with infinite size
and sent out on a first-in-first-out basis. A transmitted packet is
removed from the head of the queue only if it is successfully
decoded at the target receiver.

For Poisson downlink networks, each BS maintains an
individual queue for the arrived packets of each associated
user [30]. Hence, each BS has a number of queues equal to
the number of users in its Voronoi cell. The temporal arrival
of traffic at each queue follows an i.i.d. Bernoulli process with
arrival rate ξu representing the probability of a new arrival per
time slot. The users associated with the same BS are served
based on random scheduling [30], i.e., each BS randomly
selects one user within its Voronoi cell with equal probability
to serve in each time slot. If the selected user has a non-
empty queue at the BS, the BS is scheduled for transmission.
Otherwise, the BS is muted.

For Poisson bipolar networks, the packet arrival at each
transmitter xj ∈ Φ follows an i.i.d. Bernoulli process with
arrival rate ξ. At each time slot, the transmitters with non-empty
buffer are all scheduled for transmission [117].

Given that the typical receiver is receiving data, its SIR
in Poisson downlink and Poisson bipolar networks are given,
respectively, by

η =
h1‖x1‖−α∑∞

j=2 ιjhj‖xj‖−α
, xj ∈ ΦB, (80)

and

η =
ht‖xt‖−α∑

j∈N ιjhj‖xj‖−α
, xj ∈ Φ, (81)

where ιj denote the state indicator of the transmitter located
at j which equals 1 and 0 when the transmitter is on and off,
respectively.
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Fig. 24: Success probability versus SIR threshold under correlated
and independent shadowing (λ = 1, κ = 0.5, α = 4, rt = 1).
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Fig. 25: CSP versus L under correlated and independent shadowing
(λ = 1, α = 4, rt = 1, θ = 1).

B. Performance Analysis

In large random networks, characterizing the exact queue
interaction among the transmitters is quite challenging. Fortu-
nately, in a large-scale network, the correlation among the inter-
acting queues tends to be “weak” and “global” [118]. Therefore,
the impact of interacting queues tends to be negligible. In the
following, we show how to approximate the success probability
in Poisson downlink networks with “interacting queues” by
exploiting the mean-field property (e.g., as in [117], [118]).
• We first compute the success probability of the typical

user’s cell, i.e., the cell containing the origin, based on
the assumption that each BS at xj ∈ Φ\{x1} is active
independently with probability pA = E[ιj ].

• We then derive the active probability of the serving BS
of the typical user as a function of packet arrival rate and
success probability (i.e., service rate) based on queueing
theory. By inserting the success probability obtained in the
previous step, we can establish a fixed-point equation of
pA.

• We finally obtain the success probability by plugging in
pA obtained by solving the fixed-point equation.

Based on the above methodology, for a Poisson downlink
network, we have the following result.

Theorem 7. With infinite buffer size and random scheduling,
the success probability of a Poisson downlink network under
Rayleigh fading can be approximated by Ps, obtained by
solving the fixed-point equation

Ps =

(
1 +

ξu(2F1(1,−δ; 1− δ;−θ)− 1)∑∞
n=1 pNu

(n)Ps/n

)−1

, (82)

where

pNu(n) =
ννΓ(n+ ν)(λu/λB)n

n!Γ(ν)(λu/λB + ν)n+ν
, (83)

with δ = 2/α and ν = 3.5.
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Fig. 26: Success probability versus SIR threshold in Poisson downlink
networks (α = 4, λu/λB = 5).

Proof. See Appendix E.

Fig. 26 shows the success probability under different packet
arrival rates ξu in a Poisson downlink network. We observe
that ignoring the temporal and spatial correlation among queue
iterations closely approximates the success probability achieved
in the presence of the interactions. This is due to the “mean
field” effect in a large-scale network. We also note that the traf-
fic arrival rate ξ plays a pivotal part in the success probability.
For example, to achieve a target success probability of 80%,
the disparity of the supported SIR thresholds with ξu = 0.01
and ξu = 0.05 can be over 10 dB. A larger ξu decreases the
success probability due to the increased density of interferers.

Next, we discuss the success probability in Poisson bipolar
networks. By following the same methodology as used for
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Poisson downlink networks, we obtain the result presented in
the following theorem.

Theorem 8. If all links in a Poisson bipolar network experience
Rayleigh fading and have infinite buffer size, the success
probability of a typical link is given by (84), where δ = 2

α .

Proof. See Appendix F.

Next, we explore the asymptotics of the success probability
by utilizing the expansion of the Lambert-W function as
W(z) ∼ z when z → 0, which follows from xex ∼ x when
x→ 0.

Fig. 27 depicts the success probability versus the SIR
threshold with different settings of the packet arrival rate.
The analytical results closely match the simulation results,
which validates the effectiveness of the adopted approximation.
Additionally, the success probability with ξ = 1.0 overlaps that
with ξ = 0.85 when the SIR threshold is large (e.g., when
θ > 20 dB). The reason is that in both cases the service rate
of each queue is below the packet arrival rate, and thus the
buffer is always non-empty. As a result, all the transmitters
remain active for transmission, which renders the same success
probability under different packet arrival rates. This observation
also shows that the success probability is lower-bounded by the
case with a full load.

Fig. 28 further illustrates the success probability in a Poisson
bipolar network under different densities. It can be observed
that the approximation tends to lose its accuracy with the
increase of the network density. The reason is that, in a Poisson
bipolar network, the interferers can be arbitrarily close to the
target receiver, and thus the queues of the serving transmitters
and the interferers are strongly coupled. The spatial-temporal
correlation of the buffer status cannot be ignored in this regime.

C. Summary and Discussion

This section has developed models to analyze wireless sys-
tems with unsaturated buffers. Specifically, by integrating re-
sults from queueing theory, we have presented the derivations of
success probabilities for Poisson bipolar and Poisson downlink
systems given the packet arrival rate. The key lessons learned
are as follows.
• The spatial correlation among the queue statuses of dif-

ferent transmitters and the temporal correlation among
the queue status of the same transmitter can be ignored
when different queues are weakly coupled, e.g., in Pois-
son downlink networks, and cannot be ignored when
the queues are strongly coupled, e.g., in Poisson bipolar
networks.

• The temporal correlation among the successful transmis-
sion events decreases with increasing packet arrival rate.

Open Technical Issues: In Section VI, we have shown that
in large Poisson downlink networks, the interaction among
the queues becomes weak, and the impact of the temporal
and spatial correlation tends to be negligible. However, this
effect only appears due to the cellular infrastructure, where

the interfering BSs are further away from the typical user
than the serving BS. In infrastructure-less networks that do
not impose any restrictions on the interferers’ locations, the
interaction between the queues tends to be strong, thus, their
spatial-temporal correlation cannot be ignored. Thus, further
research efforts are needed to characterize the dynamics of
strongly coupled queues in large-scale networks.

VII. SPATIALLY-CORRELATED INTERFERENCE AND
RELAYING

Multihop relaying is an effective technique to extend the
communication range with limited transmit power at each
hop, enhancing the reliability and throughput of point-to-point
communication [119]. In multihop relaying, the transmission
performance at different hops can be impacted by some com-
mon interferers. Therefore, the spatial characteristics of the
interferers can have a substantial impact on the end-to-end
transmission performance [78]. The goal of this section is to
quantify the spatially and temporally-correlated interference
and demonstrate its effect on the performance of multihop
relaying.

A. System Model

We consider a multihop relay network consisting of a source
node and a receiver node, which is M hops away from the
transmitter node, in a random field of interferers. The locations
of the source node S and the m-th hop receiver (i.e., (m+ 1)-
th hop transmitter) are deterministic and denoted by xS and
zm, respectively. The transceiver node in each hop works in a
half-duplex fashion. Let dm represent the Euclidean distance
of the m-th hop link, i.e., d1 = ‖z1 − xS‖ and dm = ‖zm −
zm−1‖, for 2 ≤ m ≤ M . The route from the source node to
the M -th hop receiver is fixed. The decode-and-forward (DF)
relaying protocol is adopted such that each hop first decodes
the received signal and forwards the re-encoded version to the
next hop. We consider a Poisson field of interferers where the
locations of the interferers Φ ⊂ R2 are a PPP with intensity
λ, as illustrated in Fig. 29(a). Note that the relaying system of
interest is considered to be independent of the interferers.

We assume that each transmitter in the considered system
uses unit transmit power. Let Φm = {xj,m}j∈N denote the
point process of interferers during the m-th hop transmission.
The SIR at the m-th hop can be expressed as

ηm =
hmd

−α
m∑

j∈N hj,m‖xj,m − zm‖−α
, (85)

where hm represents the power gain of small-scale fading for
the m-th transmission hop and hj,m represents the small-scale
fading gain between the interferer j and the m-th hop receiver,
which are both i.i.d. exponential random variables with unit
mean.

