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Abstract—The meta distribution (MD) of the signal-to-
interference ratio (SIR) provides more fine-grained information
about the link performance than the standard success probability.
This paper focuses on a fundamental extension of the SIR MD—
the joint MD of the SIR at different locations, and studies its
applications to physical layer security and cooperative reception.
The concept of the joint MD of the SIR is formally introduced
for two or more users (locations), as well as the joint conditional
success probability and the n-th order product MD, which is a
simpler version of the joint MD. The joint MD is first applied
to physical layer security. The network reliability of the secrecy
transmission based on the MD is studied, taking into account the
signal and interference correlations between the legitimate user
and the eavesdropper. Next the joint MD is applied to cooperative
reception, where we consider the scenario that the base station
sends a message to a group of users, and the goal is that at
least one user successfully receives the message. The moments
of the conditional probability of the event that the transmission
succeeds at at least one of the two users are derived. The results
demonstrate the practical relevance of the joint MD.

Index Terms—Meta distribution, joint probability, interference
correlation, stochastic geometry, physical layer security, cooper-
ative reception, Poisson point process.

I. INTRODUCTION

A. Motivation
Due to the rapid improvement of the cellular networks

technology in recent years, future cellular networks will be
more and more diverse and heterogeneous in order to meet
a variety of user demands in mobile data rate and emerging
applications and services [2]. Stochastic geometry has emerged
as an important mathematical method in the modeling and
analysis of cellular networks in recent few years [3]–[5]. The
standard success probability P(SIR > τ), i.e., the complemen-
tary cumulative distribution function (CCDF) of the signal-
to-interference ratio (SIR) at the typical user, is the main
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performance metric in most of the literature. However, it does
not provide information on the individual link performances.
To address this shortcoming, the meta distribution (MD) was
recently introduced in [6]. The MD of the SIR provides
more fine-grained information by characterizing the entire
distribution of the link performances. For example, the SIR
MD answers the question—“For a certain transmission rate,
what fraction of links achieve a given target reliability?”. So
far, the MD was defined only for a single user. To address
scenarios involving multiple users, an extension of the concept
to multiple users or locations is necessary. This is the goal of
this paper.

B. Related Work

The MD of the SIR is first introduced in [6] and calculated
for Poisson bipolar and cellular networks. As a key step, the
b-th moments of the conditional success probability given the
point process are derived. The first and second moments are
used to obtain a simple beta distribution approximation, which
is shown to be very accurate. Most of the prior work on the
MD is restricted to a single user/location. The MD for device-
to-device (D2D) underlay and the local delay are given in [7].
In [8], the MD for millimeter wave communication in the D2D
scenario and the MD of the transmission rate are analyzed,
and a general beta distribution as a modified approximation is
proposed. [9] considers two types of users, namely the typical
general user and the typical cell-corner user, in the downlink
coordinated multipoint transmission/reception (CoMP) includ-
ing joint transmission and dynamic point blanking, and dy-
namic point selection/dynamic point blanking, and calculates
the MD of the SIR. [10] studies the MD of the secrecy rate
in physical layer security jointly considering multiple users—
both the legitimate user and the colluding/non-colluding eaves-
dropper, but ignores the interference.

Recently, there has been some work on the joint perfor-
mance of two or more users/locations, but only for the standard
success (coverage) probability. [11] provides an analytical
framework for the joint coverage probability (although not for
the MD) at two spatial locations in a cellular network based on
the handoff rate and coverage analysis model in [12], where
the two users are served by their nearest base stations (BSs).
However, this exact analysis is cumbersome since for each
value of the distance v between the two users, the proba-
bilities of same-BS and different-BS association need to be
considered. [13] proposes optimization schemes of the transmit
power for the users in Poisson clustered out-of-band D2D
networks based on the joint coverage probability of a cluster,
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while the joint coverage probability is obtained by multiplying
the coverage probability of each pair of users in a cluster, i.e.,
assuming independence for each pair of users. [14], [15] study
the joint uplink-downlink rate or SINR coverage probability
for heterogeneous cellular networks (HCNs) and cellular-based
RF-powered internet of thing (IoT) networks. The authors
consider the success probability for both uplink and downlink
jointly. In [16], the authors consider the joint signal to interfer-
ence plus noise ratio (SINR) success probability of all antennas
in a MIMO receiver in downlink MIMO HCNs. [17] analyzes
the joint success probability of the SINR for Type-I hybrid
automatic repeat request (HARQ) users in different time slots
in HCNs where the BSs are spatially correlated. In [18], the
authors quantify the effect of spatial interference correlation
on opportunistic secure spectrum access in cellular networks.
It is an application of the joint success probability at two
different locations. Our prior conference paper [1] focuses
on an application of the MD of the joint conditional SIR
distribution to a problem in physical layer security. In this
paper, we focus on the underlying fundamental mathematical
problem and give a general definition and approach for the
joint MD of the SIR.

C. Contributions and Paper Organization
In this paper, we fundamentally extend the concept of the

SIR MD to the joint MD of the SIR at multiple locations
and study its applications to physical layer security and
cooperation.

The contributions of this paper are summarized as follows:
• The concept of the joint MD of the SIR is introduced for

two or more users (locations). Specifically, we formally
define the joint conditional success probability, the n-th
order joint MD, and the n-th order product MD, which
is a simpler version of the joint MD.

• We consider both one-dimensional (1D) and two-
dimensional (2D) Poisson network models with two users
that are associated with the same BS, to study the
joint SIR performance of two users. This BS association
scenario corresponds to the two applications to physical
layer security and cooperation. The moments of the joint
conditional success probability are derived for both 1D
and 2D network models in order to obtain the product
MD.

• We focus on the distribution of the distance from two
users to their (common) serving BS and closest interferer
in the 2D Poisson network. The probability distribution
functions (PDFs) of these distances are derived, and some
properties are revealed.

• We study the application to physical layer security. The
typical legitimate user and a nearby eavesdropper are con-
sidered. Through analytical derivations and simulations,
we give the opportunistic conditional secure spectrum
access probability and its distribution. We also obtain the
reliability of the network when different levels of security
are required and explore the effect of the distance between
legitimate user and eavesdropper on the reliability.

• We study the application to cooperative reception. We
consider the scenario that the BS sends a message to

a group of users, and the goal is that at least one user
successfully receives the message. The first and second
moments of the conditional probability for the event that
the transmission succeeds at at least one of two users are
derived.

