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Abstract—Safety applications based on vehicle-to-vehicle
(V2V) communication have become a major goal toward the
intelligent transportation. The performance of the applications
is mainly affected by the communication links, which in turn
are governed by the topology characteristics of vehicular ad
hoc networks (VANETs). To analyze the performance of V2V
communication for VANETs, accurate spatial modeling is of
great importance. There is an absence of a widely accepted two-
dimensional model that well characterizes the random vehicle
locations; the widely used Poisson point process (PPP) model is
simple but not close to reality. In this paper, we concentrate on
spatial point process modeling for random vehicle locations in
large and small cities, performing empirical experiments with
real location data of mobile taxi trajectories recorded by the
global positioning system (GPS) in Beijing city of China and
Porto city of Portugal. We find that the empirical probability
mass functions (PMFs) of the number of taxis in test sets in
different regions of Beijing or in Porto all follow a negative
binomial (NB) distribution. The spatial correlations of the points
are established by comparing the results of different sampling
methods. Based on the above, we show that the Log Gaussian
Cox Process (LGCP) model, whose empirical PMF nicely fits the
NB distribution, accurately characterizes diverse spatial point
patterns of random vehicle location in both large and small cities.
This is verified by the minimum contrast method. Then we study
the node degree as an important metric for the communication
performance of the networks. It is shown that the connectivity
of the LGCP model closely represents the connectivity found in
the actual data, for both representative cities.

The LGCP model is far more accurate than the widely
used one-dimensional models and the 2-dimensional PPP for
modeling the vehicle distribution, which is significant in V2V
communication.

Index Terms—V2V, spatial point process, connectivity, VANET,
modeling.

I. INTRODUCTION

A. Motivation

Significant advances of wireless communications and the
pervasive use of mobile electronics have turned vehicular
networks from a futuristic promise to an attainable technology
to meet the imminent demands for reduced accidents and im-
proved road safety and efficiency. Safety applications in vehic-
ular ad hoc networks (VANETs) will be based on the exchange
of periodic cooperative awareness messages (CAMs). A CAM
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contains details such as a vehicle’s location, speed, direction
and other information that can be useful to drivers in the same
region [1]. When an important event is detected by a vehicle
(e.g., an accident, a slippery road), the information has to be
rapidly delivered to other network nodes. Different from the
conventional cellular communication, the network topology of
vehicle-to-vehicle (V2V) communication changes greatly with
the movement of vehicles. In turn, the connectivity of V2V
also changes as a function of the topology (i.e., spatial vehicle
distribution). To analyze the connectivity of VANETs, an
accurate understanding of the topology and distribution is thus
important. Stochastic geometry models offer a relevant view
to location-dependent network characteristics. To describe the
vehicular patterns and characterize the connectivity of vehicle-
to-vehicle (V2V) communication, spatial stochastic models are
crucial.

B. Related Work

A road system is first added to wireless communication
systems in [2] for strategic planning and economic analysis,
and the Poisson line process is proposed to model the road
position, and the Poisson point process (PPP) is used to model
traffic on the road. In [3], the telecommunication networks
including the road system are modeled as random geometric
graphs, on the edges of which the locations of the network
nodes are modeled as linear Poisson processes. Reference
[4] observes that the vehicles that enter the highway through
one of the traffic entry points form a Poisson process and
studies the impact of vehicle mobility on the connectivity
of VANETs. Connectivity is also analyzed in [5] and [6],
where the same model for vehicles entering the highway
is used and, in addition, it is assumed that the speed of
the vehicles is constant or normally distributed. In [7] and
[8], the vehicle locations are assumed to form a Poisson
point process in one dimension, and the authors perform an
analytical evaluation of broadcast protocols. In [9], the random
locations of the vehicles in a street are modeled as a one-
dimensional stationary Cox process with Fox’s H-distributed
random intensity. The inter-vehicle distances were simply set
to certain values (i.e., from a few meters to 100 meters)
to analyze delay in multiple V2V environment in [22]. [23]
models a linear PPP for vehicles along a highway. It captures
the influence of physical layer fading channels by deriving the
joint distribution of the distance between every vehicle.

Besides the above studies with theoretic models, empirical
research based on real data recently has focused on spatial
point process modeling and analysis of real road systems or



random vehicle locations or traffic. For example, [10] fits
Poisson line tessellations, Poisson-Voronoi tessellations, and
Poisson-Delaunay tessellations to real data of the road system
in Paris for the purpose of cost analysis and strategic planning
of telecommunication networks. The authors in [11] further
utilize random tessellations to model the road systems in fixed-
access networks, and random points are added to the tessella-
tion edges to represent network components. Reference [12]
uses an inhomogeneous Poisson process model for vehicles at
traffic signals and shows that the introduction of traffic signals
does not affect the Poisson property of the stochastic model
when the vehicles have a deterministic velocity profile, which
is validated against empirical data in London city.

In [13], by analyzing real data of traffic counts in highway
from the Bureau of Transport Statistics, New South Wales,
the vehicles are modeled as a planar PPP, and numerical
evaluation also indicates the proposed model is more accurate
than existing one-dimensional models under sparse vehicle
traffic densities. [14] verifies that the two-dimensional PPP
assumption is only accurate for low vehicle density. In [15],
experimental results for single-vehicle data of the Dutch
freeway A9 and the German freeway A5 display that when the
distances between cars are correlated due to traffic congestion,
the vehicles do not follow a Poisson distribution.