For the analysis of the success probability of multihop
relaying, we consider both QSI and FVI with which the
transmission of different hops are subject to the interference
from the same point process, i.e., Φ1 = Φ2 = · · · = ΦM = Φ,
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Ps ≈ max

{
exp

(
W
(
− ξλπr2

t θ
δΓ(1+δ)Γ(1−δ)

))
, exp

(
− λπr2

t θ
δΓ(1+δ)Γ(1−δ)

)}
, (84)
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Fig. 27: Success probability as a function of the SIR threshold in
Poisson bipolar networks (α = 4, rt = 2, λ = 0.001).
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Fig. 28: Success probability in Poisson bipolar networks under
different intensities.

and independent point processes, respectively. With DF relaying
protocol [121], the end-to-end success probability of an M -hop
relaying system with QSI and FVI are given, respectively, by

PQSI
M = E

[
P
[ M⋂
m=1

{
ηm > θ

} ∣∣ Φ

]]

= E

[
M∏
m=1

P
[
ηm > θ | Φ

]]
(86)

Fig. 29: Multihop relaying in the presence of random interferers [120].

and

PFVI
M = P

[
M⋂
m=1

{
ηm > θ

}]

=

M∏
m=1

P
[
ηm > θ

]
. (87)

B. Moments of the End-to-End CSPΦ

This subsection characterizes the moments of the end-to-end
CSPΦ of the multihop relaying.
• We compute the end-to-end JSP that the transmissions

of the M hops all succeed given the point process, i.e.,
P
[⋂M

m=1{ηm > θ} | Φm
]

(e.g., as in [122]).
• We derive the moments of the CSPΦ based on the PGFL

of the PPP.
Following the above methodology, we obtain the moments of

the end-to-end CSPΦ under both QSI and FVI in the following
theorem.

Theorem 9. The moments of the end-to-end CSP for an M -
hop relaying system in a Poisson field of interferers are given
by (88).

Proof. See Appendix G.

Fig. 30 illustrates the success probability for an M -hop
linear-route multihop relaying system where all relays are
placed on the source-destination line and all M links have
distance l. With both fields of interferers, we can observe
that correlated QSI provides a higher success probability than
independent FVI. This can be understood from the perspective
of the CSP of m-th hop given that the transmissions of the
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MPoi
Ps

(b,M)=


exp

(
− λ
∫
R2

(
1−

M∏
m=1

(
1

1 + θdαm‖x− zm‖−α

)b)
dx

)
, QSI

exp

(
− λ

M∏
m=1

∫
R2

(
1−

(
1

1+θdαm‖x− zm‖−α

)b)
dx

)
, FVI

(88)

0 0.2 0.4 0.6 0.8 1

SIR Threshold (MH)

0

0.2

0.4

0.6

0.8

1

S
u
c
c
e
s
s
 P

ro
b
a
b
ili

ty

Correlated Interference

Independent Interference

Fig. 30: Success probability of a multihop relaying system in a Poisson
field of interferers (α = 4, λ = 0.1, d1 = d2 = · · · = dM = 1).

previous hops all succeed. With FVI, we can see from (88) that
MPoi

Ps
(b,M)/MPoi

Ps
(b,M − 1) =MPoi

Ps
(b, 1). This is consistent

with the fact that with FVI, the successful transmission event
of the m-th hop is independent of those of the previous hops.

Fig. 31 demonstrates the spatial CSP of the m-th hop given
that the transmissions in the previous m− 1 hops all succeed
in the scenario with QSI, i.e.,

(
MPoi

Ps
(1,M)/MPoi

Ps
(1,M − 1)

)
for M ≥ 2. It can be seen that, with QSI, the CSP increases
considerably given the successful transmission of the first hop,
especially when the SIR threshold θ is high. Thus, the end-
to-end success probability with QSI exceeds that with FVI.
It is worth noting that with temporally correlated QSI, the
conditional outage probability, given the outage events of the
previous hops, also increases. However, this does not worsen
the end-to-end success probability, since the outage event of
any single hop leads to an end-to-end outage.

Moreover, Fig. 32 depicts the temporal CSP of an M -
hop relaying system given a previous end-to-end successful
transmission, i.e., MPoi

Ps
(2,M)/MPoi

Ps
(1,M). We can observe

that the CSP increases with the number of hops. The reason
is that a successful transmission with a larger number of hops
indicates a good channel condition, and thus the next end-to-
end transmission is more likely to succeed.

C. Summary and Discussion
In this section, we have discussed the impact of spatial-

temporal interference on the performance of multihop relaying.

In particular, we have presented the derivations of end-to-end
success probability of multihop relaying in Poisson fields of
interferers under both FVI and QSI. The main lessons learned
are as follows.

• Correlated spatial-temporal interference (i.e., QSI) im-
posed by the same interferers at different hops results
in higher success probability than independent spatial-
temporal interference (i.e., FVI).

• With correlated spatial-temporal interference, as m in-
creases, the successful transmission of the m-th hop is
more dependent on the successful transmissions of the
previous hops.

• With independent spatial-temporal interference, the CSP
of the m-th hop given the successful transmission of the
previous hops is the same as the success probability of the
m-th hop without the condition.

• With correlated spatial-temporal interference, the end-to-
end successful transmission events are more correlated
when the number of hops is larger.

Open Technical Issues: This section has presented the character-
ization of end-to-end relaying performance under QSI and FVI,
which considers a purely static network and an independent
network, respectively. The two types of interference repre-
sent two extreme cases with fully correlated and independent
interferer locations. In general, the ambient interferers (e.g.,
mobile users) may have a certain degree of movement during
different transmission attempts and result in neither a static nor
independent network environment. In such an environment, the
resulting temporal interference is only partially correlated. An
accurate characterization of the spatial-temporal correlation at
different locations would be required for performance evalua-
tion of multihop relaying systems.

VIII. TEMPORALLY-CORRELATED INTERFERENCE AND
RETRANSMISSION

The goal of this section is to derive the success probabil-
ities of a target transmission link with retransmissions under
temporally correlated and independent interference.

A. System Model

This section considers the Poisson ad hoc network model (as
introduced in Section III-A). Let Φ(k) = {x(k)

j }j∈N denote the
node locations in time slot k. The aggregated interference and
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Fig. 31: The spatial CSP of the M -th hop relaying in a Poisson field
of interferers with QSI.
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Fig. 32: The temporal CSP of an M -hop relaying system in a Poisson
field of interferers with QSI.

receive SIR at the target receiver located at o in time slot k can
be expressed, respectively, as

I(k)
o =

∑
j∈N

h
(k)
j ‖x

(k)
j ‖

−α

η(k) =
h

(k)
t ‖x

(k)
t ‖−α

I
(k)
o

, (89)

where h
(k)
t and h

(k)
j denotes the small-scale fading gains

between the transmitters at x(k)
t , x(k)

j and the target receiver
in time slot k which are i.i.d. exponential random variables
with unit mean.

We consider both QSI and FVI with which different trans-
mission attempts are influenced by the same set and different
sets of interferers, respectively. As a result, the interferences,
and thus the successful transmission events, in the considered
system are temporally correlated with and independent of QSI
and FVI, respectively.

B. Performance Analysis

Let Ak , {η(k) > θ} denote the successful transmission
event in time slot k. The JSP of K transmissions in the cases
with QSI and FVI are defined, respectively, as

J QSI
K , E

[
P
[ K⋂
k=1

Ak
∣∣ Φ(k)

]]

= E

[
K∏
k=1

P
[
Ak | Φ(k)

]]
(90)

and

J FVI
K , P

[ K⋂
k=1

Ak

]
=

K∏
k=1

P
[
Ak
]
. (91)

1) Joint Success Probability: In this subsection, we show
how to derive the JSP of K transmissions based on the PGFL
of the PPP. The final results are presented in the following
theorem [81].

Theorem 10. (Temporal JSP) With a Poisson field of interfer-
ers, the probability that a link over distance rt has K successful
transmissions in a row with QSI and FVI are given, respectively,
as

J QSI
K = exp

(
− cλθδr2

tDK(δ)
)
, (92)

J FVI
K = exp

(
− cλθδr2

tK
)
, (93)

where c = πΓ(1 + δ)Γ(1− δ) and DK(δ) = Γ(K+δ)
Γ(K)Γ(1+δ) .

Proof. See Appendix H.

Remark 11: J QSI
1 = J FVI

1 as D1(δ) = 1, which indicates that
the success probability of any single time slot is not influenced
by the type of interference experienced.
Remark 12: Since δ < 1 (i.e., α > 2), it is readily checked
that DK(δ) < K for K ∈ N, and thus J QSI

K > J FVI
K . This

reveals that temporally-correlated QSI results in higher JSP than
the temporally-independent FVI. Fig. 33 illustrates the JSP for
K = 2, 3, 4 with both QSI and FVI.
Remark 13: When δ → 0 (i.e., α → ∞), it can be found
that J QSI

1 = J QSI
2 = · · · = J QSI

K = e−λπr
2
t , equivalently

P[Ak+1|Ak] = 1 for k = 1, . . . ,K. This indicates that despite
the effect of small-scale fading, the successful transmission
events are fully correlated.
Remark 14: When δ → 1 (i.e., α→ 2), it can be found that a)
J QSI
K → e−cλθ

δr2
tK , equivalently P[Ak+1|Ak] = e−cλθ

δr2
t for

k = 1, . . . ,K. This means the successful transmission events
are independent; b) c→∞, which indicates that J QSI

K → 0.
2) Conditional Success Probability: As a consequence of

Theorem 10, the CSPs of succeeding at K + 1-th transmission
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given the previous K successful transmissions can be directly
obtained following Bayes rule as

CQSI
K+1,K = P

[
AK+1 | A1, . . . , AK

]
=
J QSI
K+1

J QSI
K

= exp
(
− cλθδr2

t

(
DK+1(δ)−DK(δ)

))
,

and

CFVI
K+1,K =

J FVI
K+1

J FVI
K

= exp
(
− cλθδr2

t

)
.

