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Abstract—The signal-to-interference-ratio (SIR) meta distri-
bution (MD) characterizes the link performance in interference-
limited wireless networks: it evaluates the fraction of links that
achieve an SIR threshold θ with a reliability above x. In this work,
we show that in Poisson networks, for any independent fading
and power-law path loss with exponent α, the SIR MD can be
expressed as the product of θ−2/α and a function of x when (θ, x)
is in the so-called “separable region”. We show by simulation that
the separable form serves as a good approximation of the SIR
MD in Ginibre and triangular lattice networks when θ is chosen
large enough. Given the quest for ultra-reliable transmission, we
study the asymptotics of the SIR MD as x → 1 for general
cellular networks with Rayleigh fading. Finally, we apply our
results to characterize the distribution of the link rate, where
each link transmits with a rate satisfying a given reliability x,
and the asymptotic distribution of the local delay, defined as the
number of transmissions needed for a message to be received
successfully.

Index Terms—Cellular networks, meta distribution, Poisson
point process, separability, stochastic geometry, local delay

I. INTRODUCTION

A. Motivation

The signal propagation in wireless networks is subject to
small-scale fading and large-scale path loss, and the signal-
to-interference-ratio (SIR) is a key quantity in interference-
limited scenarios. Consider a cellular network where base
station (BS) locations are modeled using a stationary and
ergodic point process Φ ⊂ R2 and the typical user located
at the origin1. Let x ∈ Φ be the serving BS and Φ \ {x} be
the set of interfering BSs. The SIR at the typical user is

SIR ,
hx‖x‖−α∑

y∈Φ\{x} hy ‖y‖
−α , (1)

where hx denotes the fading associated with BS x and
‖·‖−α denotes the path loss with exponent α. Given the BS
locations, the SIR received at the typical user is subject to
the randomness of small-scale fading only. In this case, the
reliability of the link with respect to θ is defined as

Ps(θ) , P(SIR > θ | Φ), θ > 0, (2)

which is referred to as the conditional success probability
interchangeably [1] since it evaluates the probability of success
conditioned on the BS point process. The distribution of Ps(θ)
depends on the distribution of Φ. It is vital to study the
distribution of the link reliability, which answers “what is the
fraction of links in the network that achieve an SIR threshold

1By the stationarity of the point process, we assume that the typical user
is located at the origin without loss of generality.
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Fig. 1. Histogram of Ps(θ) for θ = −5 dB in a Poisson cellular network with
Rayleigh fading and power-law path loss with α = 4. The mean reliability
x = 0.7769, and approximately 58.2% of the links achieve θ = −5 dB with
reliability above x = 0.7769.

θ with a reliability above x?” Consequently, the SIR meta
distribution (MD) is defined as [1]

F̄Ps
(θ, x) , P(Ps(θ) > x), x ∈ [0, 1], (3)

which is the CCDF of the conditional success probability. For
any ergodic BS point process, the SIR MD can be interpreted
as the fraction of links that achieves θ with reliability higher
than x in any realization of the network. Generally, F̄Ps

(θ, x)
monotonically decreases with θ and x, and F̄Ps

(θ, 1) = 0.
Fig. 1 shows the histogram of the conditional success

probability for θ = −5 dB in a Poisson network with Rayleigh
fading and power-law path loss with exponent α = 4. In this
example, approximately 58.2% links achieve θ = −5 dB with
a reliability above x = 0.7769, which is the mean success
probability in this example. The (mean) success probability is a
simpler and more extensively explored metric in the literature.
By definition,

ps(θ) ≡ E[Ps(θ)]. (4)

The SIR MD is a fine-grained metric of the link-level
performance in the network. However, only a few analytical
properties are available even for the most tractable model, the
Poisson point process (PPP). As such, the analytical properties
of the SIR MD and their applications are the subjects of study
in this work.
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B. Prior Work

As a critical metric for network performance, the SIR MD
for cellular networks with BS cooperation is analyzed in [2],
with non-orthogonal multiple access (NOMA) in [3], with
offloading in [4], [5], and with power control in [6]. [7] studies
the MD in the Poisson typical cell while [8], [9] provide
approximations of the MD for non-Poisson cellular networks.
The MD for Poisson bipolar networks is studied in [10] as a
basis for the spatial outage capacity. [11] studies the MD in
networks with bipartite Euclidean matchings. Most of the work
mentioned above evaluate the MD based on simulations or
approximations due to the lack of efficient analytical methods.
And numerical methods are proposed in [12], [13] to calculate
the MD based on the moments of the conditional success
probability, which are often more tractable.

The moments of the conditional success probability in
Poisson networks and an exact integral expression for the MD
are given in [1]. The authors in [8] study the asymptotics of
the moments as θ → 0 for general networks. They propose
to approximate the SIR MD for non-Poisson networks using
the shifted version of the MD for Poisson networks. However,
only Rayleigh fading is studied in [1], [8]. Relevant to this
work, [14, Cor. 2] puts forth an idea of characterizing the SIR
MD in Poisson networks by conditioning on the distance ratio
of the nearest two BSs, which applies to general fading models
as will be shown in this work.

The SIR MD can be interpreted as the distribution of the link
rate, given that the transmission rate of each link is adjusted
to achieve a target reliability x [15]. Given the quest for
ultra-reliable transmission in 5G and beyond communication
systems [16], the link-level reliability is expected to be higher
than 1 − 10−5. It is thus critical to explore the asymptotic
behavior of the SIR MD in cellular networks as x→ 1, which
has not been studied so far. Asymptotic analyses of the (mean)
success probability show that, for general 2D stationary point
processes under general iid fading and power-law path loss,
ps(θ) = Θ(θ−δ) as θ → ∞ with δ , 2/α [17]–[20]. In
comparison, this work studies the asymptotics of the MD as
θ →∞ and as x→ 1. And we exploit the connection between
the link reliability, rate, and local delay [21] in the context of
the SIR MD.