The remainder of the paper is organized as follows. Sec. II
introduces the standard MD and its beta approximation and
presents the definitions for the joint and product MD. Sec. III
introduces the 1D and 2D Poisson network models and studies
some properties of the product MD. Sec. IV and Sec. V
apply the analysis framework to physical layer security and
cooperative reception, respectively. Sec. VI concludes the
paper.

II. JOINT AND PRODUCT META DISTRIBUTION

In this section, we define the joint and product SIR MD
to analyze the SIR performance for two or more users at
different locations jointly. Before, we review the definition of
the standard (single-user) SIR MD.

A. Meta Distribution and its Beta Approximation

The MD of the SIR, introduced in [6], is defined as the
CCDF of the random variable

Ps (τ) , P (SIR > τ | Φ) , (1)

which is the conditional success probability given the point
process Φ. Hence, the MD is formally given by

F̄ (τ, ν) , P (Ps (τ) > ν) , ν ∈ [0, 1] , (2)

where P here is the probability measure of the point process Φ.
It is quite likely impossible to calculate the MD directly from
the definition in (2), hence it is obtained indirectly from the
moments of Ps (τ). The b-th moment of Ps (τ) is denoted by

Mb , E
(
Ps(τ)b

)
=

∫ 1

0

νbdFPs(ν)

=

∫ 1

0

bνb−1F̄Ps
(ν)dν, b ∈ C, (3)

where the notation F̄Ps
(ν) is also used for the MD F̄ (τ, ν), and

FPs
(ν) = 1−F̄Ps

(ν). It is noteworthy that the standard success
probability captures only the mean of Ps(τ), i.e., ps(τ) ≡M1,
while the MD is the distribution of the conditional success
probability Ps(τ).

The b-th moments of Ps (τ) for downlink Poisson cellular
networks are given by [6, Thm. 2] as

Mb =
1

2F1(b,−δ; 1− δ;−τ)
, b ∈ C, (4)

where 2F1(·) is the Gaussian hypergeometric function.
The exact MD can then be obtained from the integer

moments Mj = E(Ps(τ)j), j ∈ {0} ∪ N, as [19]

F̄Ps
(ν) = 1− lim

i→∞

biνc∑
k=0

i∑
j=k

(
i

j

)(
j

k

)
(−1)j−kMj , ν ∈ (0, 1] ,

(5)
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and F̄Ps
(0) = 1, where buc is the largest integer smaller than

or equal to u.
Alternatively, it is natural and often sufficient to approxi-

mate the MD by matching its first and second moment M1

and M2 to the beta distribution, resulting in

F̄Ps
(ν) ≈ 1− Iν

( M1β

1−M1
, β
)
, (6)

Iν(a, b) =

∫ ν
0
ta−1(1− t)b−1

dt

B(a, b)
, β =

(M1 −M2)(1−M1)

M2 −M2
1

,

(7)
where Iν(a, b) is the cumulative distribution function (CDF)
of the beta distribution, i.e., the regularized incomplete beta
function with shape parameters a, b > 0, and B(a, b) is the
beta function. This approximation has been shown to be rather
accurate [6], [9].

B. Definitions

We consider a general system model where BSs form a
general stationary and ergodic point process Φ ⊂ Rd. The
vector x = (x1, x2, . . . , xn) ∈ (Rd)n is a (deterministic)
vector of n user locations. The SIR at the i-th location xi
is defined as

SIRi ,
hxi,s(xi)`(xi − s(xi))∑
z∈Φ\{s(xi)} hxi,z`(xi − z)

, (8)

where s(xi) ∈ Φ is the BS serving location xi, hu,v is the
fading between u and v where hu,v is independent of hu′,v′ if
{u, v} 6= {u′, v′} and also independent of Φ, and ` is the path
loss law. For nearest-BS association, s(xi) = arg min{z ∈
Φ: ‖z − xi‖}.

We first define the joint conditional success probability at
n locations.

Definition 1 (Joint conditional success probability) The
n-th order joint conditional success probability is the joint
distribution of the SIRs at locations x = (x1, x2, . . . , xn)
given the point process Φ, i.e.,

P (n)
s (x, τ ) , P

( n⋂
i=1

{SIRi > τi} | Φ
)

(a)
=

n∏
i=1

P(SIRi > τi | Φ) =

n∏
i=1

Pi(τi), (9)

where τ = (τ1, τ2, . . . , τn) ∈ (R+)n is the threshold vector of
the conditional success probability at the n locations, Pi(τi) ,
P(SIRi > τi | Φ) is the conditional success probability at the
i-th location xi, and (a) follows from the independence of the
fading coefficients hu,v1.

Next we proceed to the joint MD of the SIR.

1Given the point process Φ, the remaining randomness of SIRi is the set
of fading coefficients. Because of the independence of the fading coefficients,
the SIRi are conditionally independent.

Definition 2 (n-th order joint MD of the SIR) The n-th
order joint MD of the SIR is the joint distribution of the con-
ditional success probability at locations x = (x1, x2, . . . , xn),
i.e.,

F̄
(n)
j (x, τ ,ν) , P

( n⋂
i=1

{P (SIRi > τi | Φ) > νi}
)

= P
( n⋂
i=1

{Pi(τi) > νi}
)
, (10)

where ν = (ν1, ν2, . . . , νn) ∈ [0, 1]n is the reliability vector
at the n locations, and τ = (τ1, τ2, . . . , τn).

A simpler version of the joint MD is called the product MD.
It is defined as follows.

Definition 3 (n-th order product MD of the SIR) The n-th
order product MD of the SIR is the distribution of the joint con-
ditional success probability at locations x = (x1, x2, . . . , xn),
i.e.,

F̄ (n) (x, τ , ν) , P
(
P (n)

s (x, τ ) > ν
)

= P
(
P
( n⋂
i=1

{SIRi > τi} | Φ
)
> ν

)
= P

( n∏
i=1

Pi(τi) > ν

)
, ν ∈ [0, 1] , (11)

where τ = (τ1, τ2, . . . , τn).

The key difference between Def. 2 and 3 is that the product
MD is the CCDF of the joint conditional success probability
P

(n)
s (x, τ ), while the joint MD is the joint distribution of

the conditional success probabilities Pi(τi), i = 1, . . . , n. For
n = 1, they both correspond to P(P1(τ1) > ν1), i.e., the MD
of a single user.