Remark 15: It can be readily checked that ∂CQSI
K+1,K/∂K > 0

which indicates that CQSI
K+1,K monotonically increases with the

number of transmission attempts K.
Fig. 34 shows the temporal CSPs with QSI when K =

1, 2, 3, 4. The numerical results illustrate the above-discussed
properties. Given that the previous transmissions succeed, the
CSP considerably increases, especially with a high SIR thresh-
old θ.

3) Correlation Coefficient: Let Qk = 1Ak be the indicator
that event Ak happens. The correlation coefficient between Qk
and Qj with k 6= j is

ζQSI
Qk,Qj

=
P[Ak ∩Aj ]− P2[Ak]

P[Ak ∩Ak]− P2[Ak]

(a)
=
J QSI

2 −
(
J QSI

1

)2
J QSI

1 (1− J QSI
1 )

=
exp(−cλθδr2

t (δ + 1))− exp(−2cλr2
t θ
δ)

exp(−cλr2
t θ
δ)(1− exp(−cλr2

t θ
δ))

=
exp(cλθδr2

t (1− δ))− 1

exp(cλθδr2
t )− 1

, (94)

where (a) holds as {Qk}k∈{1,...,K} are identically distributed.
Moreover, ζFVI

Qk,Qj
= 0 as JFVI

2 =
(
JFVI

1

)2
. Since ζQSI

Qk,Qj
>

0 and ζFVI
Qk,Qj

= 0, it is evident that QSI and FVI result in
temporally-correlated and independent successful transmission
events, respectively.
Remark 16: When δ → 0 and δ → 1, ζQSI

Qk,Qj
→ 1 and

ζQSI
Qk,Qj

→ 0, indicating that the Qk and Qj become fully
correlated and fully uncorrelated, respectively.
Remark 17: For given δ and r, ζQSI

Qk,Qj
is a decreasing function

of λ and θ. This can be checked that since 0 < δ < 1 (i.e.,
α > 2), the denominator scales up at a higher rate than the
numerator of (94) with the increase of λ or θ. Fig. 35 shows the
correlation coefficient of successful transmission events with
QSI.

4) Success Probability with Retransmissions: In the case of
transmission failure, multiple transmissions can be carried out
to deliver a message. Let us consider a retransmission protocol
where the receiver requests the associated transmitter to send
the message again upon a transmission failure until reaching a
maximum number of transmission attempts denoted as K. At
the receiver side, the received signal at each time slot is decoded

independently. The success probability with retransmissions can
be expressed as

PK , P
[ K⋃
k=1

Ak

]
. (95)

Note that from the above definition, we have P1 = J1, where
Jk, k ∈ N, is defined in (7).

Let A , {A1, . . . , AK} denote the set of the successful
transmission events and P(A) represent the power set of A.
By applying the inclusion-exclusion principle, we obtain the
success probability with retransmissions as

PK =
∑

A∈P(A)

(−1)|A|+1P
[
A
]

(a)
=

K∑
k=1

(−1)k+1

(
K

k

)
Jk, (96)

where (a) follows as {ηk}k∈{1,2,...,K} are identically dis-
tributed, and Jk has been obtained in Theorem 10.

Fig. 36 shows the success probability with retransmissions
with both QSI and FVI. It can be seen that PFVI

K exceeds
PQSI
K . The reason is that the transmission failures are temporally

correlated and thus are likely to occur in succession with QSI.
By contrast, with FVI, transmissions have a better chance
to succeed as previous transmission failure does not infer a
lower success probability in the current time slot. This can be
understood by checking the dependency of transmission failure.
Let S̄ , {η(k) < θ}. By following the inclusion-exclusion
principle, the joint outage probability of two transmission
events is given by

J̄2 = P
[
Ā1 ∩ Ā2

]
= 1− P

[
A1 ∪A2

]
= 1− (2J1 − J2)

= 1− 2 exp(−cλθδr2
t ) + exp(−cλθδr2

t (1 + δ)).

Subsequently,

J̄ QSI
2(
J̄ QSI

1

)2 = 1 +
exp(cλθδr2

t (1− δ))− 1

(exp(cλθδr2
t )− 1)2

> 1,

and J̄ FVI
2(
J̄ FVI

1

)2 = 1.

Moreover, it is evident that the conditional outage probability
increases given the occurrence of previous transmission failure
by checking

P
[
Ā1 | Ā2

]
=

P
[
Ā1 ∩ Ā2

]
P
[
Ā1

]
= 1− exp(−cλθδr2

t )
1− exp(−δcλθδr2

t )

1− exp(−cλθδr2
t )

≥ 1− exp(−cλθδr2
t ) = P

[
Ā1

]
.
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Fig. 33: JSP with a different number of transmission attempts in
Poisson ad hoc networks (α = 4, λ = 0.1).
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Fig. 34: CSP with a different number of transmission attempts in
Poisson ad hoc networks (α = 4, λ = 0.1).
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Fig. 35: Correlation coefficient in Poisson ad hoc networks (α = 4).
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Fig. 36: Success probability with retransmission in Poisson ad hoc
networks (α = 4, λ = 0.1).

C. HARQ Retransmission Schemes

For transmission and decoding, similar to [85], we consider
two categories of HARQ, i.e., Type-I HARQ and Type-II
HARQ schemes.

• If the SIR at a target receiver for the initial transmission
does not exceed the threshold θ, a one-time retransmission
request is sent to the serving transmitter. After receiving
the retransmitted signals, the target receiver with Type-
I HARQ abandons the received signal from the initial
transmission and decodes only from the received signal
from the retransmission. Given a maximum number of
transmissions K and a SIR threshold θ, the success
probability is given by

PI = P
[ K⋃
k=1

{
η(k) > θ

}]
, (97)

where η(k) is the SIR of k-th transmission of the same
content with Type-I HARQ retransmission scheme.

• With Type-II HARQ with chase combing (CC) codes and
maximal ratio combining (MRC) of signals from both
the initial transmission and retransmission, the success
probability is given by

PII = P
[ K⋃
k=1

{
Υk > θ

}]
, (98)

where Υk =
∑k
i=1 η

(k) is the effective SIR after the k-th
transmission of the same content with the Type-II HARQ
retransmission scheme.

In what follows, the success probabilities of Type-I HARQ
and Type-II HARQ-CC schemes are derived for the case with
K = 2, i.e., each packet is retransmitted once if the initial
transmission is not successful. The cases with K ≥ 3 can be
obtained by following the same methodology straightforwardly.
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1) Success Probability of Type-I HARQ: When K = 2, the
success probability with Type-I HARQ given in (97) can be
expressed as [123]

PI = P
[
η(1) > θ

]
+ P

[
η(1) > θ, η(2) ≤ θ

]
(a)
=

2∑
k=1

P
[
η(k) > θ

]
− P

[
η(1) > θ, η(2) > θ

]

(b)
=



2∑
k=1

P
[
η(k)>θ

]
− P

[
η(1)>θ, η(2)>θ | Φ

]
, QSI

2∑
k=1

P
[
η(k)>θ

]
−

2∏
k=1

P
[
η(k)>θ

]
, FVI

(99)

where (a) applies the inclusion-exclusion principle and (b)
follows as the point processes across different time slots are
the same and i.i.d. for QSI and FVI, respectively. Subsequently,
based on the definition of J QSI

K and J FVI
K in (90) and (91),

respectively. we can obtain the following corollary.

Corollary 3. Given that each unsuccessfully transmitted packet
is retransmitted once, the success probability under Type-I
HARQ retransmission scheme with QSI and FVI are given,
respectively, as

PQSI
I = 2J QSI

1 − J QSI
2 , (100)

PFVI
I = 2J FVI

1 −
(
J FVI

1

)2
, (101)

where J QSI
K and J FVI

K for K ∈ N are given in (92) and (93),
respectively.

2) Success Probability of Type-II HARQ-CC: Next, we
discuss how to obtain the success probability of Type-II HARQ-
CC. When K = 2, the success probability with Type-II HARQ
given in (97) can be expressed as PII = P

[
η(1) > θ

]
+P
[
η(1) +

η(2) > θ, η(1) ≤ θ
]

where the first term on the right-hand side
of the equality has been obtained in Section VIII.C.1. To obtain
the second term, we need to compute the distribution of the
SIR of any single time slot. In particular, we first calculate the
CDF of the SIR and then obtain the corresponding PDF by
taking the derivative of the CDF. With the PDF of the SIR,
we then derive the joint probability that events η(1) + η(2) > θ
and η(1) < θ both occur. The final results are presented in the
following corollary.