C. Contributions

• We show that in Poisson networks with power-law path
loss, the SIR MD for any independent fading, either iden-
tically or non-identically distributed, can be expressed
as the product of θ−δ and a function of only x for
(θ, x) ∈ D, where D is referred to as the separable
region. In particular, we show that

F̄Ps
(θ, x) = g(x)θ−δ, (θ, x) ∈ D, (5)

where g is strictly monotonically decreasing from 0 to 1,
with g(1) = 0, and D is explicitly defined by the fading
statistics. (5) is referred to as the separability of the SIR
MD in Poisson networks.

• We show that D covers half of the parameter space for
any iid fading, and we specify D for iid Nakagami-m

fading. Further, g(x) for two special cases are studied: no
fading and Rayleigh fading. For the no fading case, we
give the exact expression of g(x). For Rayleigh fading,
we provide three approximations of g(x).

• We show by simulation that the SIR MD is well ap-
proximated by g(x)θ−δ for Ginibre and triangular lattice
networks when θ is chosen large enough.

• We study the asymptotics of the SIR MD as x → 1
for all simple point processes with Rayleigh fading,
which shows that the effect of the network geometry and
Rayleigh fading are essentially separable as x→ 1.

• We study the distribution of the link rate and local delay
using the SIR MD with a focus on Poisson networks. We
show that there is an optimal reliability that maximizes
the ergodic rate normalized by the reliability. Further, we
give the asymptotic form of the CDF of the local delay
in Poisson networks with Rayleigh fading.

II. SYSTEM MODEL

A. System Model
We consider independent fading, power-law path loss with

exponent α > 2 and stationary and ergodic BS point processes.
We assume that the typical user (located at the origin o) is
always associated with its nearest BS. Let xi(o) denote the i-
th nearest BS to the typical user and hi the associated fading
power, i ∈ N. The conditional success probability is

Ps(θ) = P
(

h1‖x1(o)‖−α∑∞
i=2 hi‖xi(o)‖−α

> θ
∣∣∣ Φ

)
. (6)

It is apparent that only the fading statistics and distance ratios
matter in (6). Among the distance ratios ‖x1(o)‖/‖xi(o)‖,
‖x1(o)‖/‖x2(o)‖ has the greatest impact on the link reliability
due to the ordering of distances. This observation leads us to
rank the link reliability by the global information and the local
information2.

B. Link Reliability Ranking
1) Global information: The most fine-grained link reliabil-

ity ranking takes into account the entire network geometry,
which we refer to as the “global information”. Naturally, for
a given x ∈ [0, 1], the global information-based top-reliability
links are those that satisfy Ps(θ) > x. The fraction of the
top-reliability links is given by the SIR MD.

2) Local information: A coarse characterization of the link
reliability is based on the distance ratio ‖x1(o)‖/‖x2(o)‖,
which we refer to as the “local information”. For a given
ρ ∈ [0, 1], the local information-based top-reliability links are
those that satisfy ‖x1(o)‖ ≤ ρ‖x2(o)‖. The percentage of the
top-reliability links depends on the distribution of the distance
ratio ‖x1(o)‖/‖x2(o)‖.

Fig. 2a shows the color map of the link reliability in the
Voronoi cells for a given realization of a Poisson point process.
Fig. 2b shows the locations satisfying ‖x1(o)‖ = ‖x2(o)‖/

√
2

underlaid by the reliability color map. From this figure, links
satisfying ‖x1(o)‖ ≤ ‖x2(o)‖/

√
2 have a higher reliability on

average.

2A similar idea can be found in [22], where the observation of global or
nearby interferers is used to predict the probability of successful transmission.
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(a) Color map of link reliability. (b) Color map with black dots rep-
resenting locations where ‖x1(o)‖ =
‖x2(o)‖/

√
2.

Fig. 2. Color maps of the link reliability for θ = 1, α = 4 and Rayleigh
fading. Red circles denote BS locations generated from a PPP with λ = 1
and black lines denote the boundary of Voronoi cells.

3) Relation of the two rankings: In general, for any ρ ∈
[0, 1],

P(Ps(θ) > x) ≥ P
(
Ps(θ) > x, ‖x1(o)‖ ≤ ρ‖x2(o)‖

)
, (7)

which is due to the Bayesian theorem. A question of interest
is whether there exists a critical ρc < 1 such that the inequality
becomes an equality, i.e.,

Ps(θ) > x ⇒ ‖x1(o)‖/‖x2(o)‖ ≤ ρc. (8)

In other words, no links with ‖x1(o)‖ > ρc‖x2(o)‖ can
achieve Ps(θ) > x. An immediate conjecture is that (8) holds
when either θ or x is large enough, which we will prove in
the next section.

III. SEPARABILITY OF THE SIR MD

We now study the separability of the SIR MD distribution
in Poisson networks. We first present some basic properties
of Poisson networks. To simplify the notation, we define ri ,
‖xi(o)‖ and ti , ri/ri+1 for i ∈ N.

A. Basic Properties of the Poisson Point Process

Lemma 1. For a homogeneous Poisson point process in Rm,

P(ti ≤ x) = xmi, x ∈ [0, 1]. (9)

Proof.

P(ti ≤ x) = E[P(ti ≤ x | ri+1)]

= E[P(ri ≤ xri+1 | ri+1)]
(a)
= xmi.

Step (a) follows from the fact that conditioning on ri+1,
the i points x1(o), ..., xi(o) are independently and uniform
randomly distributed in the m-dimensional ball with radius
ri+1. ri is the maximum distance of the i points and the
distance ratio ti does not depend on the value of ri+1 for
i ∈ N.

