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Abstract—In the analysis of large-scale wirelessly powered
networks, the energy correlation is often ignored. While this leads
to remarkably simple results for key performance metrics, it is
typically not realistic and accurate. Considering the accuracy,
tractability, and practicability tradeoffs, this paper introduces
and promotes the Poisson disk process (PDP) as a model for
the energized nodes that succeed in harvesting energy. To show
that the model leads to analytically tractable results in several
cases of interest, we derive its first and second moment densities,
which fully characterize the PDP. Besides, we also provide tight
bounds for its probability generating functional as well as its
contact and nearest-neighbor distance distributions. Then, to
show that the model is relevant for wirelessly powered networks—
which all have positive energy correlation—we provide two
approaches to fit the PDP to a given energized point process
incorporating practical energy harvesting factors. Further, we
derive the success probability in the information transmission
phase, where the distribution of the active transmitters is modeled
by a PDP. It turns out that the resulting PDP can closely
model the distribution of actual energized nodes in terms of the
success probability and other statistics while preserving analytical
tractability.

Index Terms—Energy correlation; wirelessly powered net-
works; Poisson disk process; energized point process; stochastic
geometry.

I. INTRODUCTION

A. Motivation

Radio frequency (RF) energy harvesting has quickly
emerged as an attractive solution to energy-constrained wire-
less communication devices, especially the ones for which
it is inefficient or even impractical to replace or recharge
batteries [2, 3]. While the integration of RF energy harvesting
with communication networks has many appealing advantages,
it also adds an entirely new dimension to the performance
analysis. The efficiency of energy transfer depends on the total
received RF power rather than the signal-to-interference ratio
(SIR) that is known as a strong indicator of the reliability of
a communication link. Both the total received RF power and
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the SIR depend on the network topology. Therefore, accurate
modeling of the network topology in terms of both energy and
information transfer becomes a key step towards a meaningful
performance analysis of wirelessly powered networks.

Stochastic geometry has naturally been the preferred choice
for modeling and analyzing wirelessly powered networks due
to its realism in capturing the irregularity of node locations
[4]. The existing research, however, is mostly based on the
simplifying assumption that the active communication nodes
form an independent thinning of the RF-powered nodes, which
are independent of the RF power sources, see, e.g., [5–15]. As
a result, the network topology in the energy transfer phase is
independent of that in the communication phase. This clearly
deviates from reality in wirelessly powered networks where
the energy transfer performance has a fundamental impact on
the topology of the energized RF-powered nodes (i.e., the
active communication nodes) and hence the communication
performance. This connection between the energy and infor-
mation transfer fundamentally is a consequence of the spatial
correlation of the amount of energy that can be harvested by
RF-powered nodes, i.e., the energy correlation. In order to
capture the energy correlation in wirelessly powered networks,
a new point process, named energized point process (EPP), has
recently been proposed to model the nodes that successfully
harvest energy from the RF transmitters [16]. The EPP is a
general model that can be concretized for any given energy
harvesting scenario.

When applying the point processes to model a network,
the accuracy and the tractability are two competing aspects
that should be traded off. Generally, the more practical factors
are considered, the less tractable the analysis. Despite the
relevance of the EPP in modeling wirelessly powered networks
with energy correlation, an exact characterization of the system
performance indicators, such as the success probability and
area spectral efficiency, is quite challenging. The approach
taken in prior work is to use a homogeneous Poisson point
process (PPP) or a Poisson cluster process (PCP) to approx-
imate the EPP [16]. While this approach is reasonable, the
PPP approximation is inaccurate beyond a specific range of
system parameters, and the PCP approximation usually results
in complex results involving multiple integrals. Thus, tractable
models that accurately model wirelessly powered networks
with energy correlation are still unavailable, which impedes
the development of wireless energy transfer techniques. In
this paper, we focus on the Poisson disk process (PDP) where
disks are created around the RF transmitters modeled by a
homogeneous PPP and only the RF-powered nodes located
within such a disk are retained. The PDP is a simple type
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of EPP where an RF-powered node succeeds in harvesting
enough energy if and only if there is at least one RF transmitter
within a given distance. As such, it achieves a good tradeoff
between modeling accuracy and tractability and thus plays an
important role in modeling, analyzing and designing future
energy-limited scenarios such as wirelessly powered mobile
networks and the Internet of Things.