Corollary 4. Given that each unsuccessfully transmitted packet
is retransmitted once, the success probability under Type-II
HARQ-CC retransmission scheme with QSI and FVI are given,
respectively, as

PQSI
II = exp(−cλθδr2

t )+2πλ

∫ θ

0

∫ ∞
0

rαt r
−αJ(r, u)

(1 + urαt r
−α)2

rdr

× exp

(
− 2πλ

∫ ∞
0

(
1− J(r, u)

1 + urαt r
−α

)
rdr

)
du, (102)

and

PFVI
II =exp(−cλθδr2

t )+2πλ

∫ θ

0

∫ ∞
0

rαt r
−α

(1 + urαt r
−α)2

rdr

× exp

(
− 2πλ

∫ ∞
0

(
1− 1

1 + urαt r
−α

)
rdr

)
× exp

(
− 2πλ

∫ ∞
0

(
1− J(r, u)

)
rdr

)
du, (103)

where c=πΓ(1 + δ)Γ(1− δ) and J(r, u) = 1
1+(θ−u)rαt r

−α .

Proof. See Appendix I.
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Fig. 37: Success probabilities of HARQ retransmission schemes in
Poisson ad hoc networks (K = 2).

Fig. 37 depicts the success probabilities of Type-I HARQ and
Type-II HARQ-CC when K = 2. As shown, Type-II HARQ-
CC provides a higher success probability at all SIR thresholds.
Nevertheless, the success probabilities of the two schemes are
comparable when the SIR threshold is small (e.g., θ < 0.05
MH). This indicates that, in the high-coverage regime, the SIR
gain due to MRC has an imperceptible effect on the success
probability. The reason is that low SIR thresholds render a high
success probability of the first transmission, which makes the
impact of retransmission negligible.

D. Summary and Discussion

This section has discussed the influence of temporal interfer-
ence correlation on the retransmission performance of a trans-
mission link in a Poisson field of interferers. In particular, we
have derived the JSP of multiple transmissions, the correlation
coefficient for two transmissions, and the success probability
for a given number of transmission attempts. Furthermore,
based on the above results, we have shown how to analyze the
success probabilities under Type-I HARQ and Type-II HARQ
retransmission schemes. The lessons learned are as follows.
• Temporally-correlated interference results in a higher

JSP than temporally-independent interference. The per-
formance gap between the two cases increases with the
number of transmission attempts.

• The CSP of K-th transmission given that the previous
K − 1 transmissions all succeed increases with K and
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remains the same with temporally-correlated interference
and temporally-independent interference, respectively.

• Temporally-correlated interference results in higher suc-
cess probability with retransmission than temporally-
independent interference. The gap between the success
probabilities with retransmission under the two types of
interference increases with the number of transmission
attempts.

• The performance gain of Type-II HARQ over Type-I
HARQ is larger with temporally-correlated interference
than with temporally-independent interference.

Open Technical Issues: This section has presented models to
characterize the impact of temporal interference correlation in
a retransmission-based (or multi-packet transmission) system.
We have considered both Type-I HARQ and Type-II HARQ
systems and evaluated both CSP and JSP. From a practical point
of view, the impact of “interacting queues” may need to be
considered in a retransmission scenario. Also, the performance
of HARQ systems in the presence of interference correlation
in different wireless systems (e.g., non-orthogonal multiple
access (NOMA) systems and MIMO systems) will be worth
investigating.

In some emerging scenarios, such as device-to-device com-
munication [124] and mobile social networks [125], an infor-
mation source may rely on mobile users to spread messages
to multiple destinations. To model the process of information
spreading in such systems, a possible direction is to incorporate
user mobility models into the stochastic geometry analysis.

IX. SPATIALLY AND TEMPORALLY CORRELATED
INTERFERENCE IN MOBILE SYSTEMS

This section investigates the effect of mobility on the spatial-
temporal SIR correlation. We analyze the JSP in mobile net-
works with spatially and temporally correlated interference.

A. Introduction

We consider two mobile network scenarios. In the first sce-
nario, similar to [77], we consider a downlink communication
in a Poisson cellular network, and provide the steps to calculate
the spatial-temporal JSP of a mobile user at two different time
instants. In the second scenario, similar to [24], we consider
a Poisson bipolar model where the desired transmitter and
receiver are static while other transmitters in the network move
according to a random mobility model. For this scenario, we
also explain the steps to calculate the JSP at the static receiver
[126].

Let us denote the success event indicator at time t1 at location
u1 by A1 = 1{SIR1>θ} and at time t2 at location u2 by A2 =
1{SIR2>θ}, where SIR1 is the SIR at the receiver at location
u1 at time t1, and SIR2 is the SIR at the receiver at location
u2 at time t2; θ is the target SIR. In the following, we present
the steps to calculate E[A1A2] (i.e., the spatial-temporal JSP)
for the two mentioned network scenarios. Note that when the
network is stationary over time, E[A1A2] does not depend on t1

(a) No handoff occurs.

(b) Handoff occurs.

Fig. 38: Scenarios with and without handoff [77].

and t2; it only depends on ∆ = |t2−t1|. Generally, the random
variables A1 and A2 are spatially and temporally correlated.
When u1 = u2, E[A1A2] captures the temporal correlation,
i.e., the correlation at one location in two different time instants.
When t1 = t2, E[A1A2] captures the spatial correlation, i.e.,
correlation at two different locations at the same time.

B. Analysis of Poisson Downlink Networks

1) Model I: Consider a Poisson downlink network Φ with
intensity λ where all the users are associated with their nearest
BSs. The small-scale fading is i.i.d. across time and space.
Consider a mobile user that is located at distance r1 from
its associated BS at time t1. The user moves away from the
associated BS with a constant speed v at an angle φ at time
t1, where φ is uniformly distributed in [0, 2π] (Fig. 38). Before
further discussion, let us introduce some notations that help
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us in deriving the spatial-temporal JSP at time t1 and t2 with
t2 > t1 [77].
• P1, P2: Location of the serving BS at time t1 and t2,

respectively.
• r1, r2: Distance between the mobile user and its associated

BS at time t1 and time t2, respectively.
• r12: Distance between the mobile user at time t2 and its

associated BS at time t1.
• B(x, r): Closed disk with center at x and radius being
r. For brevity, B(u1, r1), B(u2, r2), and B(u2, r12) are
denoted by B1, B2, and B12, respectively.

• H: Event that at least one handoff occurs in the interval
[t1, t2].

As the mobile user moves from u1 to u2, the mobile user
may be served by the same BS (no handoff occurs) or it may
be handed off to other BSs (handoff occurs). At time t2, when
there is no BS in B12, the mobile user is still connected to the
same BS as time t1, i.e., P1 = P2. In this case, according to the
definitions and from triangle equations, we have r2 = r12 =√
r2
1 + v2(t2 − t1)2 + 2r1v(t2 − t1) cosφ and B12 = B2. On

the other hand, when there is a BS in B12, at time t2, the
mobile user is served by a new BS, i.e., P1 6= P2. In this case
r2 < r12 and B2 ⊂ B12. In the following, we briefly provide
the steps for deriving the JSP at time t1 and t2. Note that since
u1 6= u2 and t1 6= t2, the JSP captures the spatial-temporal SIR
correlation.

2) Steps to Derive the JSP [77]: Step 0: From the contact
distribution function of the homogeneous PPP, the PDF of the
contact distance at time t1 follows as (18). Moreover, due to the
symmetry, we can assume φ is uniformly distributed in [0, π].

Step (i): Calculating P (H | r1, φ) (handoff probability given
r1 and φ):

P (H | r1, φ)
(a)
= 1− P (Φ(B12 \ B1) = 0 | r1, φ)
(b)
= 1− exp

(
− λ|B12 \ B1|

)
,

where (a) follows the fact that handoff occurs when there is a
BS in B12. In (a), B1 is excluded from B12 since there is no
BS inside B1. (b) follows from the void probability of the PPP.

Step (ii): Deriving the distribution of r2:
Given r1 and φ, when there is no handoff,
r2 =

√
r2
1 + v2(t2 − t1)2 + 2r1v(t2 − t1) cosφ. However,

when handoff occurs, as discussed earlier, r2 < r12.
In this case, we can derive the conditional PDF of
r2 as fr2(z | H, r1, φ) = d

dzFr2(z | H, r1, φ), where
Fr2(z | H, r1, φ) is the conditional CDF of r2 and can be
obtained by

Fr2(z | H, r1, φ)

=
P (r2 ≤ z,H | r1, φ)

P (H | r1, φ)

=
P (Φ(B(u2, z) \ B1) > 0,Φ(B12 \ B1) > 0 | r1, φ)

P (H | r1, φ)

(a)
=

P (Φ(B(u2, z) \ B1) > 0 | r1, φ)

P (H | r1, φ)

=
1−exp

(
− λ|B(u2, z) \ B1|

)
P (H | r1, φ)

, (104)

for z ∈ [max(0, r1−v), r12]. (a) follows since B(u2, z) ⊂ B12

in the case of handoff. When r1 > v, the nearest BS is at
least at distance r1 − v, therefore, Fr2(z | H, r1, φ) = 0 for
z < max(0, r1 − v). Moreover, as explained earlier, Fr2(z |
H, r1, φ) = 1 for r12 < z.