Lemma 1 shows that 1/ti is Pareto distributed in Poisson
networks. ti is likely to have a value close to 1 when i is large,
which is intuitive since the void probability depends on the
volume cm(rmi /x

m−rmi ), which depends on ri. Alternatively,

we can prove Lemma 1 by conditioning on ri and using the
void probability of the PPP and the distribution of ri [23].

Lemma 2. For a Poisson point process in Rm, the set
of random variables {ti}i∈N are pairwise independent. Fur-
ther, {tm1 , tm2 , ...tmk} is independent of {tn1 , tn2 , ...tnl}
if max(m1, ...mk) < min(n1, ...nl) or min(m1, ...mk) >
max(n1, ...nl).

Proof. We first establish the pairwise independence by show-
ing for ∀i 6= j, i, j ∈ N

P(ti ≤ x, tj ≤ y) = P(ti ≤ x)P(tj ≤ y). (10)

It is sufficient to prove (10) for two cases: j = i + 1 and
j > i+ 1. For j = i+ 1,

P(ti ≤ x, tj ≤ y)

= E
[
P
( ri
ri+1

≤ x, ri+1

ri+2
≤ y

∣∣∣ ri+1

)]
(a)
= E

[
P
( ri
ri+1

≤ x
∣∣∣ ri+1

)
P
(ri+1

ri+2
≤ y

∣∣∣ ri+1

)]
(b)
= P

( ri
ri+1

≤ x
)
E
[
P
(ri+1

ri+2
≤ y

∣∣∣ ri+1

)]
= P

( ri
ri+1

≤ x
)
P
(ri+1

ri+2
≤ y
)
,

where (a) follows from the fact that for Poisson point pro-
cesses, ri+2 is independent of ri given ri+1. (b) follows from
the independence of ti and ri+1 as established in the proof of
Lemma 1.

For i+ 1 < j,

P(ti ≤ x, tj ≤ y)

= E
[
P
( ri
ri+1

≤ x, rj
rj+1

≤ y
∣∣∣ ri+1, rj

)]
= E

[
P
( ri
ri+1

≤ x
∣∣∣ ri+1

)
P
( rj
rj+1

≤ y
∣∣∣ rj)]

= P
( ri
ri+1

≤ x
)
P
( rj
rj+1

≤ y
)
.

For the second part of the lemma, the same conditional
expectation method is used.

Lemma 2 is a key result that helps simplify the analysis
related to the relative distances in Poisson networks. For
instance, it immediately follows that t1 is independent of any
subset of {ti}i≥2.

B. Separability of the SIR MD in Poisson Networks

Theorem 1 (Separability). For any independent fading in
Poisson networks, there exists a function g such that

F̄Ps(θ, x) = g(x)θ−δ, (θ, x) ∈ D, (11)

where
D , {(θ, x) : P(h1/h2 > θ) ≤ x}, (12)

and g depends on the statistics of all the fading random
variables {hi}i∈N. Further, g is monotonically decreasing from
0 to 1, with g(1) = 0, and for iid fading,∫ 1

0

g(x)dx = sinc(δ). (13)
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Proof. First, we define the region D such that Ps(θ) is a
monotone decreasing function of t1 regardless of {ti}i≥2.
Specifically, we can write the conditional success probability
as

Ps(θ) = P
(

h1r
−α
1∑∞

i=2 hir
−α
i

> θ
∣∣∣ Φ

)
(14)

= P
(
h1

h2
> θtα1

(
1 +

∞∑
i=3

hir
α
2

h2rαi

) ∣∣∣ Φ

)
. (15)

Letting t1 = 1, we have

P
(
h1

h2
> θ
(

1 +

∞∑
i=3

hir
α
2

h2rαi

) ∣∣∣ Φ

)
(a)
≤ P

(
h1

h2
> θ

)
, (16)

which follows from the fact that
∑∞
i=3 hir

α
2 /h2r

α
i > 0 almost

surely. In D, when t1 = 1, the reliability cannot be higher than
x regardless of {ti}i≥2. Thus, Ps(θ) is a monotone decreasing
function of t1 in D regardless of {ti}i≥2. In other words,
Ps(θ) > x⇒ t1 < ρc for some ρc ≤ 1.

Now, for (θ, x) ∈ D,

F̄Ps
(θ, x) = P(Ps(θ) > x)

(a)
= P(θtα1 < f(x, tα2 , ...))

= E[P(θtα1 < f(x, tα2 , ...) | tα2 , ...)]
(b)
= θ−δE[f(x, t2, ...)

δ]
(c)
= θ−δg(x).

In step (a), we rewrite the conditional success probability
such that f is a function of x and {ti}i≥2 by the definition
of D. Step (b) follows from the distribution of t1 and its
independence with {ti}i≥2. Step (c) follows from defining
g(x) , E[f(x, t2, ...)

δ]. g(x) is a function of x determined
by the fading statistic. g is monotonically decreasing from 0
to 1, with g(1) = 0 by the monotonicity of the MD in x and
that F̄Ps(θ,1) = 0 for any θ.

For the second part, it is shown in [17, Theorem 4] that
the success probability for the PPP with arbitrary iid fading
satisfies

ps(θ) ∼ sinc(δ)θ−δ, θ →∞. (17)

Equivalently, limθ→∞ ps(θ)θ
δ = sinc(δ). From the definition

of the separable region,∫ 1

0

g(x)dx =

∫ 1

0

lim
θ→∞

F̄Ps(θ, x)θδdx

= lim
θ→∞

ps(θ)θ
δ

= sinc(δ).

Thus we obtain (13).

Remark 1. Theorem 1 shows that in Poisson networks, the
calculation of the SIR MD boils down to the CDF of t1 due
to the independence of t1 with {ti}i≥2 and P(t1 ≤ ρ) = ρ2.
The MD can be expressed as the product of two single-
variable functions of x and θ. The region D depends on the
fading statistics from two nearest BSs only, and the function
f depends on all the fading statistics. Up to step (b), the
derivation holds for general network models.