B. Contributions

The contributions of the paper are:
• We introduce and promote the PDP as a model for

wirelessly powered networks. The PDP not only captures
the real network topology of wirelessly energized com-
munications including the spatial correlation of energized
nodes, but also is fairly tractable analytically, in contrast
to other EPP models.

• We give closed-form expressions for the first- and second-
order statistics of the PDP and show that the PDP is
completely characterized by these two statistics. We also
provide tight bounds on some additional fundamental
statistics of the PDP, such as the probability generating
functional (PGFL), the contact distribution function, and
the nearest-neighbor distance distribution function.

• We propose two approaches to apply the PDP to model
the network topology in the communication phase, for
which the basic idea is to find a disk radius such that
either the energy threshold (used to determine whether
an RF-powered node is retained) or the density of the
PDP is the same as the given EPP with practical energy
harvesting factors.

• We analyze the information transmission success proba-
bility in a PDP-based network for two practical cases: (1)
the desired transmitter is independent of the PDP (i.e.,
belongs to another system) and the interference comes
from all the active RF-powered nodes; (2) the desired
transmitter is a point of the PDP and the interference
comes from the other active RF-powered nodes.

• We provide tight bounds as well as accurate approx-
imations for the Laplace transform of the interference
and the information transmission success probability in
a PDP-based wirelessly powered network. To show the
significant advantages of the proposed PDP over the
existing approaches in capturing the energy correlation,
we compare the analytical results with those in a practical
EPP-based simulation as well as two approximations
provided by a homogeneous PPP and a Matérn cluster
process (MCP), respectively. We show that, remarkably,
the PDP is superior to the PPP and the MCP in balancing
the accurate modeling and analytical tractability.

C. Related Work

Stochastic geometry has been successfully applied to the
performance analysis of wireless networks over the past two
decades [17]. Recently, with research on wireless energy
harvesting proliferating, point process models have found
applications to wirelessly powered networks. The authors in
[5] investigated the tradeoffs between transmit power and

density of mobile devices and wireless power beacons modeled
as two independent homogeneous PPPs. As an extension, the
work of [6] studied wireless energy harvesting in an uplink
K-tier cellular network, where the locations of the users and
base stations (BSs) were modeled using mutually independent
PPPs. A similar setup was considered in [7] with focus on the
downlink analysis. The work of [8] introduced and analyzed
the energy meta distribution, which is the distribution of the
conditional energy outage probability given the point process.
This new metric provides much more fine-grained information
than the mean that is usually considered. Moreover, analytical
results on wireless energy harvesting were also obtained for
relay [9], cognitive [10, 11], device-to-device [12], millimeter-
wave [13, 14] and sensor [15] networks using PPP-based
models. Although relatively sparse, there has been another
line of research considering the setups where either the RF-
powered nodes or the RF power sources are modeled by a
non-Poisson point process, such as the Ginibre point process
in [18, 19], the Poisson hole process in [20] and the PCP
in [21, 22]. To maintain analytical tractability, the influence
of the energy transfer performance on the network topology
of the communication nodes is mostly simplified to an in-
dependent thinning of the original point process of the RF-
powered nodes, with the thinning probability taken to be the
average energy harvesting success probability. As a result, the
inherent correlation between the energy and information trans-
fer phases, namely the energy correlation, is ignored. More
importantly, subsequent impacts of the energy correlation on
the communication performance are also masked.

Since the energy correlation is a differentiating feature
in wirelessly powered systems, it is crucial and intriguing
to accurately incorporate it into the wireless-powered net-
work performance analysis. Thus motivated, we introduced
the energized point process (EPP), a new point process
that captures the critical influence of the random field of
harvested energy on the spatial distribution of active RF-
powered nodes [16]. It is a general model, or, rather, a
general concept for characterizing the spatial configuration
of the nodes that successfully harvest energy from the RF
transmitters. In [16], we concretized the EPP by focusing
on the energy harvesting from a Poisson field of RF power
sources and considering two energy harvesting models with
different degrees of practicality. However, due to the absence
of an analytical form for the PGFL and the Palm measure
of the EPP, an exact characterization of the communication
performance such as the information transmission success
probability is an unsurmountable problem. Thus, we turned to
approximating the EPP by a homogeneous PPP with the same
density and a PCP by matching the first- and second-order
statistics. However, the PPP approximation causes inaccuracies
while the PCP approximation leads to significantly increased
complexity in the performance evaluation. In contrast, this
paper addresses the tradeoff between accurate modeling and
tractable performance analysis by introducing a relatively
simple EPP, namely the PDP, which can match a given EPP by
suitably adjusting the disk radius. It corresponds to a simplified
energy harvesting model where successful energy harvesting
occurs if an RF power source is located within a certain
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distance. We derive tight upper and lower bounds for the PGFL
and its Palm version for the PDP, which makes it possible to
give analytical expressions for the information transmission
success probability of a wirelessly powered network with
energy correlation.