When handoff occurs, we also need the distribution of φ̂,
angle between the vectors −−→u1u2 and

−−−→
u2P2. Given r1, r2, and

v, one of the two following cases holds6: 1) |r1 − r2| < v ≤
r1 + r2 (B1 and B2 overlap): φ̂ is uniformly distributed in[
−π + arccos

(
r2
2+v2−r2

1

2r2v

)
, π − arccos

(
r2
2+v2−r2

1

2r2v

)]
, 2) r1 +

r2 < v (B1 and B2 are disjoint): φ̂ is uniformly distributed in
[0, 2π].

Step (iii): Calculating the spatial-temporal JSP
P(SIR1 > θ,SIR2 > θ) as in (105), where H̄ is the complement
of H and denotes the event that handoff does not occur.

Term I in (105) can be obtained by (106), where ΦI denotes
the locations of the interferers. In the case of no handoff (H̄),
ΦI is a PPP with intensity λ in R2 \(B1 ∪ B12). (a) is obtained
using the fact that, given ΦI, H̄ , r1, and φ, SIR1 and SIR2 are
independent since small-scale fading is i.i.d. at different time
instants and spatial locations. The inner expectation w.r.t. ΦI

can be calculated by using the PGFL of PPP, and the outer
expectation by using PDF of r1 and φ provided in Step 0.
P(H̄ | r1, φ), probability that handoff does not occur, is also
provided in Step (i). Term II in (105) can be derived as (107).
In the case of handoff (H), ΦI is a PPP with intensity λ in
R2 \ (B1 ∪ B2). Note that ΦI ∪ {P2} is the set of interferers
at time t1 and ΦI ∪ {P1} is the set of interferers at time t2.
(a) is obtained using the fact that, given ΦI, φ̂, r2, H , r1, and
φ, SIR1 and SIR2 are independent. The expectation w.r.t. ΦI

can be obtained by using the PGFL of PPP. The expectation
w.r.t. φ̂ and r2 can be obtained from Step (ii). P(H | r1, φ) is
provided in Step (i). Outer expectation w.r.t. r1 and φ can also
be obtained by using PDFs given in Step 0.

C. Analysis of Poisson Bipolar Networks

1) Model II: In the second scenario, similar to [24], we con-
sider a Poisson bipolar network, where, at time t1, transmitters
form a PPP Φ with intensity λ. Each transmitter is assigned
a unique receiver at distance r0 at a random direction. Due to
the stationarity of PPP, we investigate the performance of the
typical receiver and consider its location as the origin. Since
the homogeneous PPP is isotropic, without loss of generality,
we can assume that the transmitter of this receiver is located
at [r0, 0]T . From Slivnyak’s theorem [3], at time t1, the other
transmitters (interferers), denoted by Φ, form a homogeneous
PPP with intensity λ. Assume that the selected receiver and its
corresponding transmitter are static while interferers are mobile
according to a uniform mobility model. Hence, at any time t,
the interferers form a homogeneous PPP with intensity λ.

6If v ≤ |r1 − r2|, no handoff occurs when the user moves from u1 to u2.
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P(SIR1 > θ,SIR2 > θ) = E [P(SIR1 > θ,SIR2 > θ | r1, φ)]

= E
[
P(SIR1 > θ,SIR2 > θ | H̄, r1, φ)P(H̄ | r1, φ)

]︸ ︷︷ ︸
Term I

+ E [P(SIR1 > θ,SIR2 > θ | H, r1, φ)P(H | r1, φ)]︸ ︷︷ ︸
Term II

. (105)

E
[
P(SIR1 > θ,SIR2 > θ | H̄, r1, φ)P(H̄ | r1, φ)

]
= E

[
EΦI

[
P(SIR1 > θ,SIR2 > θ | ΦI, H̄, r1, φ)

]
P(H̄ | r1, φ)

]
(a)
= E

[
EΦI

[
P(SIR1 > θ | ΦI, H̄, r1, φ)P(SIR2 > θ | ΦI, H̄, r1, φ)

]
P(H̄ | r1, φ)

]
, (106)

E [P(SIR1 > θ,SIR2 > θ | H, r1, φ)P(H | r1, φ)]

= E
[
Er2

[
Eφ̂
[
P(SIR1 > θ,SIR2 > θ | φ̂, r2, H, r1, φ)

]]
P(H | r1, φ)

]
(a)
= E

[
Er2

[
Eφ̂
[
EΦI

[
P(SIR1 > θ | ΦI, φ̂, r2, H, r1, φ)P(SIR2 > θ | ΦI, φ̂, r2, H, r1, φ)

]]]
P(H | r1, φ)

]
. (107)

We study the JSP at two different time slots t1 and t2. Note
that since the desired receiver is fixed at the origin (u1 = u2),
the JSP captures the temporal correlation. Let wi,∆ denote the
displacement vector for transmitter i7. We consider a random
individual mobility model (such as random walk), where each
interferer moves independently of other interferers following
the same random mobility model. Thus, wi,∆ is independently
and identically distributed for each interferer.

2) Derivation of Spatial-temporal JSP: We can calculate the
JSP in the case of random individual mobility model where
u1 = u2 for spatially and temporally i.i.d. fading as follows:

P(SIR1 > θ,SIR2 > θ)

= EΦI [P(SIR1 > θ,SIR2 > θ | ΦI)]
(a)
= EΦI

[P(SIR1 > θ | ΦI)P(SIR2 > θ | ΦI)]
(b)
= EΦI

[
P(SIR1 > θ | ΦI)

× E(w∆,i)

[
P(SIR2 > θ | {w∆,i},ΦI)

]]
, (108)

where (a) is obtained, since given the initial location of the
interferers ΦI, SIR1 and SIR2 are independent. In (b), the inner
expectation is w.r.t. the displacement vectors of all interferers,
where ∆ = |t2 − t1|.

D. Numerical Results

To understand the effect of mobility, in this section, we
consider the CSP

P(SIR2 > θ | SIR1 > θ) =
P(SIR1 > θ,SIR2 > θ)

P(SIR1 > θ)
.

7∆ reflects the fact that statistics of the displacement vector depends on the
time difference ∆ = |t2 − t1| rather than t1 and t2 separately.

Since the network performance depends on the nodes’ displace-
ments8, we set |t2− t1| = 1 and only consider the effect of the
speed on the spatial-temporal JSP.

In Fig. 39, we illustrate the effect of correlation on the CSP
for both scenarios. For the random individual mobility model,
we have assumed all the mobile users move with the same
speed v, and each mobile user moves in a random independent
direction ϕi, uniformly distributed in the interval [0, 2π]. To
better understand the impact of correlation, in Fig. 39, we also
compare the results with the independent case, where the CSP is
equal to P(SIR2 > θ). According to the displacement theorem
[3], at any time t, interferers form a PPP with intensity λ.
Thus, in Model II, P(SIRu2(t) > θ) does not depend on t
(and consequently v). Using the stationarity of the PPP, we can
obtain the same result for Model I.

As shown in Fig. 39, at high speeds, we can ignore the effect
of correlation, and assume that the two sets of interferers at
time instants t1 and t2 are independent. As a result, most of
the existing works in mobile networks only focus on the highly
mobile scenario where they can ignore the effect of correlation.
It is worthwhile to note that the gap between the results with
correlation (dashed blue curves) and without correlation (solid
red lines) is proportional to the correlation coefficient between
the success event at t1 and success event at t2. As illustrated
in Fig. 39, the correlation between success events at t1 and t2
decreases as the speed increases.

8The displacement of a node that moves at a speed v for a time duration
|t2 − t1| = ∆ is the same as when it moves with speed v∆ for duration
|t2 − t1| = 1.
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(b) Model II.

Fig. 39: Simulation of the effect of speed on the spatial-temporal JSP
for Model I in (a) and Model II in (b) for λ = 0.001 and θ = −1dB.
In Model II, the desired link distance is set to d = 8.

E. Summary and Discussion

This section has characterized the spatial-temporal JSP of
two network scenarios 1) with mobile users and static interfer-
ers and 2) with mobile interferers and mobile users. The main
lessons learned are as follows.

• The spatial-temporal correlation among different transmis-
sion events decreases with speed and can be ignored when
the speed is high enough.

• The gap between the spatial-temporal CSP is proportional
to the correlation coefficient between successful transmis-
sion events.

In Poisson networks, mobility introduces spatial randomness
which decreases the correlation across time [77]; thus, spatial
diversity provides time diversity when nodes are mobile. This

is also discussed in the literature by studying the mean local
delay [127]. In a static network, when there is a close interferer,
retransmitting an unsuccessfully received signal is usually not
helpful. As a result, in static networks, the mean local delay
may be infinite, i.e., a significant fraction of users suffer
from large delays. However, in mobile networks, interference
correlation decreases across time and there is a higher chance to
receive a retransmitted signal successfully. Therefore, mobility
reduces the mean local delay by providing spatial diversity.
Specifically, in the highly mobile scenario, the mean local delay
is always finite.

Open Technical Issues: Analyzing the performance of mobile
wireless networks with correlation effects is challenging for
most scenarios and usually yields complicated results. Con-
sequently, most of the related works consider simple system
models such as downlink communication in a Poisson cellular
network (as in Model I) or Poisson bipolar networks with
mobile interferers (as in Model II), but even for the latter model,
there are no analytical results.