Remark 2 (Simulation of g(x)). From (11), g(x) =
F̄Ps(θ, x)θδ, (θ, x) ∈ D. The definition of D requires θ →∞
to obtain the exact g(x) for x ∈ (0, 1]. However, for a good
approximation of g(x), it suffices to simulate the SIR MD for a
fixed and large θ, e.g., θ = 100. The simulation of the SIR MD
for a fixed θ is straightforward. In cases where the analytical
form of the conditional success probability is available (as,
e.g., for Rayleigh fading), only the distances {ri}i∈N need to
be simulated.

Corollary 1. Let D be expressed in terms of (1/(1+θ), x) ⊂
[0, 1]2. For any iid fading, D always contains the point
(1/2, 1/2), and the area of D is 1/2.

Proof. The separable region D in terms of (θ, x) is given by
(12) as

x ≥ P (h1/h2 > θ)

= P
(
h1 + h2

h2
> θ + 1

)
= P

(
h2

h1 + h2
<

1

1 + θ

)
.

Letting t = 1/(1 + θ), we have D = {(t, x) : x ≥ P(h2/(h1 +
h2) < t)}, which is a subset of [0, 1]2. For any iid fading,
P(h2/(h1 + h2) < 1/2) = 1/2. Thus (1/2, 1/2) ∈ D.

The area of D is∫
D

dxdt =

∫ 1

0

1− P
(

h2

h1 + h2
< t

)
dt

= 1− E
[

h2

h1 + h2

]
(a)
=

1

2
.

Step (a) holds since Eh2/(h1 + h2) = Eh1/(h1 + h2) = 1/2
for any iid h1, h2.

Remark 3. Corollary 1 shows that for any iid fading, D al-
ways covers half of the parameter space. Further, the boundary
of D, x = P(h2/(h1 + h2) < t), is an odd function w.r.t. the
center point (1/2, 1/2). This is proved by showing that for iid
fading,

P(h2/(h1 + h2) < t) + P(h2/(h1 + h2) < 1− t) = 1.

C. Nakagami-m Fading

In this subsection, we study the separable region for iid
Nakagami-m fading3, m > 0. The rate of Nakagami-m fading
is set to 1/m to have unit mean power for any m. We then
focus on two special cases, namely no fading (m → ∞) and
Rayleigh fading (m = 1). Throughout the rest of the paper,
we denote by h the fading random variable.

The PDF of Nakagami-m fading is

fh(x) =
mm

Γ(m)
xm−1e−mx, x ≥ 0, (18)

3While Nakagami-m fading has been defined only for m ≥ 1/2 [24], our
results hold for any positive m.
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Fig. 3. The curve x = I 1
1+θ

(m,m) (boundary of D) versus 1/(1 + θ) for

m = 1/2, 1, 2, 3, and m→∞.

and the CCDF is

F̄h(x) =
mm

Γ(m)

∫ ∞
x

tm−1e−mtdt

=
Γ(m,mx)

Γ(m)
.

Theorem 2. For Poisson networks with Nakagami-m fading,

D =
{

(θ, x) : I 1
1+θ

(m,m) ≤ x
}
, (19)

where θ > 0, x ∈ [0, 1], and Ip(a, b) is the regularized
incomplete beta function.

Proof.

P(h1/h2 > θ)

= E
[
P(h1 > θh2 | h2)]

(a)
=

1

Γ(m)
E
∫ ∞
mθh

tm−1e−tdt

(b)
=

mm

Γ(m)

∫ ∞
θ

E
[
hme−mhu

]
um−1du

(c)
=

Γ(2m)

(Γ(m))2

∫ ∞
θ

1

(1 + u)m+1

um−1

(1 + u)m−1
du

(d)
=

∫ 1
1+θ

0 vm−1(1− v)m−1dv

B(m,m)

= I 1
1+θ

(m,m).

Step (a) follows from the PDF of h. Step (b) follows
from change of variable u = t/mh. Step (c) follows from
E[hme−mhu] = m−mΓ(2m)/Γ(m)(1 + u)2m and (d) follows
from change of variable v = 1/(1 + u). The last step follows
from the definition of the regularized incomplete beta function.
Letting P(h1/h2 > θ) ≤ x, we obtain D.

Fig. 3 shows the boundary of the separable region. We plot
I 1

1+θ
(m,m) versus 1/(1 + θ) for m = 1/2, 1, 2, 3, and

m→∞. The x-axis is chosen such that it is in [0, 1). Note that
the boundary I 1

1+θ
(m,m) contains the point (1/(1 + θ), x) =

(1/2, 1/2) for any finite m, which is stated in Corollary 1.
And the area of D is 1/2. For m→∞, I 1

1+θ
(m,m) is a step

function: x = 1 for θ < 1, and x = 0 for θ ≥ 1. For m→ 0,
I 1

1+θ
(m,m)→ 1/2 for any θ > 0.

Now we consider two specific fading models: no fading
and Rayleigh fading. The study of the no fading case offers
insights on the impact of fading in the asymptotic scenario,
which we will show later in Section IV.

1) No fading (h ≡ 1): Without fading, a link either always
succeeds or always fails. The conditional success probability
is

Ps(θ) =

{
1, r−α1 /

∑∞
i=2 r

−α
i > θ

0, r−α1 /
∑∞
i=2 r

−α
i ≤ θ,

(20)

and the MD follows as

F̄Ps
(θ, x) =

{
P(r−α1 /

∑∞
i=2 r

−α
i > θ), x ∈ [0, 1)

0, x = 1.
(21)

Observe that P(r−α1 /
∑∞
i=2 r

−α
i > θ) is the also the mean

success probability for no fading. In other words, F̄Ps
(θ, x) ≡

ps(θ) for x ∈ [0, 1).