D. Mathematical Preliminaries

Here we give a brief overview of some terminology and
mathematical tools from stochastic geometry. Readers are
referred to [17, 23, 24] for further details.

Definition 1 (Germ-grain model [17, Def. 13.1]). Let
Φ = {x1, x2, . . .} be a point process on R2, the germs, and
(S1, S2, . . .) a collection of random non-empty sets, the grains.
Then the union Ξ =

⋃
i∈N

xi + Si is a germ-grain model.

Definition 2 (Boolean model [17, Def. 13.4]). A Boolean
model is a germ-grain model where the germ point process is
a uniform PPP and the grains Si are i.i.d.

Definition 3 (Boolean Cox process on disks [23, Sec. 2.1]).
Let Ξ =

⋃
i∈N

b(yi, R) be a Boolean model where b(yi, R)

denotes a disk centered at yi with radius R, i.e., Si = b(o,R)
for ∀i ∈ N. Then, the Boolean Cox process on disks is a Cox
process with random driving measure Λ induced by Ξ as

Λ(dx) =

{
λIdx if x ∈ Ξ
λIIdx if x /∈ Ξ,

(1)

where 0 ≤ λI, λII <∞ and max{λI, λII} > 0.

Note that when λI = 0, it reduces to the Swiss cheese
model (also called Poisson hole process); and when λII = 0, it
reduces to the inner-city model [17]. The former has been used
in cognitive networks [25], heterogeneous cellular networks
[26], etc., to characterize the repulsion among wireless nodes,
while the literature on the latter (called the PDP in this
paper) mostly focuses on the spatial characteristics of the point
process [23, 24] rather than the communication performance
in wireless networks.

Definition 4 (Matérn cluster process [17, Def. 3.6]). The
Matérn cluster process is a Poisson cluster process, where
the parent point process is a PPP with density λ. The points
in each cluster are placed uniformly at random in a disk of
radius D around their parent points and the number of points
in each cluster follows a Poisson distribution with mean c̄.

The MCP is also a Cox process with random driving
measure ΛMCP(dx) = κMCP(x)dx, where the intensity field
κMCP(x) = λIΦ1

(
b(x,D)) and λI = c̄/(πD2).

E. Organization

The rest of the paper is organized as follows. Section II
describes the system model and applies the PDP to a wirelessly
powered network. Section III gives the fundamental properties
of the PDP. Section IV details the information transmission
phase, which covers the analysis of the communication per-
formance in a PDP-model network and two approximations
provided by a homogeneous PPP as well as an MCP. Section

V presents the results and the advantages of the PDP over the
PPP and MCP, and Section VI offers the concluding remarks.

II. SYSTEM MODEL

In this section, we consider a wirelessly powered com-
munication network, where the locations of RF transmitters
and RF-powered nodes follow two independent Poisson point
processes. As discussed above, there is spatial correlation
among the amount of harvested energy by RF-powered nodes.
We first formally define the EPP, which is formed by the RF-
powered nodes that succeed in harvesting enough energy for
subsequent transmission and then establish the key relationship
between the PDP and the EPP in order to use the PDP as a
model for the wirelessly powered network.

A. Energized Point Process

Definition 5 (Energized point process [16]). Let Φf and Φd

be two point processes of RF transmitters and RF-powered
nodes, respectively. Then the energized point process Φe is
defined as a dependent thinning of Φd as

Φe , {x ∈ Φd : E(x,Φf) = 1}, (2)

where E(x,Φf) ∈ {0, 1} is the energy indicator function
describing whether enough energy can be harvested from Φf

at location x.