The spatial point modeling for vehicles is of great im-
portantance for infrustructure deployment and connectivity
analysis in vehicular networks. Reference [31] presents a
spatial model to study the load demand and allocates the
charging stations based on the load demand. Reference [30]
assumes a Poisson flow as a priori distribution to study
the probabilistic distribution of inter-vehicle spacing and the
connectivity in VANETs. Many works, e.g., [32]–[35], assume
that the number of vehicles in a road section follows a Poisson
distribution for simplicity. Reference [37] assumes that the
vehicles arrive at the highway through one traffic entry point
according to a Poisson process. It then studies the significance
of the mobility on the connectivity of VANET by deriving the
probability distribution of the node population size. Similarly,
reference [38] assumes that the vehicles from one entry point
follows a Poisson process, and determines the relation between
the flow rate and the network connectivity. In reference [39],
the connectivity is derived based on the inter-vehicle initial
distance function. The connectivity of VANETs has attracted
attention and interests of researchers in recent years [36],
[40], [41]. The spatial distribution (especially the inter-vehicle
distance) is crucial in the study of VANETs connectivity,
which makes the spatial point process modeling for vehicles
of great significance.

Based on the above, the previous research work has not
produced a widely accepted spatial model that well char-
acterizes the random vehicle locations, although the two-
dimensional model is closer to reality. In urban VANET
scenarios, it is of great importance to account for random
vehicle locations in V2V communication. The locations of
vehicles are correlated because of the traffic congestion and
intersections. Most models ignore the fact that, in urban
areas, there is strong correlation between the locations of
vehicles. The widely used PPP model assumes that the points

are completely independent, so it is not suitable for vehicle
modeling, especially in big cities with heavy traffic. Therefore,
spatial point process modeling of random vehicle locations
based on real data analysis and mining is still a crucial problem
to be addressed.

C. Contribution and Paper Organization
In this paper, we concentrate on spatial point process

modeling and analysis of random vehicle locations in a large
and a smaller city–Beijing city of China with a large-scale and
regular road system, and Porto city of Portugal with a small
and irregular road system. We perform empirical experiments
with the global positioning system (GPS) traces of taxis in
Beijing and Porto. The data of Beijing records realtime GPS
location information for 12509 taxis over a month, and the
data of Porto consists of realtime GPS location information for
442 taxis over a year. Our goal is to identify a planar point
process to accurately model random vehicle locations using
tools from stochastic geometry and to analyze the influence
of spatial point model on the connectivity of V2V. The paper
is an extension of the conference paper entitled “Spatial point
process modeling of vehicles in large and small cities” [16].

Our main contributions are:
• The empirical probability mass functions (PMFs) of point

counts of the point pattern generated by the vehicles are
analyzed by different sampling methods. We find that
the empirical PMFs of the number of taxis in test sets
in different regions of Beijing or in Porto all follow a
negative binomial (NB) distribution.

• The spatial correlations of the points are established by
comparing the results of different sampling methods. The
reduced Palm and reduced 2-Palm sampling methods
shown in Fig. 4 and Table III are suitable to establish
the clustering properties of the point pattern.

• We establish that the LGCP model, whose empirical PMF
nicely fits the NB distribution, accurately characterizes
diverse spatial point patterns of random vehicle locations
where points are strongly clustered.

• Next we focus on the connectivity of V2V networks.
The node degree is selected as a key metric to evaluate
the V2V connectivity in this paper. The best spatial
point process model is the model whose node degree
distribution is the closest to that of the real vehicles. We
verify that the LGCP model not only has a similar classic
statistics with the real taxis, but also the closest connec-
tivity performance. The LGCP model whose empirical
PMF nicely fits the NB distribution is an accurate model
for vehicle spatial distribution.

The rest of the paper is organized as follows. Section II
presents the spatial models and characteristics used in the
paper. Section III is devoted to the analysis of the empirical
PMFs of the counting measure of the vehicle point process.
We fit the Thomas cluster process, the Matérn cluster process,
and the LGCP models to real vehicle location data by the
minimum contrast method in Section IV. In Section V, we
study the node degree and average node degree as additional
criteria to decide on the best model for the spatial distribution
of real vehicles. Finally, conclusions are drawn in Section VI.
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II. SPATIAL POINT PROCESS MODELS AND
CHARACTERISTICS

A. Spatial Point Process Models

There are several kinds of spatial point processes to describe
a collection of random points in two dimensions, such as
PPPs, cluster processes, hard-core processes, Cox processes,
and Gibbs processes [17, Ch. 3]. Each of them has different
characteristics—PPPs exhibit complete spatial randomness due
to their independence property; Cox processes and other clus-
ter processes are overdispersed relative to PPPs, i.e., they are
more irregular; hard-core processes have a minimum distance
between points and thus are more regular than the PPPs; Gibbs
processes may be overdispersed or underdispersed. Vehicles
are often clustered due to traffic congestion and intersections,
so Thomas cluster processes, Matérn cluster processes, and
LGCPs are promising candidates to model the vehicle pattern.
The three candidate point process models—the Thomas cluster
Process, the Matérn cluster process, and the LGCP—are
described in this section.

A general cluster Poisson process is generated by taking
a parent point process and daughter point processes for each
parent, and translating the daughter processes to the position
of their parent. The cluster process is then the union of all the
daughter points. The Thomas cluster process and the Matérn
cluster process are Neyman-Scott cluster processes, defined in
[17, Ch. 3]. The Neyman-Scott process is a process whose
parent process is a PPP and daughter points are random in
number, independent of each other, and identically distributed.

1) Thomas Process: A doubly Poisson cluster process,
where the intensity function of a cluster is given by

λ0(x) =
c̄

2πδ2
exp

(
−∥x∥2

2δ2

)
, (1)

i.e., the daughter points are normally scattered with variance
δ2 around each parent point, and the mean number of daughter
point is c̄.