We can obtain the product MD (11) from the PDF of the
joint MD (10):

F̄ (n) (x, τ , ν) = P
( n∏
i=1

Pi(τi) > ν

)

= 1− E

(
P

(
P1(τ1) ≤ ν

n∏
i=2

Pi(τi)
| P2(τ2), . . . , Pn(τn)

))

= 1−
∫ 1

0

· · ·
∫ 1

0

dν2 · · · dνn

·
∫ ν

n∏
i=2

νi

0

fP1(τ1),...,Pn(τn)(ν1, ν2, . . . , νn) dν1, (12)

where fP1(τ1),...,Pn(τn)(ν1, ν2, . . . , νn) is the PDF of the joint
MD of the SIR (10). We use the product MD as the main
performance metric in the rest of the paper.

To distinguish the standard MD from the joint MD, we use
the notation M

(n)
b for the moments of the joint conditional

success probability of the users at n locations. The formal
definition of M (n)

b is given here.

Definition 4 (Moments of the joint conditional success
probability) The b-th moment of the joint conditional success
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probability P
(n)
s (x, τ ) at locations x = (x1, x2, . . . , xn) is

given by

M
(n)
b (x) , E

((
P (n)

s (x, τ )
)b)

= E
((

P
( n⋂
i=1

{SIRi > τi} | Φ
))b)

= E
( n∏
i=1

P bi (τi)

)
, (13)

where τ = (τ1, τ2, . . . , τn).

It is noteworthy that M (1)
b is the standard moment in (3), and

M
(2)
b is the moment of the joint conditional success probability

at two locations (n = 2).
Let Ψ = {u1, u2, . . .} ⊂ Rd be a stationary and ergodic

point process of users. Then the n-th order joint MD of the
SIR gives the fraction of users uk for which the following
holds: The conditional probability that the SIR at uk+(xi−x1)
exceeds τi is higher than νi, for each i = 1, 2, . . . , n. The n-th
order product MD of the SIR gives the fraction of users for
which the following holds: The joint conditional probability
for the n events that the SIR at uk + (xi − x1) exceeds τi
for each i = 1, 2, . . . , n, i.e., by the conditional independence,
the product of the n conditional probabilities that the SIR at
uk + (xi − x1) exceeds τi, is higher than ν.

III. THE PRODUCT META DISTRIBUTION IN POISSON
NETWORKS

In this section, we study some properties of the product
MD in Poisson networks. The joint and product MDs extend
the scope of the MD framework to important applications in
secrecy (Sec. IV) and cooperation (Sec. V). In the rest of
this paper, we mostly focus on the case n = 2. Due to the
motion-invariance of the model, for n = 2, F̄ (2)(x, τ , ν) ≡
F̄ (2)(v, τ , ν), where x = (x1, x2) and v = ‖x1 − x2‖. This
simplification is analogous to the one frequently applied for
second moment measures and pair correlation functions [20,
Def. 6.6].

A. System Model

1) 2D Network Model: The BSs are distributed according
to a homogeneous Poisson point process (PPP) Φ ⊂ R2 of
intensity λ. We consider two users—UE1 located on the origin
o , (0, 0) and UE2 located on (v, 0), i.e., the location vector
is x = (o, (v, 0)). Assuming that both UEs connect to the
nearest BS to UE1 (the origin) and attempt to receive the
message from it in the same time slot, the location of this
serving BS is s(o) = s((v, 0)) = arg min{z ∈ Φ: ‖z − o‖}.
UE2 may lie in the same Voronoi cell as UE1 or another cell.
This BS association scenario (in contrast to the one where both
users connect to their nearest BS) is the one relevant for the
two applications to physical layer security and cooperation. A
realization of this network model is shown in Fig. 1. The BSs
are always active, and Rayleigh fading and the standard path
loss law with path loss exponent α > 2 are adopted, i.e., the
channel gain between the receiver x and the transmitter z can
be expressed as hx,z‖x−z‖−α, where hx,z is i.i.d. exponential

-5 0 5

x

-5

0

5

y

Fig. 1. A realization of the 2D network model for BS density λ = 0.1. The
star markers represent the BSs and the circle marker represents the typical
user named UE1 at the origin o. UE1 is associated to the nearest BS. The
line connecting the star marker and the circle marker indicates the downlink
signal link of UE1. The square marker represents UE2 at (v, 0). UE2 is also
associated to UE1’s BS, and UE1 and UE2 both receive the message from
it at the same time slot. The line connecting the star marker and the square
marker indicates the downlink signal link of UE2.

Fig. 2. A realization of the 1D network model. The star markers represent
the BSs, the circle marker represents the typical user UE1 at the origin o and
UE2 at v. The dashed lines are the cell boundaries. UE1 is associated to the
nearest BS s(o) at R1, and UE2’s serving BS is also s(o).

with unit mean. The effect of thermal noise is neglected.
We denote the distance between UE1 and its serving BS as
R1 , ‖s(o)‖, and the distance between UE2 and its serving
BS (which is the same as UE1’s) as R2 , ‖s(o)− (v, 0)‖.

Then the SIRs (8) can be expressed as

SIR1 =
ho,s(o)R1

−α∑
z∈Φ\{s(o)}

ho,z‖z‖−α
, (14)

SIR2 =
h(v,0),s(o)R

−α
2∑

z∈Φ\{s(o)}
h(v,0),z‖(v, 0)− z‖−α

. (15)

2) 1D Network Model: We also consider a 1D network
model, which is more tractable and leads to insights that
also apply to 2D models. This simpler case has its own
application scenario, e.g., for vehicular networks [21]–[25].
In this 1D network model, the BSs are distributed according
to a homogeneous PPP Φ ⊂ R of intensity λ. UE1 and UE2
are placed at o and v ≥ 0, respectively, i.e., the locations are
x = (o, v). As in the 2D case, UE1 and UE2 both connect to
the nearest BS to UE1 (the origin), therefore the serving BS is
located at either s(o) = −R1 or s(o) = R1. A realization of
this 1D network model is shown in Fig. 2. The channel fading
and the path loss law are the same as in the 2D case.

It is noteworthy that these 1D and 2D PPP models have the
potential to apply to arbitrary models with strong shadowing
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under certain conditions. [26] recently explored the impact of
strong shadowing (with or without moderate spatial correla-
tion) on network models. For the standard MD, the following
holds: If the BS association takes shadowing into account
(as it usually does), then with strong enough shadowing, any
point process looks like a PPP from the point of view of the
typical user. In other words, using strongest-BS association
with strong shadowing in an arbitrary point process (where
“strongest” includes path loss and shadowing) is equivalent
to nearest-BS association in a PPP (without shadowing or
with shadowing, here it makes no difference). So shadowing
is incorporated by the fact that we use a Poisson model. For
the joint or product MD, we can expect this result to hold if
the distances between the locations are small relative to the
mean nearest-neighbor distance of the BSs. For n = 2, this
means that v � 1/

√
λ.