Definition 5 stipulates that an RF-powered node becomes
active if and only if it harvests enough energy in the energy
transfer phase. Note that in this definition, Φf and Φd can be
arbitrary point processes. In this paper, the two point processes
Φf and Φd are assumed to be two independent homogeneous
PPPs with densities λf and λd, respectively. Then the energy
indicator function is

E(x,Φf) = 1(ε(x,Φf) > ξ), (3)

where ε(x,Φf) denotes the energy harvested from Φf at
location x and ξ is the energy threshold.

In addition to the spatial configuration, the amount of
energy harvested also depends strongly on the propagation
loss experienced by the RF signals. It is assumed that the RF
signals merely experience large-scale path loss, and a linear
energy harvesting model is adopted1. Hence, the harvested
energy at x is the aggregate received signal strength from all
the RF transmitters in Φf , which is given by

ε(x,Φf) =
∑
y∈Φf

`(y − x), (4)

where `(x) , ‖x‖−α is the path loss function with exponent
α for the energy transfer.

1The results for other (non-linear) energy harvesting models can be obtained
similarly. If the actual harvested energy is a non-linear function f of ε, where
f is assumed strictly monotonically increasing, then ξ in (3) merely needs to
be replaced by f−1(ξ) to capture the non-linearity.
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Fig. 1. A realization of the PDP with β = 0.01, λI = 0.2, and R = 5.

B. PDP Model for EPP

Definition 6 (Poisson disk process, PDP). The Poisson disk
process is a Boolean Cox process on disks with λII = 0.

Figure 1 shows an example realization of the PDP. From
the definition, the PDP Φp can be described by a Boolean
model on disks Ξ =

⋃
y∈Φ1

b(y,R) with two PPPs Φ1 and Φ2 of

densities β and λI, respectively. Hence we have Φp = Φ2∩Ξ.
Interestingly, there are some similarities between a PDP and
a MCP: (1) they are both derived from the PPP; and (2) the
grains in the PDP and the clusters in the MCP are both disks.
The key difference is that in the MCP, the conditional density
at a location is given by the number of times it is covered by
a disk instead of being just binary as in the PDP. The PDP is a
dependent thinning of Φ2 and, from Definition 3, its random
intensity field κp(x) = λI1

(
Φ1

(
b(x,R)

)
> 0

)
, where 1(·)

denotes the indicator function and Φ1

(
b(x,R)

)
is the number

of points in Φ1 located in b(x,R).
Compare Definitions 6 and 5 and let Φ1 be Φf , β be λf , Φ2

be Φd, and λI be λd. It is easily seen that the PDP behaves
like an EPP but has a simpler structure. Thus, it is intuitive to
use the PDP as a tractable model for the active RF-powered
nodes by establishing a relationship between the PDP model
and a given EPP that incorporates practical energy harvesting
factors. The basic idea is to find an equivalent disk radius R
such that the mechanism of retaining points in the PDP mimics
that in the EPP as closely as possible, or, equivalently, to find
how to capture the condition ε(x,Φf) > ξ by Φf(b(x,R)) > 0
for x ∈ Φd.

We provide two different approaches to relate Φe and Φp:

• Approach I: The first approach is to set R = ξ−1/α,
based on the fact that Φf(b(x,R)) > 0 is a sufficient
condition for ε(x,Φf) > ξ. Thus, we have Φp ⊂ Φe and
λp < λe.

• Approach II: The second approach is to determine R
by setting P

(
Φf(b(x,R)) > 0)

)
= P

(
ε(x,Φf) > ξ

)
such

that λp = λe.
Due to the motion-invariance of Φp, P

(
ε(x,Φf) > ξ

)
=

P
(
ε(o,Φf) > ξ

)
, Pe is the energy harvesting success

probability of the RF-powered node at the origin. Let
ϕ(w) , E(ejwε(o,Φf )) be the characteristic function of
the harvested energy at the origin. According to [17, Sec.
5.15], the characteristic function for α > 2 is expressed
as

ϕ(w) = exp
(
− λfπΓ(1− δ)wδe−jπδ/2

)
, w ≥ 0, (5)

where j =
√
−1 and δ = 2/α. Using the Gil-Pelaez

theorem [27], we have

Pe =
1

2
+

1

π

∫ ∞
0

=
(
e−jwξϕ(w)

)
w

dw

=
1

2
+

1

π

∫ ∞
0

e−λfπΓ(1−δ)wδ cos(δπ/2)