2) Matérn Cluster Process: A doubly Poisson cluster pro-
cess, where the intensity of the cluster can be expressed as

λ0(x) =
c̄

πR2
1b(o,R)(x), (2)

where 1(.) is the indicator function. i.e., the daughter points
are uniformly scattered on the ball of radius R centered at
each parent point, and the mean number of daughter points is
c̄.

A general Cox process is a doubly stochastic Poisson
process where the intensity measure itself is random. The
intensity measure is a realization of a non-negative locally
finite random measure [17, Ch. 3]. The Thomas and Matérn
cluster processes are specific Cox processes, as is the LGCP,
defined next.

3) Log Gaussian Cox Process (LGCP): A Cox process
where the logarithm of the intensity function is a Gaussian
process [20]. Specifically, the random intensity function of a
LGCP is given as Λ(s) = exp{Y (s)} where Y = {Y (s) : s ∈
R2} is a real-valued Gaussian process on the plane. Specif-
ically, Y (s) ∼ N (µ,C), which means the random function
Y is distributed as a Gaussian process with mean function µ

and covariance function C. The exponential covariance can be
parametrized in the form

C(r) = β exp
(
− r

α

)
. (3)

where r is the distance and β and α are parameters controlling
the strength and the scale of autocorrelation respectively. The
intensity of the LGCP is λ = exp(µ+ β/2).

B. Spatial Point Process Characteristics

For stationary point processes, there are five classical statis-
tics called G, F , J , K and L functions to describe the inter-
point dependence [17]. The G function is the nearest-neighbor
distance distribution. The F function, also called the empty
space function, is the cumulative distribution function of the
distance from an arbitrary fixed location to the nearest point
of the spatial point process. The J function is defined as
J(r) ≜ 1−G(r)

1−F (r) , which is a measure of how close a process
is to a PPP. Ripley’s K function is defined such that λK(r)
is the expected number of additional random points within a
distance r of the typical point of the point process, where λ is
the intensity of the process. The L-function is a transformation

of Ripley’s K function, defined as L(r) ≜
√

K(r)
π .

III. PMF ANALYSIS OF REAL LOCATION DATA

A. Spatial Point Specifications

A single realization of a spatial point process is called a
deterministic point pattern [17]. We treat the taxi locations
as a realization of a point process and aim at finding the
point process that has the highest likelihood of producing a
realization containing the taxi locations of Beijing and Porto.
The city of Beijing and the city of Porto are two representative
cities with different traffic patterns and topologies.

1) Beijing: The data set of Beijing comprises GPS in-
formation of 12509 taxis for a month (from 2012/11/01 to
2012/11/27). It contains 785.4 million entries, each one com-
prised of the taxi location and metadata information associated
with each taxi, as shown in Table I. The frequency of recording
position information varies from one to six times per minute.

Beijing city is the capital of China with a population of 21
million on an area of 16,000 km2; its road system is large, and
relatively regular. The intensity of the taxis in Beijing is not
constant and varies with the location due to the impact of the
road systems. Fig. 1 shows the locations of 6927 vehicles in
Beijing at 08:30 am on Nov. 2, 2012. From Fig. 1, a stationary
point process appears unsuitable to accurately model the entire
data set. Hence we partition the city into 9 regions in which
the point pattern is relatively homogeneous. By doing so, we
can fit a stationary point process model to each region. The
points in Region 2 and Region 5 are densely distributed, the
points in Region 9 exhibits strong clustering, and the patterns
in the other regions are relatively sparse.

2) Porto: The data set of Porto includes GPS information
of 442 taxis during a complete year (from 2013/07/01 to
2014/06/30). There are 1.7 million entries, of which each one
represents a complete taxi trajectory, as shown in Table II.
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Fig. 1. The taxi distribution at 8:30 am on 2012/11/02 in 9 regions of Beijing,
the horizontal axis represents the longitude from 116.26E to 116.54E and
the vertical axis represents the latitude from 39.82N to 40.04N. The green
dashed lines delineate the sampling window to which the test set centers are
constrained.
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Fig. 2. The taxi distribution at 9:00 am (2013/07/01-2013/07/31) in Porto, the
horizontal axis represents the longitude from 8.65W to 8.58W and the vertical
axis represents the latitude from 41.145N to 41.17N. The green dashed lines
delineate the sampling window to which the test set centers are constrained.

The complete taxi trajectory is a sequence of GPS positions
measured every 15 seconds.

Porto is a small port city in Portugal with a population of
0.26 million on an area of 41 km2; its road system is small and
irregular. The spatial point pattern generated by taxi data of
Porto is more homogeneous. A single realization is depicted in
Fig. 2, which consists of 1245 taxi locations at 9:00 am over
a month (2013/07/01 to 2013/07/31). Different from Beijing,
we choose the union of 31 daily snapshots taken at 9:00 am
because the number of points at 9:00 am on a single day is
too small (less than 50) to be statistically significant.