B. Moments of the Joint Conditional Success Probability

For arbitrary point processes Φ, the conditional success
probability at the i-th location xi can be expressed as

Pi(τi) =
∏

z∈Φ\{s(o)}

1

1 + τi
‖xi−s(o)‖α
‖xi−z‖α

. (16)

Then, the b-th moments of the second-order joint conditional
success probability for both 1D and 2D Poisson networks are
given as follows. We analyze the the 1D case first due to its
superior tractability.

1) 1D Poisson Networks: For 1D Poisson networks, the
PDF of the link distance R1 between UE1 and its serving BS
can be obtained from the void probability of PPP as

f 1D
R1

(r) = 2λ exp (−2λr). (17)

Theorem 1 The b-th moment M (2)
b (v) of the joint conditional

success probability for 1D Poisson networks is

M
(2)
b (v) =

∫ ∞
0

exp
(
Q(1, 1) +Q(1,−1)

)
exp (−2λr)λdr

+

∫ ∞
0

exp
(
Q(−1, 1) +Q(−1,−1)

)
exp (−2λr)λdr, b ∈ C,

(18)

where

Q(p, q) =−
∫ ∞
r

(
1−

(
1 + τ1

rα

zα

)−b(
1 + τ2

|v−pr|α
|v−qz|α

)b)λdz, p, q ∈ {−1, 1}.

(19)

Proof: For 1D Poisson networks, the distances from the
BSs to UE2 can be written as R2 = ‖v − s(o)‖ = |v ± R1|,
and ‖v − z‖ = |v ± z|. Using (16), the b-th moment for the

joint conditional success probability of UE1 and UE2 in 1D
Poisson networks is

M
(2)
b (v) = E(P b1 (τ1)P b2 (τ2))

= E
( ∏
z∈Φ\{s(o)}

(
1

1 +
τ1Rα1
‖z‖α

)b(
1

1 + τ2‖v−s(o)‖α
‖v−z‖α

)b)

(a)
= ER1

(
exp

(
−
∫ ∞
R1

(
1−

(
1 + τ1

Rα1
‖z‖α

)−b(
1 + τ2

‖v−s(o)‖α
‖v−z‖α

)b)2λdz

))

= ER1

(
exp

(
−
∫ ∞
R1

(
1−

(
1 + τ1

R1
α

zα

)−b(
1 + τ2

|v±R1|α
|v±z|α

)b)2λdz

))
(b)
=

1

2

∫ ∞
0

exp

(
− 1

2

∫ ∞
r

(
1−

(
1 + τ1

rα

zα

)−b(
1 + τ2

|v−r|α
|v−z|α

)b)2λdz

− 1

2

∫ ∞
r

(
1−

(
1 + τ1

rα

zα

)−b(
1 + τ2

|v−r|α
(v+z)α

)b)2λdz

)
f 1D
R1

(r)dr

+
1

2

∫ ∞
0

exp

(
− 1

2

∫ ∞
r

(
1−

(
1 + τ1

rα

zα

)−b(
1 + τ2

(v+r)α

|v−z|α
)b)2λdz

− 1

2

∫ ∞
r

(
1−

(
1 + τ1

rα

zα

)−b(
1 + τ2

(v+r)α

(v+z)α

)b)2λdz

)
f 1D
R1

(r)dr,

(20)

where (a) employs the probability generating functional
(PGFL) of the PPP [20, Thm. 4.9], (b) uses the law of total
probability.

2) 2D Poisson Networks: For 2D Poisson networks, the
PDF of the link distance R1 between UE1 and its serving BS
can be obtained from the void probability of PPP as

fR1
(r) = 2πλr exp

(
−πλr2

)
. (21)

Theorem 2 The b-th moment M (2)
b (v) of the joint conditional

success probability for 2D Poisson networks is

M
(2)
b (v) =

∫ 2π

0

∫ ∞
0

fR1
(r)

2π
exp

(
−
∫ 2π

0

∫ ∞
r

λz

·
(

1− (1 + τ1r
αz−α)

−b(
1 + τ2

(
r2+v2−2rvcosθ
z2+v2−2zvcosω

)α
2
)b)dzdω

)
drdθ, b ∈ C.

(22)

Proof: From (16), the b-th moment for the joint condi-
tional success probability of UE1 and UE2 is

M
(2)
b (v) = E(P b1 (τ1)P b2 (τ2))

= E
( ∏
z∈Φ\{s(o)}

(
1

1 +
τ1Rα1
‖z‖α

)b(
1

1 + τ2‖(v,0)−s(o)‖α
‖(v,0)−z‖α

)b)
(a)
= ER1,Θ

(
exp

(
−
∫ 2π

0

∫ ∞
R1

λz

·
(

1−
(
1 + τ1R

α
1 z
−α)−b(

1 + τ2
(R2

1+v2−2R1vcosΘ
z2+v2−2zvcosω

)α
2
)b)dzdω

))
(b)
=

∫ 2π

0

∫ ∞
0

fR1
(r)

2π
exp

(
−
∫ 2π

0

∫ ∞
r

λz
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·
(

1−
(
1 + τ1r

αz−α
)−b(

1 + τ2
(
r2+v2−2rvcosθ
z2+v2−2zvcosω

)α
2
)b)dzdω

)
drdθ, (23)

where (a) employs the PGFL of the PPP [20, Thm. 4.9] and
uses the polar coordinates s(o) = (R1 cos Θ, R1 sin Θ), and
(b) uses the PDFs of R1 and Θ in 2D Poisson networks to
take the expectation over R1 and Θ.

Remark 1 (The b-th moment for independent SIRs): If
the SIRs are assumed independent for UE1 and UE2, the b-th
moment is given by

M̃
(2)
b (v) = E(P(SIR1 > τ1 | Φ)b)E(P(SIR2 > τ2 | Φ)b)

= Mb(τ1)M ′b(τ2), (24)

where Mb(τ1) given in (4) and

M ′b(τ2) =

∫ 2π

0

∫ ∞
0

fR1
(r)

2π
exp

(
−
∫ 2π

0

∫ ∞
r

λz

·
(

1−
(

1 + τ2

(
r2 + v2 − 2rvcosθ

z2 + v2 − 2zvcosω

)α
2
)−b)

dzdω

)
drdθ

(25)

are the b-th moments for UE1 and UE2, respectively. The two
SIRs are not identically distributed since the serving BS is the
one closest to the origin (UE1), which is not necessarily the
one closest to UE2.