×
sin
(
λfπΓ(1− δ)wδ sin(δπ/2)− wξ

)
w

dw. (6)

Then, according to (12) and P
(
Φf(b(o,R)) > 0)

)
= Pe,

we have

R =

√
1

πλf
ln

1

1− Pe
. (7)

When α = 4, we have

ϕ(w) = exp
(
− λfπ

3/2
√
we−jπ/4

)
, w ≥ 0, (8)

and in this case the energy harvesting success probability
admits the closed-form expression

Pe = 1− 1√
π

Γ
(1

2
,
π3λ2

f

4ξ

)
. (9)

Remark 1: When α→∞, we have `(x)→ 0 for ‖x‖ > 1
and `(x) → ∞ for ‖x‖ < 1. For the EPP in this case, only
those points with a distance to the RF transmitters smaller than
1 can be energized. As a result, the EPP converges to the PDP
with R = 1. This observation further justifies the use of the
PDP to characterize the EPP.

Figure 2 shows a comparison between the realizations of
the EPP and the Approach II-based PDP under the same
realization of Φf and Φd. It is observed that the points retained
in the EPP are almost the same as those retained in the
PDP, which demonstrates the good match between the two
point processes. The accuracy of the match is evaluated by
comparing the first- and second-order statistics in Section V,
where it is shown that Approach II is better than Approach I
in terms of the accuracy of modeling the given EPP. Hence, in
the following analysis, we will use the Approach II-based PDP
to model the active RF-powered nodes in the communication
phase.

C. Communication Model

Each energized RF-powered node is assumed to have a dedi-
cated receiver at distance d in a random orientation. Hence, the
energized RF-powered nodes and their receivers form a PDP
bipolar network. The transmit power of RF-powered nodes is
assumed to be one. We further assume that the path loss model
is the same as in the energy transfer phase and all power
fading coefficients are i.i.d. exponential (Rayleigh fading)
with mean one. For the information transmission phase, the
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Fig. 2. Comparison of the EPP (left) and the Approach II-based PDP (right) with λf = 0.1, λd = 1, ξ = 0.5, and α = 4, where R = 1.32 in the PDP.

received SIR is a strong indicator of the performance of a
wireless link, the distribution of which (i.e., the transmission
success probability) depends on the joint distribution of the
received powers from the serving node and the interfering
nodes. Depending on whether the desired transmitter belongs
to the PDP, we consider two types of practical scenarios:
• Type I: This case considers the SIR distribution in a

PDP field of interferers, i.e., the desired transmitter does
not belong to the PDP2. Without loss of generality, due
to the stationarity of the PDP, the typical receiver is
assumed to be located at the origin and its corresponding
transmitter at z = (d, 0). Then the received SIR of the
typical receiver is given by

SIR =
`(z)hzo∑

x∈Φp

`(x)hxo
, (10)

where hxy denotes power fading coefficient between node
x and y, and the interference is I ,

∑
x∈Φp

`(x)hxo.
• Type II: This case considers the SIR distribution where

the desired transmitter belongs to the PDP. Since the PDP
is a stationary point process, we condition on that the
typical transmitter (active RF-powered node) is located at
the origin, with the corresponding typical receiver at z =
(d, 0). Letting Φop , (Φp | o ∈ Φp) and Φ!o

p , Φop \ {o},
the received SIR of the typical receiver is given by

SIR =
`(z)hoz∑

x∈Φ!o
p

`(x− z)hxz
. (11)

In this case, the interference is I !(z) ,
∑
x∈Φ!o

p
`(x −

z)hxz .
In the next section, we will provide some of the pertinent

properties of the PDP, in particular, the PGFL, to facilitate the
performance analysis in wirelessly powered networks modeled
by the PDP.

2This case is usually used to characterize the interference from the energized
RF-powered nodes to other systems, e.g., a cellular link can be interfered by
all energized D2D links if they share the same frequency band.