Corollary 2. For Poisson networks with no fading,

D = {θ ≥ 1, x ∈ [0, 1)}. (22)

Proof. Follows from Theorem 2 and m→∞.

The boundary of D for this case is the black step function
in Fig. 3.

Corollary 3. For Poisson networks with no fading,

g(x) ≡ sinc(δ). (23)

Proof.

P
(

r−α1∑∞
i=2 r

−α
i

> θ

)
= P

(
θtα1 <

( ∞∑
i=2

(r2

ri

)α)−1)
(a)
= θ−δE

[( ∞∑
i=2

(r2

ri

)α)−δ]
, θ ≥ 1.

Step (a) follows from Corollary 2. Thus in this
case, f(x, t2, t3, ...) = (

∑∞
i=2(r2/ri)

α)−1 and
g(x) = E[(

∑∞
i=2(r2/ri)

α)−δ].
We now use the probability generating functional (PGFL)

of the PPP to calculate g(x). First, for a random variable X

X−δ ≡ 1

Γ(δ)

∫ ∞
0

e−sXsδ−1ds (24)

and

E[X−δ] =
1

Γ(δ)

∫ ∞
0

LX(s)sδ−1ds, (25)

where LX(s) is the Laplace transform of X . It is straight-
forward to calculate the Laplace transform of

∑∞
i=2(r2/ri)

α

using the PGFL of the PPP. It follows that

g(x) = sinc(δ). (26)
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Fig. 4. SIR MD without fading for x ∈ [0, 1).

Remark 4. The result of the mean success probability ps(θ) =
sinc(δ)θ−δ for θ ≥ 1 has been derived using different tech-
niques in [20], [25] with different levels of generality, though
not in the context of the SIR MD. It is shown in [20] that
ps(θ) = sinc(δ)θ−δ holds for the maximum instantaneous sig-
nal association for any iid fading including no fading. Further,
in [26], an asymptotic form ps(θ) ∼ 1 − exp(s∗/θ), θ → 0
for no fading is derived. The value of s∗ depends on α. For
instance, s∗ = −0.854 for α = 4.

We now provide a simple lower bound for g(x). By the
convexity of f(x) = x−δ ,

E
[( ∞∑

i=2

(r2

ri

)α)−δ]
≥ E

[( ∞∑
i=2

(r2

ri

)α)]−δ
(a)
=
(α+ 2

α− 2

)−δ
,

where step (a) is calculated from the mean interference-to-
signal ratio (MISR) in [27]. Thus we obtain a lower bound
for the success probability

ps(θ) ≥ θ−δ
(1 + δ

1− δ

)−δ
, θ ≥ 1. (27)

For α = 4 (δ = 1/2), ps(θ) ≥ θ−δ/
√

3 ≈ 0.577θ−δ .
Fig. 4a shows the simulation result of the success probability

for path loss exponents α = 2.5, 4, 5.5, 7, which overlaps with
sinc(δ)θ−δ for θ ≥ 1. Fig. 4b compares the approximation
(27), the asymptotic result ps(θ) ∼ 1 − e−0.854/θ, θ → 0 in
[26, Theorem 1], and the simulation result.

2) Rayleigh fading: For Rayleigh fading, the conditional
success probability is

Ps(θ) =

∞∏
i=2

1

1 + θ(r1/ri)α
. (28)

Hence, only the distances need to be simulated to obtain the
SIR MD.

Corollary 4. For Poisson networks with iid Rayleigh fading,

D = {(θ, x) : 1 + θ ≥ x−1}. (29)

Proof. From Theorem 2, we obtain D by letting m = 1.
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x
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(a) θ = 1. The separable region is
x ≥ 0.5.

0 0.2 0.4 0.6 0.8 1

x

0

0.2

0.4

0.6

0.8

1

C
C

D
F

(b) θ = 10. The separable region is
x ≥ 0.091.

Fig. 5. Simulation of the SIR MD for Rayleigh fading (solid blue curves) and
g(x)θ−δ (dashed red curves) for θ = 1 and 10. The curves from lower left
to upper right are results for α = 2.5, 4, 5.5, 7, respectively.

Simulation of g(x): We simulate F̄Ps(100, x) and use
g(x) = F̄Ps(100, x)100δ to obtain the exact g(x) for x ≥
0.0099 and approximated g for x < 0.0099. The SIR MD
for Rayleigh fading can be easily simulated for any fixed θ
using Eq. (28). Fig. 5 shows the simulation results of the SIR
MD for θ = 1, 10, and g(x)θ−δ for path loss exponents
α = 2.5, 4, 5.5, 7. The separable regions are x ≥ 0.5 and x ≥
0.091, respectively. As for the simulation complexity, finding
g(x) for α = 4 via F̄Ps

(100, x)100δ takes only about 35s
using Matlab on a standard computer, with 100,000 samples.

Approximations of g(x): g(x) for Poisson networks with
iid Rayleigh fading can be approximated by

g1(x) = 1.298

(
cot

(
πx0.25

2

))0.6

, (30)

g2(x) = −1.226 log

(
1

π
arccos

(
−2x0.5 + 1

))
, (31)

and
gbeta(x) , lim

θ→∞
F̄beta(θ, x)θδ. (32)

F̄beta(θ, x) denotes the beta distribution-based approximation
of the SIR MD proposed in [1], which only involves the first
two moments of Ps(θ). g1, g2 are fitting curves obtained via
Matlab’s Curves Fitting App that have an integral of sinc(δ).