TABLE I
FORMAT FOR BEIJING DATA SET

taxi ID status time longitude latitude velocity
470341 0 20121102084536 116.5713 39.8063 39.8

TABLE II
FORMAT FOR PORTO DATA SET

trip ID taxi ID timestamp polyline
T16 20000440 1408037740 [-8.618,41.136],[-8.618,41.135]· · ·

TABLE III
2-PALM SAMPLING METHOD

Algorithm: 2-Palm Sampling
Parameter Setting: a, b, d
// a, b: length and width of the rectangle, d: distance threshold
1. while (x1, y1), (x2, y2) in φ do
2. l←

√
(x1 − x2)2 + (y1 − y2)2

3. if l < d
4. N ← 0 //initialize N
5. s← y2−y1

x2−x1
//the slope

6. for (x, y) in φ

7. b1 ← (x1y2−x−2y1)
x1−x2

+ bl
2(x2−x1)

, Line1: y = sx+ b1

8. b1 ← (x1y2−x−2y1)
x1−x2

− bl
2(x2−x1)

, Line2: y = sx+ b2

9. b3 ← al
2

+
x2
1−x2

2+y2
1−y2

2
2(y1−y2)

, Line3: y = −x/s+ b3

10. b4 ← −al
2

+
x2
1−x2

2+y2
1−y2

2
2(y1−y2)

, Line4: y = −x/s+ b4
11. if (x, y) in the rectangle generated by Line 1, 2, 3, 4
12. N ← N + 1
13. end for
14. end while

B. Empirical PMFs with Different Sampling Methods

In a spatial model, the countable random collection of
the vehicles on the Euclidean space R2 is regarded as a
point process Φ = {x1, x2, · · · }, where xi denotes a vehicle
location. The counting measure Φ(B) ≜ #{Φ∩B} is a random
variable that denotes the number of vehicles in a Borel set
B ⊂ R2 [17]. Similarly, we use the deterministic counterpart
φ(B) ≜ #{φ ∩B} to denote the counting measure of a point
pattern φ.

To calculate the empirical PMFs of the point counts φ(B),
the first step is to sample and count the number of points
generated by the taxi data. The basic principle of sampling
and counting is to choose many test sets Bi so that they cover
the entire region in a uniform manner, and count the number
of points falling in Bi.

We consider four shapes—circle, square, rectangle, and
cross rectangle—for sampling due to the irregularity of the
real roads in cities. The cross rectangle is the union of a
horizontally and a vertically oriented rectangle where the
center square is excluded, as illustrated in Fig. 3. As shown
in Table IV, the area of the test sets is fixed to 0.25 km2

to maintain consistency. To eliminate boundary effects, we
use a sampling window that is smaller than the region. The
gap between the sampling window boundary and the region
boundary is set as 1000 m for Beijing or 500 m for Porto
shown in Fig. 1 and Fig. 2, so that the test sets do not exceed
the region. The four sampling methods are:

1) Lattice Sampling: A sampling method in which the
center of B follows a square-lattice distribution.

2) Uniform Random Sampling: A sampling method where
the center of B follows a uniform PPP.

3) Reduced Palm Sampling: A sampling method in which
B is centered at the location of the taxis.

4) Reduced 2-Palm Sampling: A sampling method where
the center of B is at the midpoint of two taxi locations. The
distance between any two taxis vary from 400 m to 800 m.
The sampling method is shown in Fig. 4, and the algorithm is
shown in Table III.
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Fig. 3. The cross rectangle in the Palm sampling method. The left subfigure
is the cross rectangle in which the ratio of arm length to arm width is 1, and
the right subfigure is the cross rectangle in which the ratio of arm length to
arm width is 4. Note that the center part is excluded.

connection between  two

points(400m<dis<800m)

rectangle sampling 

unit (2000m*125m) 

Fig. 4. The 2-Palm sampling methods. ‘dis’ in the legend refers to the distance
between two points.

Fig. 5 shows the empirical PMFs and the corresponding
cumulative distribution functions (CDFs) of the point counts
with the lattice sampling and the uniform-random sampling
methods in Region 1. Fig. 6 shows the results of the reduced
Palm sampling methods based on four shapes and the reduced
2-Palm sampling method in Region 1. The Palm sampling
and 2-Palm sampling are used to capture the impact of the
underlying street system. Note that ‘Palm-Xrectangle1’ refers
to Palm-sampling method for the cross-rectangle case in which
the ratio of arm length to arm width is 1, while the ratio is 4
in ‘Palm-Xrectangle4’ as shown in Fig. 3. For Palm sampling,
the cross rectangular shape of the test set is chosen to cover
the street that the taxi lies on, given that most of the streets
in Beijing are oriented north-south or east-west. For 2-Palm
sampling, the rectangular shape is the optimal choice because
thanks to the calculation of the orientation, the test set covers
the street that the two taxis lie on.

The empirical PMF curves in Fig. 5 are monotonically
decreasing, while the empirical PMF curves in Fig. 6 first
increase and then decrease with increasing point number. This
indicates that lattice sampling and uniform random sampling
are definitely different from Palm and 2-Palm sampling and
that different shapes have little impact on the empirical PMF
calculation. Observing both results, we find that the empirical
PMF of the point number less than 3 in Palm and 2-Palm
sampling is smaller than that in lattice sampling and uniform
random sampling because the former is constrained to sample
in the vicinity of taxis. The same conclusion can be drawn for
the other 8 regions. Moreover, random sampling and uniform
random sampling are similar, and the shapes of the test sets
barely affect the PMFs. Hence the following experiments only
adopt the lattice sampling method.

The differences of the empirical PMF curves in Fig. 5 and
those in Fig. 6 indicate that there are strong correlations among
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Fig. 5. The empirical PMFs and corresponding CDFs of point number in test
set in Region 1 of Beijing with lattice and uniform random sampling methods.

vehicles, since the PMF curves of different sampling methods
would coincide if the points were completely independent (i.e.,
from a PPP). The empirical PMF curves of a PPP are shown in
Fig. 7. The ten PMF curves of the different sampling methods
almost coincide. The existing difference is due to the random
variability in generating a PPP realization and sampling it. The
vehicles on roads can be sampled by the 2-Palm sampling
method, without knowing the road network. The Palm and
2-Palm sampling methods are good choices to calculate the
density of the points clustered on roads, since the boundaries
of roads and non-road space are hard to obtain. The shape of
the test set B in the Palm sampling method can be adjusted
to the type of points to be sampled, and a rectangular test set
is suitable for sampling vehicles on roads.