3) Moments for n Locations: Here we assume that n UEs
are located on a line at xi = (vi, 0) for 2D Poisson networks,
or xi = vi for 1D Poisson networks, where i = 1, . . . , n, with
v1 = 0 and vi > 0 (i = 2, . . . , n).

Corollary 1 (The moment for n locations) The b-th moment
of the n-order joint conditional success probability for 1D
Poisson networks is

M
(n)
b (v) =

∫ ∞
0

exp
(
Q′(1, 1) +Q′(1,−1)

)
exp (−2λr)λdr

+

∫ ∞
0

exp
(
Q′(−1, 1) +Q′(−1,−1)

)
exp (−2λr)λdr, b ∈ C,

(26)

where v = (v1, v2, . . . , vn), and

Q′(p, q) = −
∫ ∞
r

(
1−

(
1 + τ1r

αz−α
)−b∏n

i=2

(
1 + τ2

|vi−pr|α
|vi−qz|α

)b)λdz,

p, q ∈ {−1, 1}. (27)

For 2D Poisson networks, it is

M
(n)
b (v) =

∫ 2π

0

∫ ∞
0

fR1
(r)

2π
exp

(
−
∫ 2π

0

∫ ∞
r

λz

·
(

1− (1 + τ1r
αz−α)

−b∏n
i=2

(
1 + τ2

( r2+v2i−2rvicosθ

z2+v2i−2zvicosω

)α
2
)b)dzdω

)
drdθ,

b ∈ C. (28)

Proof: It is straightforward to generalize Theorem 1 and
2 to n locations.

C. Distance Distribution

In order to further analyze the effect of distance v on the SIR
performance, we next focus on the distribution of the distances
of UE1 and UE2 to their closest interferer and serving BS.
We denote the distance between UE1 and its closest interferer
as R′1 , min

z∈Φ\{s(o)}
‖z‖, and the distance between UE2 and

its closest interferer as R′2 , min
z∈Φ\{s(o)}

‖z − (v, 0)‖. The 2D

Poisson network model is considered in this subsection.
The PDF fR1

(r) of the distance R1 of UE1 to its serving
BS is given in (21), and the distribution of the distance R′1 of
UE1 to its closest interferer is

fR′
1
(r) = 2πλr(πλr2) exp

(
−πλr2

)
, (29)

which is the distance from the origin to its second-nearest
point in a PPP.

Next we find an approximation of the PDF of the distance
R′2 of UE2 to its closest interferer. When v = 0, the
distribution of the distance R′2 is the standard nearest-interferer
distribution, i.e., the PDF of R′2 is the same as that of R′1, given
in (29), with mean

E(R′2) =
3

4
√
λ
, v = 0. (30)

When v → ∞, the distribution of R′2 approaches the empty
space function of the PPP which is the Rayleigh distribution
with mean

E(R′2) =
1

2
√
λ
, v →∞, (31)

i.e., the PDF of R′2 is the same as that of R1 given in (21).
As shown in Fig. 3(a), with increasing v the PDFs gradually
change from (29) to (21). It is natural to use the mean
of R′2 to approximate the PDF of R′2 parameterized by v.
According to the forms of (30) and (31), the prototype
function E(R′2) = 3+avc

(4+2avc)
√
λ

is used. Using the Curve Fitting
Toolbox of Matlab to fit the simulation results, the best fitting
coefficients are a = 12.95 (11.9, 14), c = 2.938 (2.808, 3.068)
with 95% confidence bounds. Rounding the coefficients, we
set a = 12, c = 3, and the fitting results are shown in Fig. 4.
Hence, we obtain an approximation of the PDF of R′2.

Lemma 1 The PDF of R′2 parameterized by v is tightly
approximated by

fR′
2
(r) ≈

2πλr exp
(
−πλr2

)
(πλr2 + 6v3)

6v3 + 1
(32)

with the mean E(R′2) = 3+12v3

(4+24v3)
√
λ

.

The approximated results of the PDF for R′2 with λ = 1
calculated from (32) are shown in Fig. 3(a) and compared with
their simulation results.

Next, we focus on the distribution of the distance R2 from
UE2 at (v, 0) to the serving BS s(o). We can directly obtain
the exact expression of this random variable from the definition
of the Ricean distribution in 2D plane.



7

0 0.4 0.8 1.2 1.6
0

0.4

0.8

1.2

1.6

v=0

v=0.2

v=0.4

v=0.6

v=0.8

v=1.0

v=1.5

v=2.0

v=3.0

(a) R′
2—UE2 to its closest interferer

0 0.5 1 1.5 2
0

0.4

0.8

1.2

1.6

v=0

v=0.2

v=0.4

v=0.6

v=0.8

v=1.0

v=1.5

v=2.0

v=3.0

(b) R2—UE2 to its serving BS

Fig. 3. The PDF of the distance of UE2 to its serving BS and the closest
interferer with λ = 1. v = 0, 0.2, 0.4, 0.6, 0.8, 1, 1.5, 2.0, 3.0 is increasing
along the arrows. The solid lines in (a) are the analytical approximations from
(32), the dashed lines in (a) are the simulation results, and the solid lines in
(b) are the exact analytical results from (33).

Lemma 2 The PDF of R2 is the Ricean distribution with
parameters v and σ = 1√

2πλ
, i.e.,

fR2
(r) =

r

σ2
exp

(−(r2 + v2)

2σ2

)
I0

( rv
σ2

)
= 2πλr exp

(
− πλ(r2 + v2)

)
I0
(
2πλrv

)
, (33)

where I0(z) is the modified Bessel function of the first kind
with order zero.

The mean of R2 is E(R2) = σ
√

π
2L1/2(− v2

2σ2 ) =
1

2
√
λ
L1/2(−πλv2), and the variance of R2 is Var(R2) =

2σ2+v2− πσ2

2 L2
1/2(−v

2

2σ2 ) = 1
πλ+v2− 1

4λL
2
1/2(−πλv2), where

L1/2(z) denotes the Laguerre polynomial with parameter 1/2.
Fig. 5 shows the analytical results of the mean and variance of
R2 for λ = 1. It is observed from Fig. 5 that as v →∞, the
mean approaches v, and the variance approaches 1

2πλ ≈ 0.16.
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Fig. 4. The simulated mean of the distance R′
2 of UE2 to its closest interferer

and its approximation (32) with λ = 1.
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Fig. 5. The analytical results for the mean and variance of the distance R2

of UE2 to its serving BS with λ = 1. The dashed line in (a) is the asymptote
v, and the dashed line in (b) is the asymptote 1

2π
.
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1D Poisson networks.