Fig. 6 shows the simulation result of g, the three approxi-
mations, and their differences. For gbeta, we use F̄beta(θ, x)θδ

with θ = 100 as an approximation. The x-axis is limited to
[0.0099, 1] so that (θ, x) ∈ D. From the figure, it is apparent
that g1, g2, gbeta give quite accurate approximations for g.

D. General Networks

To study the SIR MD for more general networks, we focus
on two specific networks that model the repulsion between
BS locations: Ginibre networks [28]–[30] and triangular lattice
networks. We assume iid Rayleigh fading. We are interested
in showing that g(x)θ−δ serves as a good approximation for
these networks. To that end, we simulate the SIR MD for
x = 0.9 and x = 0.99. We show that when θ is chosen large
enough, g(x)θ−δ is indeed a good approximation. The choice
of the “large enough” θ depends on the reliability x.

As is mentioned in Section III-C, only the distances need
to be simulated to obtain the SIR MD with Rayleigh fading.
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Fig. 6. g(x) via simulation, g1(x), g2(x), gbeta(x), and their differences in
Poisson networks with Rayleigh fading, α = 4.

The simulation of the distances in a triangular lattice network
is straightforward. For Ginibre networks, we use the following
proposition.

Proposition 1. [31, Proposition 4.3] The distances {ri}i∈N,
for a Ginibre point process have the same distribution as
{
√
Yi}i∈N, where Yi, i ∈ N, are mutually independent and Yi

follows the i-th Erlang distribution with unit-rate parameter4,
denoted by Yi ∼ Γ(i, 1), i ∈ N.

Figs. 7a and 7b show the SIR MD in Ginibre networks
and triangular lattice networks for x = 0.9 and x = 0.99. We
consider g(x)θ−δ to be a good approximation when its relative
error from the simulated result is less than 5%. For Ginibre
networks, 0.29θ−δ provides a good approximation for θ ≥ 0
dB when x = 0.9; the same accurateness holds with 0.092θ−δ

for θ ≥ −6 dB when x = 0.99. For triangular lattices, 0.42θ−δ

provides a good approximation for θ ≥ 6 dB when x = 0.9;
the same accurateness holds with 0.134θ−δ for θ ≥ −1 dB
when x = 0.99. In comparison, for Poisson networks with
Rayleigh fading, the “separable region” for x = 0.9 and x =
0.99 are θ ≥ −9.54 dB and θ ≥ −20 dB, respectively. Thus,
g(x)θ−δ provides a good approximation for θ ≥ −1 dB when
x = 0.99 in all cases studied.

IV. ASYMPTOTICS OF THE SIR MD IN THE
ULTRA-RELIABLE REGIME

In this section, we focus on the asymptotics of the SIR MD
as x→ 1 for general cellular networks with Rayleigh fading.
We will show that the effect of the network geometry and
Rayleigh fading are essentially separable when x→ 1.

4The intensity of this Ginibre point process is π−1. Distances in a Ginibre
point process with a different intensity can be obtained by scaling the rate
parameter of the Erlang distribution.
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Fig. 7. Simulation and the g(x)θ−δ approximation of the SIR MD for
x = 0.9, 0.99 in Ginibre networks and triangular lattice networks, Rayleigh
fading, α = 4.

A. General Networks

Lemma 3. [17, Theorem 4] For all simple stationary BS point
processes Φ and iid fading5 {hx}x∈Φ, where the typical user
is served by the nearest BS,

ps(θ) ∼ C(α)θ−δ, (33)

where6

C(α) = λπE!
o

[(
h∑

x∈Φ hx‖x‖−α

)δ]
, (34)

and E!
o is the expectation with respect to the reduced Palm

measure7 of Φ.

Theorem 3. For all simple stationary point processes with
Rayleigh fading, for any x > 0,

F̄Ps(θ, x) = Θ(θ−δ), θ →∞, (35)

and for any θ > 0,

F̄Ps(θ, x) ∼ C(α)(x−1 − 1)δθ−δ, x→ 1, (36)

where C(α) is defined in Lemma 3 with h ≡ 1.

Proof. For Rayleigh fading, the SIR MD is

F̄Ps(θ, x) = P
( ∞∏
i=2

(
1 + θ(r1/ri)

α
)
< x−1

)
. (37)

For ai > 0, the inequalities

1 +
∑
i

ai ≤
∏
i

(1 + ai) ≤ exp

(∑
i

ai

)
(38)

hold, and thus we can bound the SIR MD as

P
(

exp

( ∞∑
i=2

θ
(r1

ri

)α)
< x−1

)
≤ F̄Ps

(θ, x)

≤ P
(

1 +

∞∑
i=2

θ(r1/ri)
α < x−1

)
.

5 [19] derives a sufficient condition of Lemma 3 on the fading and the
point process.

6There was a typo in the version published in the July 2020 issue of IEEE
Transactions on Wireless Communication where C(α) was defined with an
extra power of 1/δ of the expectation in Eq (34). The typo is corrected in
this manuscript.

7The reduced Palm distribution is the conditional point process distribution
given that the typical point exists at a given location (the origin) but is
excluded in the distribution [32, Chapter 8].
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For the lower bound,

P
(

exp

( ∞∑
i=2

θ
(r1

ri

)α)
<

1

x

)
= P

( ∞∑
i=2

θ
(r1

ri

)α
< − log x

)
∼ C(α)(− log x)δθ−δ, x→ 1, (39)

∼ C(α)(x−1 − 1)δθ−δ, x→ 1. (40)

(39) also holds for any x and θ →∞.
For the upper bound,

P
(

1 +

∞∑
i=2

θ
(r1

ri

)α
<

1

x

)
= P

( ∞∑
i=2

θ
(r1

ri

)α
<

1

x
− 1

)
∼ C(α)(x−1 − 1)δθ−δ, x→ 1. (41)

(41) also holds for any x and θ →∞.
From (39) and (41), for any x > 0, F̄Ps

(θ, x) =
Θ(θ−δ), θ → ∞. For any θ > 0 and x → 1, the asymptotic
expressions (40) and (41) are the same, hence the proof is
complete.