TABLE IV
SAMPLING METHODS

Sampling
method

Shape of
test set Size of test set

Area of test
set (km2)

Lattice
sampling

circle radius=281 m 0.25
square 500 m×500 m 0.25

Uniform random
sampling

circle radius=281 m 0.25
square 500 m×500 m 0.25

Palm sampling

circle radius=281 m 0.25
square 500 m×500 m 0.25
cross

rectangle
250 m×250 m×4 0.25
500 m×125 m×4 0.25

2-Palm sampling rectangle 2000 m×125 m 0.25

C. Statistics on the Basis of the PMFs

On the basis of the empirical PMFs, we evaluate three
statistics—empirical mean, variance, and intensity. We use φ
to denote the point pattern generated by the taxi data. The
empirical mean in Region i is given by

M =

K∑
k=1

φi(Bk)

K
, (4)

where φi is the data set of Region i, K is the number of test
sets, and Bk denotes the kth test set.
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Fig. 6. The empirical PMFs and corresponding CDFs of point number
in test set in Region 1 of Beijing with reduced Palm and reduced 2-Palm
sampling methods.
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Fig. 7. The empirical PMFs and corresponding CDFs of point number in test
set in a realization of a PPP with lattice, uniform random, reduced Palm and
reduced 2-Palm sampling methods. The PPP is generated so that its intensity
is the same as the mean density of vehicles in Region 1 of Beijing.

The variance is derived using the empirical mean as

σ2 =

K∑
k=1

[φi(Bk)]
2

K
−M2. (5)

The intensity is the expected number of points in a test set
B, given by

λ =
M

|B|
= 4M/km2. (6)

TABLE V
MEAN, VARIANCE AND INTENSITY IN REGION 1 OF BEIJING

Sampling
method

Shape of
test set Mean Variance

Intensity
(/km2)

Lattice
sampling

circle 3.22 13.48 12.89
square 3.24 13.55 12.97

Uniform random
sampling

circle 3.31 13.72 13.24
square 3.32 13.99 13.26

Palm sampling

circle 6.93 28.3 27.73
square 6.74 27.82 26.96
cross

rectangle
5.81 18.76 23.25
7.46 26.77 29.85

2-Palm sampling rectangle 9.21 52.25 36.83

The results shown in Table V verify that the taxi points do
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Fig. 8. Empirical PMFs of the point number in test set in Regions 1, 2, 3, 8
of Beijing with lattice-circle sampling, and fitted PMFs of NB variables.

not follow a Poisson distribution (whose mean and variance
are the same). NB models are suitable for discrete data like
count data when the variance is larger than the mean. The
PMF of a NB random variable N is

P (N = k) =

(
k + r + 1

k

)
pk(1− p)r, (7)

where r > 0 and 0 < p < 1 are parameters of the NB
distribution. Here, we attempt to fit the discrete empirical PMF
data to the PMF of the NB distribution.

We use the maximum likelihood method to estimate the
parameters r and p of the NB distribution. The experimental
results show that the empirical PMFs in Regions 1 and 4 are
very close, coinciding with those in Regions 2 and 5 and those
in Regions 3, 6 and 7. Thus, only the empirical PMF data in
Regions 1, 2, 3 and 8 with three different methods are provided
in Fig. 8, Fig. 9, and Fig. 10 as typical representatives. Judging
from the results, it is observed that the empirical PMFs in
all the regions can fit NB distributions with specific r and
p parameters well. The fitted NB distributions in Region 2
and Region 1 that belong to dense regions are both close
under different sampling methods. Similarly, the fitted NB
distributions in Region 3 and Region 8 that belong to sparse
regions are approximate under lattice sampling method, but
there is a significant discrepancy in the parameters for the Palm
and 2-Palm sampling methods due to the distinctive sparsity
in the different regions. Fig. 11 shows the empirical PMF data
in Porto, which also fits the NB distribution very well.

Remark 1: The empirical PMFs of the number of points in
test set in different regions of Beijing and in Porto follow a
NB distribution, reflecting self-similarity in dense regions or
in sparse regions and in large-scale and regular road systems
or in small and irregular road systems.

IV. FITTING METHOD AND PATTERN MODELING

In this section, we develop a point process model whose
statistics match those of the taxi data.

Based on the results we found in Section III-C, we fit
the Thomas model, the Matérn cluster model, and the LGCP
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Fig. 9. Empirical PMFs of the point number in test set in Regions 1, 2, 3, 8
of Beijing with Palm-Xrectangle4 sampling, and fitted PMFs of NB variables.
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model to the given point set, using the minimum contrast
method [18]. It fits the model by matching the data’s summary
statistic to its theoretical value. The K function describes the
correlation between points which makes it a suitable summary
statistic for fitting. In some cases, the K function of a point
process is known exactly, as an analytic expression in terms
of the model parameters. These cases include the Thomas and
Matérn cluster processes, and the LGCP.

0 100 200 300 400 500

0
5

1
0

1
5

1
×

1
0

5

K
(r

)

r (meter)

−
2

−
1

0
1

2
1

×
1
0

5

d
if
fe

re
n
c
e
 v

a
lu

e

K
^

obs(r)
Kpois(r)
KThomas(r)
KMatClust(r)
KLGCP(r)

Fig. 12. Left axis: K function of the observed point pattern in Region 2
of Beijing and three fitted models. Right axis: the difference between the K
functions of the observed point pattern and the other curves of three models.