In the downlink communication in Model I, we have studied
the performance of a mobile node in a network of static
transmitters (i.e., BSs). In contrast, in the uplink, we have
mobile transmitters (the desired transmitter and interferers).
Due to the random mobility of the nodes and irregular shapes of
the cells, it may not be possible to calculate the load distribution
while considering the correlation effect, which in turn, makes
the analysis of the uplink scenario very challenging. In fact,
an exact analysis is impossible, but approximations, bounds, or
asymptotic results can almost always be derived.

In Model II, as shown in (108), we need the distribution of
the displacement vector w∆. However, it may not be possible
to derive this distribution for most of the mobility models and
for all values of ∆. Therefore, most of the existing works resort
to a simplified mobility model or consider only one movement
step during which the mobile node moves along a straight line.

In addition to the spatial-temporal JSP, the SIR meta distri-
bution in cellular networks with mobile BSs has been studied
in [128]. The joint SIR meta distribution and product SIR meta
distribution in mobile networks are also worth investigating.

X. FUTURE DIRECTIONS

In this section, we discuss future applications of stochastic
geometry analysis and related technical challenges.

A. Novel Performance Metrics and Stochastic Geometry Anal-
ysis

Although the existing literature has extensively investigated
different types of large-scale communication networks, the
majority of them focus on the spatial and temporal average
performance, such as mean success probability, delay and
throughput. Recently, the SIR meta distribution [79] has been
introduced to provide insights on the distribution of success
probability over space and/or time. The meta distribution has
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been extended to evaluate the distributions of rate and en-
ergy [129], mean delay [30], transmission rate [130], secrecy
rate [131], and secrecy success probability [43].

The concept of meta distribution can also be applied to
evaluate the distribution of other performance metrics such as
the covert probability for low probability of detection/intercept
communications [132], [133]. Moreover, the age-of-information
(AoI) [134], [135] that quantifies the time elapsed from the
generation to observation of the information explicitly measures
the information freshness that the conventional metrics (e.g.,
link delay) do not. Some recent works have shown that network
protocol designs based on AoI provide better consumer service
quality in real-time status updating, such as Google Scholar
[136]. To enhance information freshness, the existing network
protocols need to be re-examined and stochastic geometry
analysis can be exploited in understanding AoI in large-scale
systems. Characterization of the above-mentioned performance
metrics by considering the spatial and temporal correlations
introduced in this tutorial opens a broad research area.

B. Stochastic Geometry Analysis for Cross-layer Study

The majority of the existing literature on stochastic geometry
analysis assumes that the transmission demand is uniformly
distributed and regulated by some medium access control
(MAC) protocols such as Aloha or CSMA. However, in prac-
tice, the MAC-level transmission scheduling can be affected
by application-level service scheduling [137]. For example,
in a mobile edge computing system where the mobiles can
offload computation tasks to the edge, different requests can
be scheduled to different edge servers based on the quality-of-
service requirements of the tasks as well as the functionality
and the status of the servers. In such a scenario, to analyze the
communications performances for the offloaded tasks in a large-
scale system, stochastic geometry can be used. For such an
analysis, characterizing the point process corresponding to the
interferers would be challenging due to the dynamic resource
scheduling introduced by the cross-layer design. In general,
modeling and analysis of cross-layer effects is an important
research direction.

C. Machine Learning Approaches for Large-Scale Networks
and Stochastic Geometry Analysis

Machine learning (ML) techniques have been increasingly
adopted for resource allocation and control in wireless net-
works due to their capabilities in learning network environment
variations (e.g., due to traffic pattern and channel uncertain-
ties), classification of the relevant quantities, predicting future
outcomes [138]. For instance, deep reinforcement learning
approaches are capable of estimating channel state informa-
tion (CSI) without explicit feedback/detection and thus can
be exploited to design resource management schemes with
low communication and computation overhead compared to
conventional CSI-based schemes [139], [140]. With ML-based
designs, network resource allocations will be more intelli-
gent and environment-aware. Stochastic geometry tools can

be used to analyze the effects of correlation introduced by
environment-aware resource allocation in large-scale systems.
Also, stochastic geometry can be used to study the impact of
network interference as well as interference correlation on the
performance of ML-based designs (e.g., in terms of stability,
convergence, and accuracy).

D. Stochastic Geometry Analysis of Emerging Network Scenar-
ios

1) Programmability of Radio Environment with Reconfig-
urable Intelligent Surfaces: A Reconfigurable Intelligent Sur-
face (RIS) [141], [142], also known as software-defined hyper-
surface and large intelligent surface/antennas, is a digitally-
tunable metasurface. A metasurface is a thin and planar
structure composed of sub-wavelength passive scattering parti-
cles which alter the electromagnetic waves through a surface
impedance boundary condition. The electromagnetic response
of an RIS can be reprogrammed without re-fabrication. Due to
this distinguishing feature, an RIS can be utilized to dynami-
cally alter the electromagnetic behavior (e.g., amplitude, phase,
and frequency [143]) of the incident signals, and thus reshaping
the wireless propagation environments.

RIS has been envisioned as a candidate technology for
future generation networks [144] and expected to be widely
deployed on, e.g., surfaces of buildings, vehicles and billboards,
to facilitate the ever-increasing traffic demands. In such an
environment, the signal distributions are jointly manipulated by
multiple RISs. The incident signals at nearby RISs come from
common sources and exhibit spatial correlations. Characteriza-
tion of the aggregate effect of large-scale RIS deployments by
taking into account the spatial correlation is an open research
problem.

2) Joint Radar and Communication: Joint radar and commu-
nication (JRC) [145] is a novel paradigm that facilitates radar
detection and data communication over the same frequency
bands to improve the spectrum efficiency. In JRC systems, a
dual-functional transmitter (e.g., autonomous cars or unmanned
drones) simultaneously transmits data and detects radar targets
(e.g., barriers, mobile vehicles and pedestrians) based on a
shared and integrated hardware platform. Specifically, a portion
of the transmitted signal received at the target receiver is
used for communication, while the other portion of the signal
reflected from the radar targets at the dual-function transmitter
is utilized for detection [146]. Due to the common signal source
and interferers, the communication and radar performance in
JRC systems are correlated. Furthermore, to accommodate both
radar and communication demands, JRC brings a series of re-
source allocation problems, such as power allocation, spectrum
allocation and sharing, and beamforming design. Analyzing
radar and communication performance in large-scale systems
based on stochastic geometry analysis under different resource
allocation schemes is a promising future research direction.

3) Internet of Space Things: The Internet of Space Things
(IoST) [147] is an expansion of the ground Internet of Things
(IoT) to the aerial and space domains enabled by drones
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and miniaturized satellites/CubeSats [148], respectively. With
the holistic integration of the ground with aerial and space
communication systems, IoST is expected to realize ubiquitous
connectivity virtually to support a broad range of applications
including monitoring, tracking, in-space backhauling [149],
wireless power transfer [150], [151] and remote healthcare
solutions. Performance characterization of IoST requires efforts
of developing three-dimensional modeling incorporating dis-
parate propagation characteristics, mobility patterns, resource
allocation schemes of communication systems as well as their
intricate correlations at different domains.

4) Terahertz Communications: The terahertz band (i.e., 0.1-
10 THz) provides ultra-wide spectrum resources and enable
new applications for beyond 5G [152]. For example, terabits per
second (Tbps) data rate can be realized to support “fiber-like”
communication performance which offers a seamless transition
between optical fibers and THz wireless links with no latency.
Moreover, the micro-scale wavelength makes THz band more
suitable for in-vivo nano-network communications than any
other frequency bands because terahertz waves have strong pen-
etrating force and can be absorbed by in-vivo substances such
as liquids and organs [153]. The availability of new spectrum
bands will necessitate novel resource allocation designs. An
intriguing research direction is to develop stochastic geometry
models that take into account the correlation effects from: i)
physical blockages, ii) direction of arrival/departure of high-
gain beam steering, and iii) temporal broadening effect resulted
from frequency selectivity in the ultra-wide THz band.

5) Internet of Nanothings (IoNT): Internet of Nanoth-
ings (IoNT) is a connected molecular system empowered by
nanomachines, which are microscopic devices capable of per-
forming high-precision functions for many real-world applica-
tions such as biomedicine, food industry and military opera-
tions [154]. As IoNT is expected to work in the environments of
fluids, gases or particulates, IoNT will foreseeably function in
a manner that is drastically different from the IoT due to differ-
ences in propagation environments, the scale of deployment, as
well as physical constraints (e.g., in energy and computations)
of miniaturized nano devices. Therefore, it is imperative to
develop novel mathematical models to characterize the features
of IoNT. Moreover, the protocol stack design and analysis for
large-scale IoNT still remains an open field for exploration.