Remark 5. Theorem 3 shows that the calculation of the MD in
the limiting case boils down to the calculation of the SIR MD
without fading. The effect of Rayleigh fading is captured by
(x−1−1)δ , and the effect of the network geometry is captured
by C(α) (under no fading).

Remark 6. Taking the derivative of g(x) at x→ 1 yields

lim
x→1

∂F̄Ps
(θ, x)

∂x
= −∞. (42)

Given FP̄s
(θ, 1) = 0, (42) implies that in the ultra-reliable

regime, reducing the reliability requirement by a small amount
leads to a significant increase of the user percentage satisfying
the reliability requirement. This behavior is a result of the
unboundedness of the power-law path loss and the distribution
of t1 as t1 → 0. We contrast this result with that in Poisson
bipolar networks [10] where

lim
x→1

∂F̄Ps
(θ, x)

∂x
= 0. (43)

This follows from the derivative of F̄Ps
(θ, x) ∼

exp(−C(1 − x)−δ/(1−δ)), x → 1, where
C = (θpδ)δ/(1−δ)(1 − δ)(λπΓ(1 − δ))1/(1−δ) [10, Theorem
4]. Thus, the asymptotic behaviors of the MD for any θ as
x→ 1 in cellular networks and Poisson bipolar networks are
quite different. This is because in Poisson bipolar networks,
the distance from the user to the desired transmitter is fixed,
while in cellular networks, the user can be arbitrarily closer
to the serving BS than to the interfering ones.

B. Poisson Networks
Corollary 5. For Poisson networks with Rayleigh fading, for
any θ > 0 and x→ 1,

F̄Ps
(θ, x) ∼ sinc(δ)θ−δ(x−1 − 1)δ. (44)

Proof. It follows from Corollary 2 that C(α) = sinc(δ).

In Poisson networks, by the definition of the separable
region, for any θ, (θ, x) ∈ D when x → 1. Thus, (44) is
equivalent to g(x) ∼ sinc(δ)(x−1 − 1)δ. Fig. 8 shows g(x)
from simulation and its asymptotic (44) for α = 2.5, 4, 5.5, 7.

0.5 0.6 0.7 0.8 0.9 1

x
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0.2

0.4

0.6

0.8

1
simu. =1

sinc( )(1/x-1)

sinc( )(-log x)

Fig. 8. g(x) and its asymptotic form using (44) in Poisson networks with
Rayleigh fading, α = 2.5, 4, 5.5, 7 from lower left to upper right.
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Fig. 9. C(α) for Poisson and Ginibre networks per (26) and (46).

C. Ginibre Networks

Proposition 2. [19, Proposition 3.1 (ii)] The distances
{ri}i∈N, for a Ginibre point process under the reduced Palm
distribution, have the same distribution as {Yi+1}i∈N, where
Yi, i ∈ N \ {1} are defined in Proposition 1.

Lemma 4. For Ginibre networks with no fading,

ps(θ) ∼ C(α)θ−δ, θ →∞, (45)

where

C(α) = E
[( ∞∑

i=2

Y
−α2
i

)−δ]
(46)

and Yi for i ∈ N \ {1}, is defined in Proposition 1.

Proof. There are two ways to prove this lemma. The first is
by directly applying Lemma 3, h ≡ 1, and the reduced Palm
measure of Ginibre point processes given in Proposition 2.
Alternatively, we can follow the proof for [18, Theorem 2]
and replace Rayleigh fading with no fading.
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Fig. 10. Asymptotic of the success probability for no fading as θ →∞ and
two bounds for the SIR MD in Ginibre networks with Rayleigh fading, α = 4.

Corollary 6. For Ginibre networks with Rayleigh fading,

F̄Ps
(θ, x) ∼ C(α)(x−1 − 1)δθ−δ, x→ 1, (47)

where C(α) is given in Lemma 4.

Proof. Follows directly from Theorem 3 and Lemma 4.

Fig. 9 shows C(α) in Poisson and Ginibre networks for α ∈
[2.5, 7]. The former has an explicit form C(α) = sinc(δ) (see
also (26)) and the latter is simulated using (46). For Ginibre
networks and C(4) ≈ 0.91. Fig. 10 shows the result in Lemma
4 and the two bounds (39) and (41). Note that from Fig. 10b,
the lower bound (39) is much tighter than the upper bound.

V. OTHER APPLICATIONS OF THE SIR MD

The link reliability, rate, and latency in wireless networks
are fundamentally intertwined. In this section, we apply the
results of the SIR MD to study the distribution of the link
rate and local delay. It is shown in [15, Theorem 1] that the
MD can be interpreted as the distribution of the SIR threshold
for a fixed link reliability x, denoted by T (x). In adaptive
transmission techniques, based on the channel quality of each
link, the transmission rate (modulation and coding scheme)
is chosen such that a certain reliability can be achieved. For
instance, in a network where the target reliability x = 0.99,
the SIR threshold at each individual link is adjusted such that
P(SIR > T (0.99) | Φ) = 0.99. The local delay is defined
as the number of transmissions needed for a message to be
received successfully. Retransmissions are less likely to occur
for links with a high reliability. The distribution of the delay
and, especially, its tail, is a critical metric in 5G cellular
networks and beyond. We focus on Poisson networks with
Rayleigh fading.