For the ease of notation, the parameters of the point process
models are collectively referred to as θ. For example, in the
case of LGCP, θ refers to (α, µ, β). We determine the values
of the parameters of a point process that give the closest
match between the theoretical expected value of the summary
statistic Kθ(r) and the observed value of the summary statistic
evaluated from the data, denoted by K̂(r). The best match is
determined by minimizing the discrepancy D between two
functions, which is defined as

D(θ) =

∫ b

a

∣∣∣K̂(r)q −Kθ(r)
q
∣∣∣p dr, (8)

where a = 0, b = 500 since the clustering of vehicles of
which the distance are less than 500 meters are considered, and
p = 2, q = 1/4 so that the contrast criterion is the integrated
squared difference between the fourth roots of the K functions
[19]. We employ a generic fitting algorithm for the method of
minimum contrast, since the theoretical K function of the three
models can be computed exactly from the model parameters.

Figs. 12, 13, and 14 compare the K function of the observed
point patterns in Region 2 and Region 3 of Beijing, and Porto,
to the K function of the fitted models, and depict the gap
between the K function of the observed point pattern and
the fitted models. The gap between the K(r) curve of the
observed point pattern and the curve of the LGCP model with
the NB distributed PMF is the least, making the model a good
fit for the data. The red dashed line denotes the K function
of the fitted PPP model. The gap between the K(r) curve of
the observed point pattern and the curve of the PPP model is
very large, showing that the PPP model is not suitable for the
vehicle pattern. The same conclusion can also be drawn for
the other regions of Beijing.

The LGCP model is uniquely determined by the parameters
θ = (α, µ, β). The values of the parameters of the fitted
LGCP model for Region 2 and Region 3 of Beijing and
Porto are (248.86,−11.65, 1.81), (177.20,−13.30, 2.62), and
(105.56, 10.57, 2.22), respectively.

To model the locations of all vehicles, the density of the
LGCP need to be adjusted. According to reference [29],
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Fig. 13. Left axis: K function of the observed point pattern in Region 3
of Beijing and three fitted models. Right axis: the difference between the K
functions of the observed point pattern and the other curves of three models.
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Fig. 14. Left axis: K function of the observed point pattern in Porto and
three fitted models. Right axis: the difference between the K functions of the
observed point pattern and the other curves of three models.

the density of all the traffic is about 20 times that of the
data set used in our paper. In Section II-A, the density of
the LGCP with parameters θ = (α, µ, β) is expressed by
λ = exp(µ + β/2). The parameter α is insensitive to the
absolute density, since the spatial scale of the correlation in
the underlying Gaussian field should be well captured already
in a sparser data set.

We deduce that the LGCP model is an accurate model for
the spatial point patterns of vehicle locations. Additionally, we
perform a Monte Carlo test to determine the goodness-of-fit
between the empirical and fitted models. In the Monte Carlo
test, we regard the fitted LGCP model as the null hypothesis.
To determine whether the vehicular point patterns follow the
LGCP model, we compare the K functions of the data and
the fitted LGCP model. We simulate realizations from the null
hypothesis and compute the K function for each realization.
The K function curves of the realizations form an envelope for
a large number of simulations. The Monte Carlo test rejects
the null hypothesis if the K function of the original spatial
point pattern lies outside the envelope. As shown in Figs. 15,
16, and 17, the observed curve stays inside the envelope of the
LGCP model fitted to the original point pattern, ascertaining
that the original point pattern can be characterized by the
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Fig. 15. Monte Carlo test on K function of taxis in Region 2 of Beijing, and
the envelope of 39 realizations of the LGCP model. The red dashed line is the
average value of the K function of 39 realizations of the fitted LGCP model.

LGCP model. Therefore, the LGCP model whose empirical
point count PMF nicely fits a NB distribution can be used to
model the vehicle locations. The K function of the vehicular
point pattern in Region 2 of Beijing and the K function of
vehicular point pattern in Region 3 of Beijing are similar,
which further validates the self-similarity of the vehicular point
pattern in the spatial domain.

Based on the above results, the LGCP model is more
suitable for a spatial point distribution that is restricted to lines
(i.e., the roads) than the Matérn and the Thomas cluster mod-
els. According to the definitions in (1) and (2), the Thomas and
the Matérn cluster model are generated by placing daughter
points around parent points. Nevertheless, the vehicles in cities
are distributed along roads, not around some center points.
The classical cluster point processes are not good choices
for vehicle modeling, though the vehicles are overdispersed
because of the intersection and congestions. The LGCP model
is also suitable for the overdispersed vehicles, but without the
above limitations of the Thomas and the Matérn cluster point
processes.

Both the vehicle density and the road topology in Beijing
and Porto are different, but the LGCP model is well fitted
with the real vehicle distributions of the two cities. Based on
the above, the LGCP model is valid also for other cities with
different traffic patterns and topologies.

Remark 2: The LGCP model is more suitable for a spatial
point distribution that is restricted to lines (for example, the
roads) than the Matérn and the Thomas cluster models.

V. MODEL VALIDATION BASED ON VANET
CONNECTIVITY

The LGCP model is verified as the best point process model
for the vehicles in terms of the K function. It is sensible to use
a statistic that is related with a standard metric used in wireless
networks to decide on the best model [21]. In [21], the authors
develop different spatial point process models for base stations
in cellular networks based on empirical data, and propose
coverage probability as the criterion for the goodness-of-fit.
Here we study the node degree and the average node degree
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Fig. 17. Monte Carlo test on K function of taxis of Porto, and the envelope
of 39 realizations of the LGCP model. The red dashed line is the average
value of the K function of 39 realizations of the fitted LGCP model.

as additional metrics for the communication performance of
the network to further validate the model.