The PDF for R2 with λ = 1 calculated from (33) is shown in
Fig. 3(b).

Based on this insight, we can give a qualitative analysis of
the SIR performance. The change of v does not affect SIR1,
but SIR2. As v increases, the mean of the distance R2 of UE2
to its serving BS increases and approaches v, while the mean
of the distance R′2 of UE2 to its closest interferer tends to
a constant. Therefore, for relatively large v, the distance R2

becomes the main factor affecting SIR2. The regions of interest
thus have the smaller values of v, which we will mostly focus
on, in the numerical results.

D. Numerical Results

Here we show numerical and simulation results for both
1D and 2D Poisson network models. The intensity of the
BSs in this section is set to λ = 1. The path loss exponent
is α = 4. Here and in the rest of the paper, we use
the beta approximation, obtained from the first and second
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Fig. 7. Product MD of SIR with different τ1, τ2 and reliabilities ν for
1D Poisson networks. The lines show the analytical results approximated by
the beta distribution and the moments in Theorem 1. The markers are the
simulation results.
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Fig. 8. The success probability M(2)
1 and the variance M(2)
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(2)
1 )2 for

2D Poisson networks. The dashed lines are obtained under the independent
SIRs assumption from Remark 1.

moments (6), as the analytical approximation to the MD. As
will be observed from the comparison with simulation results,
the approximation is very accurate also for the product MD.

For the 1D Poisson network model, Fig. 6 shows the success
probability and variance, and Fig. 7 shows the MD of SIR as
a function of v for different τ1, τ2. The solid lines are from
Theorem 1. For the 2D Poisson network model, Fig. 8 shows
the success probability and variance, and Fig. 9 shows the
SIR MD. In these figures, the solid lines are from Theorem 2,
the dashed lines are under the independent SIRs assumption
from Remark 1. By comparing the results from Theorem 2
and Remark 1, we can find that the dependence of the SIRs
for UE1 and UE2 cannot be ignored for larger SIR thresholds
τ1, τ2. On the other hand, for small thresholds, the assumption
of independent SIRs has only a small effect.

0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

(a) τ1 = τ2 = −20 dB

0 0.5 1 1.5
0

0.2

0.4

0.6

0.8

1

(b) τ1 = τ2 = −10 dB

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

(c) τ1 = τ2 = 0 dB

Fig. 9. Product MD with different τ1, τ2 and reliabilities ν for 2D Poisson
networks. The markers are the simulation results. The dashed lines are
obtained under the independent SIRs assumption from Remark 1.
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IV. APPLICATION TO PHYSICAL LAYER SECURITY

In this section, we apply the 2D Poisson network model
in Sec. III-A and the product MD to physical layer security
in a downlink cellular network. We set UE1 as the typical
legitimate user. We focus on passive eavesdropping, where
an eavesdropper intercepts the signal without any attack. The
eavesdropper is assumed to be located at (v, 0), i.e., UE2 in the
2D Poisson network model. Then, the SIR of the legitimate
user (UE1) is given in (14), while the received SIR of the
eavesdropper (UE2) is given in (15).

The event of opportunistic secure spectrum access (OSSA)
defined in [18] is that the eavesdropper cannot decode the
message from the BS (secrecy success) while the legitimate
user can (connection success). Following the definition of
the OSSA probability, we next define the conditional OSSA
probability and its MD.

A. Conditional OSSA Probability and its Meta Distribution
We define the following three success probabilities for the

confidential message transmission.
• Conditional connection success probability: The prob-

ability that the SIR from the serving BS to the legitimate
user (UE1) is above the threshold τ1 given the point
process Φ, denoted by Pcs(τ1) = P(SIR1 > τ1 | Φ).

• Conditional secrecy success probability: The probabil-
ity that the SIR from the typical user’s serving BS to the
eavesdropper (UE2) is below the threshold τ2 given the
point process Φ, denoted by Pss(τ2) = P(SIR2 < τ2 | Φ).

• Conditional OSSA probability: The probability of
OSSA given the point process Φ, denoted by POSSA, i.e.,
the conditional probability of the event of both connection
success and secrecy success. Due to the conditional
independence given Φ, POSSA = Pcs(τ1)Pss(τ2).

Then, the MD of the conditional OSSA probability can be
defined as

F̄OSSA(ν) , P(POSSA > ν)

= P(P(SIR1 > τ1 | Φ)P(SIR2 < τ2 | Φ) > ν).
(34)

B. Moments of the Conditional OSSA Probability
Theorem 3 (The b-th moment of POSSA) The b-th moment
MOSSA
b (v) of the conditional OSSA probability POSSA is

MOSSA
b (v) =

∞∑
k=0

(
b

k

)
(−1)k

∫ 2π

0

∫ ∞
0

fR1
(r)

2π

· exp

(
−
∫ 2π

0

∫ ∞
r

Gb,k λzdzdω

)
drdθ, b ∈ C, (35)

where fR1
(r) is given by (21), and

Gb,k = 1− (1 + τ1r
αz−α)

−b(
1 + τ2

(
r2+v2−2rvcosθ
z2+v2−2zvcosω

)α
2
)k . (36)

Proof: The conditional connection success probability for
the legitimate user (UE1) is given by (see (16))

Pcs(τ1) =
∏

z∈Φ\{s(o)}

1

1 +
τ1Rα1
‖z‖α

, (37)

and the conditional secrecy success probability for the eaves-
dropper (UE2) is given by

Pss(τ2) = 1−
∏

z∈Φ\{s(o)}

1

1 + τ2‖(v,0)−s(o)‖α
‖(v,0)−z‖α

. (38)

The b-th moment of the conditional OSSA probability can
be obtained as

MOSSA
b (v) = E(P bOSSA) = E(P bcs(τ1)P bss(τ2))

= E(P bcs(τ1)(1− P̄ss(τ2))b)

=

∞∑
k=0

(
b

k

)
(−1)k E(P bcs(τ1)P̄ kss(τ2))︸ ︷︷ ︸

Mb,k

. (39)

The term Mb,k in (39) can be expressed by a direct extension
of Theorem 2 as

Mb,k = E
( ∏
z∈Φ\{s(o)}

(
1

1 +
τ1Rα1
‖z‖α

)b(
1

1 + τ2‖(v,0)−s(o)‖α
‖(v,0)−z‖α

)k)

=

∫ 2π

0

∫ ∞
0

exp

(
−
∫ 2π

0

∫ ∞
r

Gb,kλzdzdω

)
fR1

(r)

2π
drdθ,

(40)

where fR1
(r) is given by (21), and Gb,k is given by (36).