A. Rate

The distribution of the SIR threshold determines the distri-
bution of the transmission rate by the Shannon formula. The
normalized rate in nats/Hz/s for a given reliability is defined
as

R , x log(1 + T (x)), (48)

where T (x) is the SIR threshold that satisfies the reliability
x. It is a random variable whose distribution is a function of
x. Let R̄ , E[R] be the ergodic rate for a given reliability
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Fig. 11. Distribution of the SIR threshold T (x) for reliability x = 0.95 and
x = 0.99, Poisson networks, α = 4.

x. There is a trade-off between the reliability and the ergodic
rate. Setting x → 0 or x → 1 will result in arbitrarily small
rate, either due to an ultra-low reliability or due to an ultra-low
SIR threshold. Hence, there is an optimal reliability 0 < x < 1
that maximizes the ergodic rate.

Fig. 11 shows the distribution of the SIR threshold when
the reliability in the network is fixed. From Theorem 1, when
(θ, x) ∈ D, the two curves only differ in the constant ratio
0.99g(0.99)/0.95g(0.95) ≈ 0.47, where g(0.95) = 0.1448
and g(0.99) = 0.0658 are obtained through simulation.

Corollary 7. In Poisson networks, the rate distribution satis-
fies

F̄R(r) = g(x)(er/x − 1)−δ, (er/x − 1, x) ∈ D. (49)

and the ergodic rate satisfies

R̄ ∼ π

sin(πδ)
xg(x), x→ 1. (50)

Proof. For a given reliability x, the rate distribution can be
written in the form of the SIR MD as F̄R(r) = F̄Ps

(er/x −
1, x) [15]. Hence,

F̄R(r) = g(x)(er/x − 1)−δ, (er/x − 1, x) ∈ D, (51)

which follows from Theorem 1. Solving er/x− 1 ≥ 1
x − 1 for

r for a given x using the definition of D yields r ≥ −x log x.
The ergodic rate for a given reliability x is

R̄ =

∫ −x log x

0

F̄R(r)dr + g(x)

∫ ∞
−x log x

(er/x − 1)−δdr

=

∫ −x log x

0

F̄R(r)dr + xg(x)

∫ ∞
− log x

(et − 1)−δdt.

(52)

The first integral approaches 0 as x→ 1 faster than the second
integral since g(x) ∼ (x−1 − 1)δ , and so

R̄ ∼ xg(x)

∫ ∞
0

(et − 1)−δdt, x→ 1, (53)

which evaluates to (50).
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Fig. 12. The average rate R̄ and its approximation per (53) versus the
reliability x.

With rate adaptation, the ergodic rate is a function of the
target reliability. Fig. 12 plots the trade-off of the ergodic rate
versus the reliability x per Corollary 7. g(x) is simulated as
in Section III C-2. (50) is asymptotically exact as x → 1. It
provides an upper bound for R̄ in general and an accurate
approximation when x ≥ 0.8. It is worth noting that in
the simulated per-link rate-reliability trade-off, the optimum
rate R̄ ≈ 0.8 [nats/s/Hz] is achieved at some point for
x ∈ [0.65, 0.75].

B. Local Delay

The local delay is defined as the number of transmissions,
averaged over the fading, needed for a message to be received
successfully. Denote by D(θ) the local delay as a function
of θ. We have D(θ) ≡ 1/Ps(θ) (the mean of a geometric
distribution with success probability Ps(θ)). In other words,
the local delay for any individual link is the multiplicative
inverse of the link reliability Ps(θ). It is known that the mean
local delay E[D(θ)] = (1−δ)/(1−δ(1+θ)) for θ < 1/δ−1 in
Poisson networks with Rayleigh fading [1, Theorem 2]. Here,
we provide the asymptotic form of the CDF of the local delay.

Lemma 5. The CDF of the local delay in the network can be
expressed using the SIR meta distribution as

P(D(θ) ≤ t) = F̄Ps
(θ, t−1), t ≥ 1. (54)

Proof. Rewriting the CDF of the local delay as P(D(θ) ≤
t) = P(Ps(θ) ≥ t−1) we obtain (54).

Corollary 8. For Poisson networks with Rayleigh fading,

P(D(θ) ≤ 1 + ε) = g
(
(1 + ε)−1

)
θ−δ, θ ≥ ε. (55)

And for any θ > 0,

P(D(θ) ≤ 1 + ε) ∼ sinc δεδθ−δ, ε→ 0. (56)

Proof. Let ε , t−1. The results follow directly from Theorem
1, Theorem 2 and Lemma 4.

Eq. (56) shows the trade-off between the SIR threshold and
the target local delay. Note that by Theorem 3, the distri-
bution across different types of network models (satisfying
the condition in Theorem 3) only differs in a constant ratio.
Essentially, the fraction of links satisfying a mean local delay
constraint w.r.t. θ only depends on the ratio ε/θ. For more
general networks, the constant sinc(δ) is replaced by C(α),
which is defined as in Lemma 4.

VI. CONCLUSIONS

In this work, we focus on the analytical properties of the SIR
MD and their applications in cellular networks. We show that
in Poisson networks with independent fading and power-law
path loss with exponent α, the SIR MD can be written in the
form of g(x)θ−2/α in a separable region. The separable region
covers half of the unit square when expressed in terms of
(1/(1+θ), x) ⊂ [0, 1]2. We show that in Ginibre and triangular
lattice networks, g(x)θ−2/α provides a good approximation.
Specifically, its relative error with simulation results is less
than 5% percent for θ ≥ −1 dB when x = 0.99 in all cases
studied. Further, we show that the asymptotic form of the
SIR MD for general network models with Rayleigh fading
depends on the asymptotic form of the success probability
for no fading, which essentially separates the effect of the
network geometry and fading. Finally, this work shows the
applications of the SIR MD to characterize the distribution
of the link rate and local delay, whose analyses are critical
in ultra-reliable and low-latency communication systems. For
further work, the methodology of analyzing the MD based on
“local information” and separating the effect of fading and
network geometry can be applied to more general scenarios,
including models with noise and bounded/multi-slope path
loss.
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