The node degree is defined as the number of neighboring
vehicles a vehicle can communicate with. We study the node
degree distribution and the mean node degree. We compare the
node degree of real taxis to simulated taxis with three different
spatial point process models. It is noted that the parameters of
the three cluster processes in this section are the same as those
in Section IV. In other words, the LGCP, Matérn and Thomas
parameters are not optimized based on the connectivity but
based on the K function.

A. The Connectivity Model

In this section, a simple and general large-scale fading
channel model, the log-normal model, is selected as the
connectivity model. The log-normal model is used to account
for the additional attenuation caused by obstacles in the V2V
communications. These variations in this model is log-normal
distributed as follows:

Prx(d) = P0 − 10n log10
d

d0
+Nσ, (9)

car1

car2

car3

car4

car5

Fig. 18. Illustration of V2V communication network with one-hop wireless
links.

where d is the distance between the transmitter and the re-
ceiver, d0 denotes the reference distance, Prx(d) is the received
signal power at distance d (in dBm), P0 is the received signal
power at the reference distance d0 (in dBm), n is the path loss
exponent and Nσ is a zero mean Gaussian random variable
with variance σ2. A vehicle can communicate with another
vehicle if Prx(d) is greater than a certain threshold value Pth.
Note that when σ = 0, the log-normal model reduces to the
disk model. The disk model is a special case of the general
log-normal model in which two vehicles are directly connected
if and only if their Euclidean distance is less than or equal to
r. Due to this fact, we set Pth = P0 − 10n log10

r
d0

, so that
the results in the log-normal model can be compared with the
results in the disk model.

The connectivity function g(d) is separately defined for the
general case and disk model. It gives the probability that two
vehicles at distance d are connected.

1) The Connectivity in the General Case: gl(d) is used
to denote the connectivity function of the log-normal model,
which can be expressed as

gl(d) = P (Prx(d) > Pth)

= P
(
P0 − 10n log10

d

d0
+Nσ > P0 − 10n log10

r

d0

)
= P

(
Nσ − 10n log10

d

r
> 0

)
= Q

(
10n

σ
log10

d

r

)
, (10)

where Q(x) = 1√
2π

∫∞
x

exp
(
−y2

2

)
dy is the tail probability

of the standard normal distribution.
2) The Connectivity in the Disk Model: The disk model,

a special case of the log-normal model, has the connectivity
function gd(d) = 1(d ≤ r), where r is predetermined, com-
monly known as the transmission range. This model is widely
used in the analysis of the VANET topology characteristics due
to its simplicity [22]–[26]. We adjust the radius r to the overall
density of vehicles in the region, such that λπr2 is roughly
the same for different regions. This allows a better comparison
of the CDFs across the different regions. For example, since
the vehicle densities in Region 2, Region 3 and Porto are

9



0 5 10 15 20 25 30 35 40

 k

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
C

D
F

  
P

(N
≤

 k
)

LGCP

Thomas

Matern

Real taxi

Fig. 19. The cumulative density function of the node degree in Region 2 of
Beijing for the log-normal model (σ = 5 dB, n = 2.5).

19.32/km2, 5.99/km2, and 78.35/km2, respectively, the radii
r are set with 300 m, 538 m, and 149 m in these regions. These
radii are consistent with IEEE 802.11p, which is designed
for V2V and vehicle-to-infrastructure communications, allows
transmission ranges up to 1,000 m [27].

The communication model is a broadcast model where
vehicles communication with each other with one-hop wireless
links as illustrated in Fig. 18. A vehicle sends a message in
broadcast mode, and vehicles can receive the message if the
distance between transmitter and receiver are less than the
distance threshold for the disk model. Vehicles can receive
the message if the received power is larger than the power
threshold for the log-normal model.

B. Node Degree Distribution with Fixed Transmission Range

When the transmission range of the vehicles is fixed, the
node degree will be only influenced by the relative position of
vehicles. Because of the vehicles’ inhomogeneous distribution,
the node degree of different vehicles is different. We focus on
the statistical characteristic of the node degree (i.e, the cumu-
lative distribution function of the node degree) of vehicles at
a certain time.

1) Node Degree in the General Case: In the log-normal
model, vehicle x can communicate with vehicle y if and only if
the received power Prx (∥x− y∥) is greater than the threshold
value Pth, where ∥x−y∥ denotes the distance between vehicle
x and vehicle y. The node degree of vehicle x in the log-
normal model is defined as the node degree averaged over the
shadowing, and it can be expressed as

N(x, r) =
∑
y∈φ

Q

(
10n

σ
log10

∥x− y∥
r

)
, (11)

where φ denotes the countable set of taxis, n is the path loss
exponent, σ is the standard variance of the Gaussian random
variable, and r is the mean transmission range.

The parameter values of n and σ of the model are chosen
based on the channel measurement results reported in [24],
[25], and [26]: n = 2.5, σ = 5 dB. And the CDFs of the node
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Fig. 20. The cumulative density function of the node degree in Region 3 of
Beijing for the log-normal model (σ = 5 dB, n = 2.5).
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Fig. 21. The cumulative density function of the node degree in Porto for the
log-normal model (σ = 5 dB, n = 2.5).

degree in Region 2 and Region 3 of Beijing with the log-
normal model are illustrated in Fig. 19 and Fig. 20, and the
mean transmission range is equal to the transmission range
in the disk model to have a fair comparison. We compare
the node degree of real taxis to simulated taxis with three
different spatial point process models. It turns out that for the
LGCP model, the discrepancy between the node degree of real
taxis and the node degree of the spatial model is the smallest.
The same conclusion can be drawn in the other regions of
Beijing city and Porto city (shown in Fig. 21). Accordingly,
we conclude that the LGCP model is the best model when
considering the connectivity of the VANET.