XI. SUMMARY

Stochastic geometry tools can be used to develop analytical
frameworks for large-scale wireless systems considering the
effects of spatial-temporal interference correlation, which is
generally ignored in traditional performance analyses. In this
tutorial, we have presented a comprehensive spatial-temporal
analysis of large-scale communications systems. In particular,
we have formulated models to characterize correlations in
interference (and hence SIR) due to different effects such as
distributions of the interferers, distribution of contact distance,
shadowing, transmission buffer status (or network queues),
multihop transmissions, retransmissions, and user mobility.

The performance of a target link in a large-scale system has
been demonstrated both analytically and numerically, consid-
ering the effect of spatial-temporal interference correlation in
different scenarios. In particular, we have derived the joint
distribution of spatially-correlated SIR with multihop relaying,
temporally-correlated SIR with retransmissions and spatially
and temporally-correlated SIR with mobility. For each of the
above scenarios, we have shed light on the technical challenges
in stochastic geometry analysis. Finally, we have presented
future research directions in stochastic geometry analysis of
emerging wireless communication systems the performance
of which will be affected by spatial-temporal interference
correlations.

APPENDIX

A. Proof of Theorem 2 (Moments of the CSPΦ in Random Fields
of Interferers)

Proof. Given Φ, the CSP of a link with transmission distance
rt can be derived as

F̄η|Φ(θ) = P

[
ht > θrαt

∑
j∈N

hj‖xj‖−α
∣∣∣ Φ

]

= E(hj)

[
exp

(
− θrαt

∑
j∈N

hj‖xj‖−α
) ∣∣∣ Φ

]
=
∏
j∈N

1

1 + θrαt r
−α
j

. (109)

The moments of the CSP given Matérn and Poisson fields
of interferers can be obtained by applying their PGFLs as in
(110), shown on the top of the next page, where (a) applies the
PGFLs of MCP and PPP given in (34) and (23), respectively.
By inserting fM(y) given in (31) in (110), the final result with
a Matérn cluster field of interferers in (49) directly yields.

We further extend the expression for the PPP in (110) as

MPs
(b)

(b)
= exp

(
− πλδ

∫ ∞
0

(
1−
(

1− θrαt
z + θrαt

)b)
zδ−1dz

)
(c)
= exp

(
− πλδ

∞∑
k=1

(
b

k

)
(−1)k+1θkrαkt

×
∫ ∞

0

zδ−1

(z + θrαt )k
dz

)
, (111)

where (b) employs the change of variable z = r2
t θ
−δx2 and

the substitution δ = 2
α , (c) takes the binomial expansion of(

1− θrαt
z+θrαt

)b
for b ∈ C.

The integral in (111) can be transformed as follows [156,
Eq. 3.196.2]∫ ∞

0

zδ−1

(z + θrαt )k
dz

= θδ−kr2−αk
t

Γ(k − δ)Γ(δ)

Γ(k)
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MPs
(b) = E

[∏
j∈N

(
1

1 + θ‖xt‖α‖rj‖−α

)b]

(a)
=


exp

(
−λp

∫
R2

[
1− exp

(
− c̄
(

1−
∫
R2

(
1

1+ θrαt ‖x− y‖−α

)b
fM(y)dy

))]
dx

)
, MCP

exp

(
−λ
∫
R2

(
1−

(
1

1 + θrαt ‖x‖−α

)b)
dx

)
, PPP,

(110)

(d)
= θδ−kr2−αk

t

(−1)k+1π csc(πδ)Γ(δ)

Γ(δ − k + 1)Γ(k)

= θδ−kr2−αk
t (−1)k+1π csc(πδ)

(δ − 1) . . . (δ − k + 1)

(k − 1)!

= θδ−kr2−αk
t (−1)k+1π csc(πδ)

(
δ − 1

k − 1

)
, (112)

where (d) follows as

Γ(k − δ) =
π csc(π(k − δ))
Γ(δ − k + 1)

=
(−1)k+1π csc(πδ)

Γ(δ − k + 1)
.

Inserting (112) into (111) yields,

MPs
(b)=exp

(
− λθδr2

tπδ csc(πδ)

∞∑
k=1

(
b

k

)(
δ−1

k−1

))
(e)
= exp

(
− λθδr2

t

Γ(1− δ)Γ(b+ δ)

Γ(b)

)
, (113)

where (e) follows as πδ csc(πδ) = Γ(1 − δ)Γ(δ) and∑∞
k=1

(
b
k

)(
δ−1
k−1

)
= Γ(b+δ)

Γ(b)Γ(1+δ) .
With a β-Ginibre field of interferers, the success probability

can be obtained from (109) as

MPs(b)
(e)
= EQj

[∏
j∈N

(
β

1 + θrαt Q
−α/2
j

+ 1− β
)b]

(f)
=
∏
j∈N

∫ ∞
0

(πλ/β)j

Γ(j)
qj−1e−πλq/β

×
(

β

1 + θrαt q
−α/2 + 1− β

)b
dq,

where (e) adopts the substitution Qj = r2
j and (f) follows

from Qj ∼ G(j, β/πλ).
Summarizing the above results, we have the final results in

Theorem 2.

B. Proof of Theorem 3 (Moments of the CSPΦ of the Typical
Cell-center User in a Poisson Downlink Network)

Proof. Let Φc , {Φ | o ∈ Rc}. Given a Poisson point process
Φc, the CSP of the typical cell-center user is

F̄ c
η|Φc

(θ)

= P
[
h > θ‖x1‖αIo | Φc

]
= E

[
exp

(
− θ‖x1‖α

∞∑
j=2
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) ∣∣∣ Φc

]

(a)
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[
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(
− θ

∞∑
j=2

hj%
α
j

) ∣∣∣ ΦR
c

]
(b)
=

∞∏
j=2
%2≤ρ

1

1 + θ%αj
, (114)

where (a) changes the PPP to its RDP, i.e., ρj = ‖x1‖/‖xj‖,
and the condition %2 ≤ ρ in (b) implies o ∈ Rc.

Then, the b-th moments of the CSPΦ in a Poisson downlink
network can be derived as

Mc
Ps

(b)

= E
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1
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(
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, (115)

where (b) holds due to the fact that the probability law of %2

conditioned on the probability law of %2, %3, . . . conditioned
on %2 < ρ is the same as the law of %2, %3, . . . without
conditioning and (c) applies the PGFL of the RDP of a PPP,
(d) takes the binomial expansion of

(
1− θρα%α

1+θρα%α

)b
for b ∈ C,
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(e) applies the change of variable x = %α, and (f) substitutes
2
α with δ.

After some mathematical manipulations of (115), we have
the final result in Theorem 3.

C. Proof of Theorem 4 (Moments of the CSPΦ for the Typical
Vertex User in a Poisson Downlink Network)

Proof. Based on the stationarity of a PPP, we have the success
probability of the typical vertex user conditioned on Φ as

F̄ v
η|Φ(θ)

= E
[
e−θr

α
1 Io | r1 = r2 = r3,Φ

]
= E

[
exp

(
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(
h1r
−α
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−α
3

+

∞∑
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−α
j

)) ∣∣∣ Φ

]

=
(
1+θ

)−2
∞∏
j=4

1

1 + θrα1 r
−α
j

. (116)

With F̄ v
η|Φ(θ) in (116), the moments of the CSPΦ can be

derived as

Mv
Ps

(b)
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2π2λ2
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× exp

(
− 2πλ
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r

(
1−
(

1

1+θrαx−α

)b)
xdx

)
dr, (117)

where (a) applies [155, Lemma 1] and the PGFL of a PPP, and
(b) plugs in the PDF fv

r1(r) given in (57).
After some mathematical manipulations of (117), we have

the final results in Theorem 4.

D. Proof of Theorem 5 (Laplace Transform of Interference with
Independent and Correlated Shadowing)

Proof. We first derive the Laplace transform of the interference
with correlated shadowing as follows.

LICor
o

(s)

= E
[

exp
(
− sICor

o

)]
= E

[
exp

(
− s

∑
j∈N

hj`(‖xj‖)Sj
)]

(a)
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1
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(b)
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[
exp

(
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∫
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(
1− 1

1+s`(‖xj‖)Tk

)
dx

)]
,

where (a) follows as hj ∼ E(1) and the points within the same
cell share the same shadowing coefficient, and (b) applies the
PGFL of a PPP and holds as the accumulative interference
of each shadowing cell Sk is averaged over the same random
variable Tk for xj ∈ Sk.

Similarly, the Laplace transform of IInd
o is given by

LIInd
o

(s)

= E
[

exp
(
− sIInd
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)]
= E

[
exp

(
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= exp

(
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(
1− ETk

[
1

1+s`(‖xj‖)Tk

])
dx

)
,

where (c) follows as Sj is an i.i.d mark for all xj ∈ Sk with
independent shadowing, with CDF Fk, as Tk.