Substituting the result of (39), the result follows.

Remark 2: It is easy to obtain MOSSA
1 (v) (the OSSA prob-

ability) and MOSSA
2 (v) from Theorem 3. The first moment

MOSSA
1 (v) of the conditional OSSA probability POSSA is

MOSSA
1 (v) =

1

2F1(1,−δ; 1− δ;−τ1)

−
∫ 2π

0

∫ ∞
0

exp

(
− λ

∫ 2π

0

∫ ∞
r

G1,1zdzdω

)
fR1(r)

2π
drdθ,

(41)

which is the same as [18, Thm. 1] when the jamming is elim-
inated, and the second moment MOSSA

2 (v) of the conditional
OSSA probability POSSA is

MOSSA
2 (v) =

1

2F1 (2,−δ; 1− δ;−τ1)

− 2

∫ 2π

0

∫ ∞
0

exp

(
−λ
∫ 2π

0

∫ ∞
r

G2,1zdzdω

)
fR1

(r)

2π
drdθ

+

∫ 2π

0

∫ ∞
0

exp

(
−λ
∫ 2π

0

∫ ∞
r

G2,2zdzdω

)
fR1

(r)

2π
drdθ,

(42)

where δ = 2/α. Generally, if b is a positive integer, the infinite
sum in (35) reduces to a finite sum from 0 to b.

Remark 3 (The b-th moment for independent SIRs): If the
SIRs are assumed independent for the legitimate user (UE1)
and its eavesdropper (UE2), the b-th moment is given by

M̃OSSA
b (v) = E(P(SIR1 > τ1 | Φ)b)E(P(SIR2 < τ2 | Φ)b)

=
1

2F1(b,−δ; 1− δ;−τ1)
Mb2, (43)
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Fig. 10. The mean (success probability) MOSSA
1 (v) and the variance

MOSSA
2 (v) − (MOSSA

1 (v))2 of POSSA with τ1 − τ2 = {0.1, 3, 6} dB,
v = 1

2
√
λ

, and α = 4. The solid lines show the OSSA probability, and the
dashed lines show the variance of POSSA. The dash-dotted lines are the results
for τ1 = τ2, which is the boundary of the region of secure communication.

where

Mb2 =

∞∑
k=0

(
b

k

)
(−1)k

∫ 2π

0

∫ ∞
0

fR1
(r)

2π

· exp

(
−
∫ 2π

0

∫ ∞
r

G0,kλzdzdω

)
drdθ, (44)

G0,k = 1−
(

1 + τ2

(
r2 + v2 − 2rvcosθ

z2 + v2 − 2zvcosω

)α
2
)−k

(45)

is the b-th moment for the eavesdropper (UE2).

Remark 4 (Asymptotic behavior as τ2 → ∞ or v → ∞):
When τ2 →∞ or v →∞, we both have P (SIR2 < τ2 | Φ)→
1, hence

MOSSA
b (v) = E(P(SIR1 > τ1 | Φ)bP(SIR2 < τ2 | Φ)b)

=
1

2F1 (b,−δ; 1− δ;−τ1)
, (46)

i.e., MOSSA
b (v) approaches the standard b-th moment without

secrecy constraint, as shown in Fig. 14 and Fig. 15.

C. Numerical Results

The intensity of the BSs used in this section is λ = 1. We
set v = 1

2
√
λ

= 1
2 in most figures in this section, which is the

average distance between a BS and its nearest neighbor. The
same value is used in [18]. According to Wyner’s encoding
scheme [27], SIR1 > SIR2 is needed to communicate securely,
i.e., τ1 > τ2. Hence, we set τ1− τ2 = 0.1 (all in dB) for most
of the results about the OSSA probability, the variance and
the MD, and in Figs. 13–15 we use various values of α, τ2
and v for comparison.

Fig. 10 shows the OSSA probability and variance with
τ1 − τ2 = 0.1, 3, 6 dB, and the results for τ1 = τ2,
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Fig. 11. The mean (success probability) and the variance of POSSA at α = 4
for the network. The solid lines show the OSSA probability and variance
when the SIRs are correlated (i.e., Theorem 3). The dashed lines show the
OSSA probability and variance when the SIRs are assumed independent (i.e.,
Remark 3).

which is the boundary of the region of secure communication.
Fig. 11 shows the OSSA probability (mean) and variance
against τ1 (and τ2) for the actual network (where the SIRs are
correlated) and under the assumption of independent SIRs. It
is apparent that the SIRs correlation leads to a decrease in the
OSSA probability and variance. Fig. 12 shows the MD of the
conditional OSSA probability, which is approximated by the
beta distribution and the simulation in the Poisson cellular
network. The MD shows the proportion of the links with
both connection and secrecy success given a target reliability.
For the chosen parameters, with the increase of the required
reliability, the number of these links is gradually decreasing
with decreasing speed as ν approaches 1. Fig. 13(a) shows
that with the increase of α, the OSSA probability and the
variance increase, and the peak of the OSSA probability will
shift to the right, while the variance stays basically the same.
Fig. 13(b) indicates that as α decreases, the MD decreases for
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Fig. 12. The MD at τ1 = 0 dB, τ2 = −0.1 dB, v = 1
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and α = 4.
The solid line shows the MD approximated by the beta distribution. Markers
show the results of the Monte Carlo simulations.
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Fig. 14. The MD at τ1 = 0 dB, α = 4 and v = 1
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. The dash-dotted
line shows the standard MD without secrecy constraint (i.e., Remark 4), and
the solid lines show the MD with secrecy constraint (i.e., Theorem 3) when
τ2 = −30,−15, 0, 15, 30 dB.
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Fig. 15. The MD at τ1 = 0 dB, τ2 = −0.1 dB and α = 4. The dash-dotted
line shows the standard MD, and the solid lines show the MD with secrecy
constrain when v = 0.3, 0.6, 0.9, 1.2. The MD at v = 1

2
√
λ

= 0.5 is shown
in Fig. 12.

all ν ∈ [0, 1], and it decreases faster when ν is smaller. Fig. 14
shows when τ1 = 0 dB and τ2 varies, where a smaller τ2
means a higher security level, the link reliability of the network
will decrease. And as the secrecy constraint decreases, i.e., τ2
increases, the curves will approach the standard MD quickly.
Fig. 15 shows that when the eavesdropper is far away from
the typical user relative to the distance from the user to its
serving BS, the link reliability of the network will also increase
and approach to the MD without secrecy constraint gradually.
Fig. 16 shows the impact of the distance v on the OSSA
probability, the variance of conditional OSSA probability, and
its MD. The results of the the OSSA probability are consistent
with [18], although the setup of λ and v is different. As the
distance v increases, the correlation of legitimate user and
its eavesdropper decreases. Hence, the error caused by the
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Fig. 16. The mean, the variance, and the MD at τ1 = 0 dB, τ2 = −0.1 dB. The solid lines show the results when the SIRs are correlated (i.e., Theorem 3),
and the dashed lines show the results when the SIRs are assumed independent (i.e., Remark 3). The dash-dotted lines show the results without secrecy
constraint (i.e., Remark 4).

independence assumption of SIRs is decreasing. Besides, the
results with secrecy constraint are approaching the standard
single-user results including success probability, variance, and
MD.