2) Node Degree in the Disk Model: The node degree of
vehicle x in the disk model with transmission range r is

N(x, r) = #{φ ∩ b(x, r)} − 1, (12)

where φ denotes the countable set of taxis, #{.} denotes the
number of elements in a set, and b(x, r) denotes the disk of
radius r centered at x. We can use the reduced Palm sampling
method in Section III-B to determine the empirical cumulative
density function (CDF) of the node degree N(x, r).
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model.

C. Average Node Degree

When the transmission range of the vehicles increases, the
node degree of each vehicle will increase or stay unchanged.
The average node degree is defined as the mean of the node
degree of all the vehicles.

1) Average Node Degree in the General Case: The average
node degree in Region i in the log-normal model can be
expressed as

N̄i(r) =
1

#{φi}
∑
x∈φi

N(x, r), (13)

where #{.} denotes the number of elements in set, φi denotes
the countable set of taxis in Region i, N(x, r) is the node
degree of vehicle x in the log-normal model with power
threshold Pth = P0−10n log10

r
d0

, N (x, r) can be calculated
using (11).

The average node degree in Region 2 and Region 3 of
Beijing city in the log-normal model are illustrated in Fig. 22
and Fig. 23. We compare the average node degrees of real taxis
to simulated taxis with three different spatial point process
models. It shows that the difference between the average node
degree of real taxis and average node degree of simulated taxis
with the LGCP model is the smallest. Fig. 22 also shows that
the average node degree of the real taxis is smaller than the
average node degree of the Thomas and Matérn models. It is
verified that the connectivity of the LGCP model is closest to
the connectivity of vehicles in both small (shown in Fig. 24)
and large cities.

2) Average Node Degree in the Disk Model: For a disk
model (i.e., a special case of the log-normal model), the
average node degree in Region i in the disk model with
transmission range r can be expressed as

N̄i(r) = λK(r), (14)

The average node degree for the Thomas cluster point
process Φt with parameters c̄, κ, δ can be expressed as [28]

N̄t(r) = c̄κ

(
πr2 +

1

κ

(
1− exp

(
− r2

4δ2

)))
, (15)
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Fig. 23. The average node degree in Region 3 of Beijing for the log-normal
model.
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Fig. 24. The average node degree in Porto for the log-normal model.

where κ is the intensity of the parent point process.
The average node degree for the Matérn cluster point

process Φm with parameters c̄, κ, R can be expressed as [28]

N̄m(r) = c̄κ

(
πr2 +

1

κ
h
( r

2R

))
, (16)

where κ is the intensity of the parent point process, R is
the radius of the disk inside which the offspring points are
distributed around the parent, and

h(z) = 2 +
1

π
[(8z2 − 4) arccos z − 2 arcsin z

+4z
√
(1− z2)3 − 6z

√
1− z2] (17)

for z ≤ 1, and h(z) = 1 for z > 1.
The average node degree of the LGCP Φl with parameters

µ, α, β can be expressed as [28]

N̄l(r) = exp

(
µ+

β

2

)∫ r

0

2πs exp
(
σ2e

−s
α

)
ds. (18)

The average node degree and the K function of the pat-
tern of vehicles are proportional to each other, as shown in
(14). Since the empirical K functions of the vehicular point
patterns in Beijing city and Porto city have been illustrated in
Figs. 12, 13, and 14, the average node degrees of the vehicles
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in the disk model are not reproduced.

VI. CONCLUSION

We adopted various sampling methods to study the dis-
tribution of vehicles in Beijing, with large-scale and regular
road systems, and Porto, with small-scale and irregular road
system. We showed that the number of vehicles in both
the cities follows a NB distribution through an analysis of
the probability mass functions. The spatial correlations of
the points are detected by comparing the results of different
sampling methods. The vehicles on roads can be conditionally
sampled by the 2-Palm sampling method, without knowing the
road network. The reduced Palm and reduced 2-Palm sampling
methods are good choices for sampling points constrained to
lines.

To find a suitable point process for the vehicular network,
we fitted the Thomas process, Matérn cluster process, and
the LGCP with the PMF following a certain NB distribution
to the given point set using the minimum contrast method.
It is shown that the LGCP model whose empirical PMF
nicely fits the NB distribution can generally characterize the
spatial point pattern of random vehicle locations very well
in both large and small cities. We use a Monte Carlo test
on the classical statistics as the criterion for goodness-of-
fit, which proves that the LGCP model performs better in
fitting than other models. The LGCP model is more suitable
for a spatial point distribution that is restricted by lines (for
an example, the roads), than the Matérn cluster model and
Thomas cluster model. Additionally, we propose the node
degree and average node degree as additional criteria to decide
on the best model for the spatial distribution of real vehicles
in V2V communication scenario. The results verify that the
LGCP model can accurately characterize the vehicle spatial
distribution in V2V communication.

Accordingly, we can use the LGCP model to analyze
other performance metrics (i.e., coverage and capacity) and
optimize the practical deployment of VANETs. Equipped with
an accurate model for the vehicle positions, the powerful
tools of stochastic geometry [17] can be applied to analyze
the communication performance of V2V and V2I networks.
This entails choosing a communication model (which vehicles
communicate) and a model for path loss and fading and the
determining the distribution of the signal-to-interference-and-
noise ratio (SINR) at the receiver.
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