E. Proof of Theorem 7 (Success Probability in a Poisson
Downlink Network with Unsaturated Queues)

Proof. To bypass the difficulty of modeling coupled queue
statuses, we assume the typical receiver observes temporally-
independent interference across different time slots. If each in-
terfering BS is active with independent probability pA = E[ιj ],
the success probability can be derived as

Ps = P[η > θ]

(a)
≈ E

[
h1‖x1‖−α∑∞

j=2 ιjhj‖xj‖−α
> θ

]
(b)
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+ 1−pA

)]
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+ 1− pA

)]
(d)
=

1

1 + 2
∫ 1

0
pAθ%α

1+θ%α %
−3d%

(e)
=

1

1 + δpAθ
∫ 1

0
x

1+θxx
−δ−1dx

=
1

1 + δpAθ
1−δ 2F1(1, 1− δ; 2− δ;−θ)

(f)
=

1

1− pA + pA2F1(1,−δ; 1− δ;−θ)
, (118)

where (a) applies the independent interference assumption, (b)
follows as h1, hj ∼ E(1), (c) changes the PPP to its RDP, (d)
applies the PGFL of an RDP given in (24), (e) changes the
variable x = %α and substitutes 2

α with δ.
As can be seen from (118), pA is the only unknown pa-

rameter. To obtain pA, we need to analyze the probability that
each BS is active from the perspective of queue dynamics. As
a BS sends out a packet once its selected queue is not empty,
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the active probability of the BS is equivalent to the utilization
of its queue. Since the service rate of a BS is equivalent to
the success probability, with random scheduling, we have the
service rate of the typical queue at a BS conditioned on ΦB as

µ =
1

Nu
P[η > θ | ΦB], (119)

where Nu denotes the number of users associated with the
typical BS.

According to the law of total probability, the mean service
rate of any user’s queue at its serving BS is calculated as

µ̄ =

∞∑
n=1

pNu(n)µ

=

∞∑
n=1

pNu
(n)

P[η > θ]

n
, (120)

where P[η > θ] has been obtained in (118), pNu
(n) denotes

the PDF of Nu. In a Poisson downlink network, pNu
(n) is

approximated as [5]

pNu
(n) ≈ ννΓ(n+ ν)(λu/λB)n

n!Γ(ν)(λu/λB + ν)n+ν
,

where ν = 3.5.
From (118) and (120), the mean service rate µ̄ is a function

of active probability pA. Based on the random scheduling, the
active probability of a BS equals the utilization factor of the
queue for the typical general user. Thus, we can establish a
fixed-point equation as follows:

pA =
ξu
µ̄

=
ξu∑∞

n=1 pNu
(n)Ps/n

.

Subsequently, we have the success probability of a Poisson
downlink network with unsaturated queues given in Theorem
7.

F. Proof of Theorem 2 (Success Probability in a Poisson Bipolar
Network)

Proof. Using the assumption that each transmitter is active
with independent probability, the success probability in Poisson
bipolar networks is given by

Ps

(a)
≈ E

[
ht‖xt‖−α∑

j∈N\{ς(xt)} ιjhj‖xj‖
−α > θ

]
(b)
= E

[∏
j∈N

(
pA

1 + θ‖xt‖α‖xj‖−α
+ 1− pA

)]
(c)
= exp

(
− 2πλpA

∫ ∞
0

θrαt x
−α+1

1 + θrαt x
−α dx

)
(d)
= exp

(
− πλpAδ

∫ ∞
0

θrαt u
2
α−1

u+ θrαt
du

)
(e)
= exp

(
− pAλπr

2
t θ
δΓ(1 + δ)Γ(1− δ)

)
, (121)

where (a) applies the independent interference assumption, (b)
holds due to Slivnyak’s theorem, (c) applies the PGFL of a PPP

and employs the substitution δ = 2/α, (d) applies the change
of varaible u = xα, and (e) follows from [156, Eq. 3.196.2]
that

∫∞
0

uδ−1

u+Adu = AδΓ(1− δ)Γ(δ).
Since the service rate of the typical transmitter is equivalent

to the success probability of a time slot, pA can be written
as min{ ξPs

, 1} which is a well-known result from Geo/Geo/1
queue [157]. Subsequently, we can establish the following
equation.

min
{
ξ/Ps, 1

}
= min

{
ξ

exp
(
− pAλπr2

t θ
δΓ(1+δ)Γ(1−δ)

) , 1}
= pA. (122)

Since Ps is a function of PA as shown in (121), solving the
equation in (122) yields

pA = min

{
−
W
(
− ξλπr2

t θ
δΓ(1+δ)Γ(1−δ)

)
λπr2

t θ
δΓ(1 + δ)Γ(1− δ)

, 1

}
, (123)

where W denotes the Lambert-W function [158].
By inserting pA in (123) into the expression of Ps = ξ

pA
, we

have the final results presented in Theorem 8.

G. Proof of Theorem 9 (Moments of the End-to-End CSPΦ)

Proof. From (86), the end-to-end CSPΦ of M -hop relaying
given a Poisson field of interferers can be expressed as

F̄η|Φ(θ)

=P[h1>θd
α
1 I1, h2>θd

α
2 I2, . . ., hM >θdαMIM | Φm]

=E(hj,m)

[
exp

(
− θ

M∑
m=1

∑
j∈N

hj,md
α
m

‖xj,m−ym‖α

) ∣∣∣ Φm

]
,

=
∏
j∈N

M∏
m=1

1

1 + θdαm‖xj,m − zm‖−α
. (124)

With the end-to-end success probability with a Poisson field
of interferers in (124), we further compute the b-th moment
of it as in (125), where (a) follows as hj,m ∼ E(1) and (b)
applies the PGFL of a PPP.

H. Proof of Theorem 10 (JSP of Multiple Transmissions)

Proof. The JSP for K transmissions is given as

JK = P
[ K⋂
k=1

{
h(k) > θrαt I

(k)
o

}]
(a)
= E

[ K∏
k=1

exp
(
− θrαt I(k)

o

)]

= E
[ K∏
k=1

exp

(
− θrαt

∑
j∈N

h
(k)
j ‖x

(k)
j ‖

−α
)]
, (126)

where (a) follows as h(k) ∼ E(1) is independent across
different time slots.
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MPoi
Ps

(b,M)
(a)
= EΦ

[∏
j∈N

M∏
m=1

(
1

1 + θdαm‖xj,m − zm‖−α

)b]
,

(b)
=


exp

(
− λ

∫
R2

(
1−

M∏
m=1

(
1

1 + θdαm‖x− zm‖−α

)b)
dx

)
, QSI

exp

(
− λ

M∏
m=1

∫
R2

(
1−

(
1

1 + θdαm‖x− zm‖−α

)b)
dx

)
, FVI

(125)

In the scenarios with QSI, the JSP can be expressed as

J QSI
K

(b)
=E

[∏
j∈N

(
1

1 + θrαt ‖x
(k)
j ‖−α

)K]
(c)
=exp

(
− 2πλ

∫ ∞
0

(
1−
(

1

1 + θrαt x
−α

)K)
xdx

)
, (127)

where (b) follows as K transmissions are subject to the same
point process of interferers, and (c) applies the PGFL of a PPP.
As (127) is equivalent to the moments of the CSPΦ in Poisson
ad hoc networks in (110) with b replaced by K, we have the
final results of J QSI

K in (92).
Moreover, in the scenarios with FVI, as different transmis-

sions are affected by independent point processes, the JSP can
be derived as

J FVI
K =

K∏
k=1

E
h

(k)
j

[
exp

(
− θrαt

∑
j∈N

h
(k)
j ‖x

(k)
j ‖

−α
)]

(d)
=

K∏
k=1

E

[∏
j∈N

1

1 + θrαt ‖x
(k)
j ‖−α

]

(e)
= exp

(
− 2πλ

∫ ∞
0

(
1− 1

1 + θrαt x
−α

)
xdx

)K
(f)
= exp

(
− cλr2

t θ
δK
)
,

where (d) holds as h(k)
j ∼ E(1), (e) follows as the point process

of interferers across different transmissions are i.i.d. and applies
the PGFL of a PPP, and (f) follows the same steps of the
derivations of (121).

I. Proof of Corollary 4 (Success Probability of Type-II HARQ)

Proof. When K = 2, the success probability with Type-II
HARQ-CC given in (98) can be rewritten as

PII = P
[
η(1) > θ

]
+ P

[
η(1) + η(2) > θ, η(1) < θ

]
= P

[
η(1) > θ

]
+ E

[
P
[
η(2) > θ − η(1) | η(1)

]
1{η(1)<θ}

]
= J1 +

∫ T

0

P
[
η(2) > θ − u

]
fη(1)(u)du

]
, (128)

where J1 is given in Theorem 10 and fη(1)(t) represents the
PDF of η(1).

Then, we derive the conditional CDF of η(1) given Φ(1) as
follows

P
[
η(1) ≤ t

]
= E

[
1− exp

(
− urαt

∑
j∈N

h
(1)
j ‖xj‖

−α
)]

= 1−
∏
j∈N

1

1 + urαt r
−α
j

. (129)

Subsequently, the PDF of η(1) can be derived by taking the
derivative of (129) with respective to u as follows.

fη(1)(u) =
∂
(

1−
∏
j∈N

1
1+urαt r

−α
j

)
∂u

=
∑
j∈N

rαt r
−α
j

(1 + urαt r
−α
j )2

i 6=j∏
i∈N

1

1 + urαt r
−α
i

. (130)

By plugging (130) into the second term of (128), we have
(131), where (a) applies the Campbell-Mecke formula given
in (27).

Subsequently, by computing the expectations in (131) based
on the PGFL of the PPP, we have the final results in Corol-
lary 4.
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