V. APPLICATION TO COOPERATIVE RECEPTION

Here we consider the scenario where the BS sends a
message to a group of users, and the goal is that at least one
user successfully receives the message. We again use the 2D
Poisson network model in Sec. III-A. Two users, UE1 located
at the origin and UE2 located at (v, 0), attempt to receive the
message from UE1’s serving BS as a group. The received SIRs
of UE1 and UE2 are given by (14) and (15).

A. The SIR Meta Distribution

According to this system model and letting τ = τ1 = τ2,
due to the conditional independence of the SIRi given Φ, the
joint conditional outage probability P̄CR = 1 − PCR can be
expressed as

P̄CR = P(SIR1 < τ | Φ)P(SIR2 < τ | Φ)

= 1− P1(τ)− P2(τ) + P1(τ)P2(τ), (47)

where PCR is the conditional probability for the event that the
transmission succeeds at any one of the two users, or both.
The MD of PCR follows as

F̄CR(ν) = P(PCR > ν)

= P(1− P(SIR1 < τ | Φ)P(SIR2 < τ | Φ) > ν).
(48)

Theorem 4 (First and second moments of PCR) The first
and second moments of PCR can be expressed as

MCR
1 (v) = M1,0 +M0,1 −M1,1, (49)

MCR
2 (v) = M2,0 +M0,2 + 2M1,1 − 2M2,1 − 2M1,2 +M2,2,

(50)

where

Mi,j =

∫ 2π

0

∫ ∞
0

fR1
(r)

2π
exp

(
−
∫ 2π

0

∫ ∞
r

λz

·
(

1−
(
1 + τrαz−α

)−i(
1 + τ

(
r2+v2−2rvcosθ
z2+v2−2zvcosω

)α
2
)j)dzdω

)
drdθ, (51)

and fR1
(r) is given by (21).

Proof: The b-th moment MCR
b (v) of PCR is

MCR
b (v) , E((P1(τ) + P2(τ)− P1(τ)P2(τ))b). (52)

For b = 1 and b = 2, letting Mi,j = E(P i1(τ)P j2 (τ)), (49)
and (50) are obtained from (52), and Mi,j can be given by
(40).

Remark 5: For v = 0, the moments can be simplified to

MCR
1 (0) = M1,0 +M0,1 −M1,1, (53)

MCR
2 (0) = M2,0 +M0,2 + 2M1,1 − 2M2,1 − 2M1,2 +M2,2,

(54)

where

Mi,j =

∞∫
0

exp

(
−
∞∫
r

(
1− 1

(1 + τ r
α

zα )
i+j

)
2πλzdz

)
fR1(r)dr

=

∞∫
0

exp
(
−πλr2

(
−1 + 2F1

(
i+ j,−δ; 1− δ;−τ

)))
fR1

(r)dr

=
1

2F1

(
i+ j,−δ; 1− δ;−τ

) . (55)

These moments correspond to those for Type-I HARQ with
2 (re)transmissions [28, Thm. 1], since the system models of
these two scenarios are essentially the same.
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Fig. 17. The success probability MCR
1 (v) and the variance MCR

2 (v) −
(MCR

1 (v))2 for 2D Poisson networks with cooperative reception. The dashed
lines shows the success probabilities and variances at UE1 only, i.e., the results
without cooperative reception.

B. Numerical Results

Here we show the numerical results and some simulation
results. The intensity of the BSs used in this section is λ = 1.
The path loss exponent is α = 4. Again v = 1

2
√
λ

= 0.5.
Fig. 17 and Fig. 18 show the success probability and variance
with different v and τ . The dashed lines in Fig. 17 and 18
are the results without cooperative reception, i.e., only UE1
is considered. Fig. 19 and Fig. 20 shows the MD of SIR
with different threshold τ , reliability ν, and distance v. We
can see from this figure that the SIR performance benefit of
cooperative reception is decreasing as the distance v between
UE1 and UE2 increases. For v > 1, there is little benefit in
cooperative reception.

VI. CONCLUSIONS

In this paper, the joint MD of the SIR is formally defined
for multiple users, as well as the joint conditional success
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Fig. 18. The success probability MCR
1 (v) and the variance MCR

2 (v) −
(MCR

1 (v))2 for 2D Poisson networks with cooperative reception. Markers
show the results of the Monte Carlo simulations. The dashed lines show the
results without cooperative reception.

probability and n-th order product MD. We find that the
dependence of the SIRs for UE1 and UE2 cannot be ignored
for larger SIR thresholds τ1, τ2. The distribution of the
distances of UE1 and UE2 to their closest interferer and
serving BS shows that the distance of UE2 to its serving BS
becomes the main factor affecting the SIR for larger distance
v between the users.

The joint MD is applied to physical layer security and
cooperative reception. For the application to physical layer
security, we find that when the eavesdropper is far away from
the legitimate user relative to the distance from the user to
its serving BS, the link reliability of the network will also
increase and approach the MD without secrecy constraint
gradually. And given the threshold of connection success, a
smaller threshold of secrecy success means a higher security
level, and the link reliability of the network will decrease. As
the secrecy constraint decreases, i.e., the threshold of secrecy
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Fig. 19. The MD of SIRs as a function of v for different reliabilities ν for 2D
Poisson networks with cooperative reception. The lines show the analytical
results approximated by the beta distribution. Markers show the results of the
Monte Carlo simulations.
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Fig. 20. The MD of SIRs for τ = 0 dB, and different distances v for 2D
Poisson networks with cooperative reception. The dashed line shows the result
without cooperative reception.

success increases, the curves will approach the standard MD
quickly. For the application to cooperative reception, the SIR
performance benefit of cooperative reception is decreasing as
the distance v between UE1 and UE2 increases. At a large v,
there is little benefit in cooperative reception.

Overall, the concept of the joint MD permits a refined
performance analysis of wireless networks when multiple links
are involved.
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