III. FUNDAMENTALS OF THE POISSON DISK PROCESS

A. Basic Properties

Since Φp is motion-invariant, its density is a constant and
its second moment density ρ(2)(x, y) depends only on the
distance ‖x − y‖. Hence there is a density ρ

(2)
mi such that

ρ
(2)
mi (‖x − y‖) ≡ ρ(2)(x, y). The density of the PDP is
λp = λIPp(R), where

Pp(R) = 1− exp(−βπR2) (12)

is the retention probability of the typical point of Φ2 [23].
The second moment density is a key statistic that describes the
pairwise correlation of a point process. For the PPP, ρ(2)

mi = λ2,
because points are independent. If ρ(2)

mi (r) > λ2, points at
distance r exhibit clustering, and if ρ(2)

mi (r) < λ2, points at
distance r exhibit repulsion. In the following lemma, we give
a closed-form expression for the second moment density of
the PDP.

Lemma 1. The second moment density of the PDP is

ρ
(2)
mi (u) = λ2

I

(
1− 2e−βπR

2

+ e−β
(

2πR2−A(R,u)
))
, (13)

where

A(R, u) =

{
2R2 arccos

(
u

2R

)
− u
√
R2 − u2

4 if u ≤ 2R

0 otherwise
(14)

is the intersection area of two disks with radius R at distance
u.

Proof: See Appendix A

The pair correlation function (pcf) is given by [17, Def. 6.6]

gp(u) ,
ρ

(2)
mi (u)

λ2
p

= 1 +
e−2βπR2(

eβA(R,u) − 1
)

(1− e−βπR2)2
. (15)
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As expected from the clustered nature of the PDP, gp(u) ≥ 1
for all u ≥ 0. Given the density λp and the pair correlation
function gp(u), we obtain for the PDP that

R =
1

2
min
u>0
{u : gp(u) = 1}, (16)

β =
1

πR2
log

gp(0)

gp(0)− 1
, (17)

λI = λp/gp(0). (18)

Thus, the PDP is fully characterized by its first-order statistic
λp and its second-order statistic gp(u) (or ρ(2)

mi (u))3. This
implies that a suitable PDP can be used to generate point
distributions with any given intensity and pcf for which
gp(u) ≥ 1 ∀u ≥ 0. In other words, once the first- and second-
order statistics of an actual network, where “attraction” exists
between transmitters, are given or obtained numerically, we
can use the PDP to model this network.

B. Probability Generating Functional

For a point process Φ, the PGFL is defined as [17, Def. 4.3]

G[v] , E
( ∏
x∈Φ

v(x)
)
, (19)

where v : R2 7→ [0, 1] such that 1 − v has bounded support.
Since PDP is obtained by a dependent thinning of the PPP, it is
difficult to derive the exact PGFL. Instead, we provide upper
and lower bounds on its PGFL in the following theorem. For
notational convenience, we define

y0 , arg min{y ∈ Φ1 : ‖y‖},
bc(o, t) , R2 \ b(o, t),

V (R, y) ,
∫

b(y,R)

[1− v(x)]dx.

Theorem 1 (Bounds on the PGFL of the PDP). Let

Ĝ[v] , β

∫
R2

e−βπ‖y‖
2−λIV (R,y)dy, (20)

Ǧ[v] , exp
(
− β

∫
R2

[
1− e−λIV (R,y)

]
dy
)
. (21)

The PGFL for the PDP is bounded by Ǧ[v] < G[v] < Ĝ[v].
Proof: See Appendix B.

The PGFL is a key tool in point process theory that has
many applications in wireless networks. Most notably, it can be
used to evaluate the Laplace transform of the sum of all the in-
terfering signal powers emitted from a PDP field of interferers.
We also consider the conditional PGFL conditioning on a point
of the process Φp being at the origin but without including the
point. Denoting by E!o(·) the expectation with respect to the
reduced Palm measure [17, Def. 8.4.1], the conditional PGFL
is defined as

G![v] , E!o
( ∏
x∈Φp

v(x)
)
. (22)

Next, we derive bounds and an approximation for the condi-
tional PGFL.

3The MCP also has this property but not the Thomas cluster process.

Theorem 2 (Bounds on the conditional PGFL of the PDP).
Let

Ĝ![v] ,
1

Pp(R)

∫
b(o,R)

βe−βπ‖y‖
2−λIV (R,y)dy, (23)

Ǧ![v] ,
1

Pp(R)

∫
b(o,R)

βe−βπ‖x‖
2−λIV (R,x)

× exp
(
− β

∫
bc(o,‖x‖)

1− e−λIV (R,y)dy
)

dx. (24)

The conditional PGFL of the PDP is bounded by Ǧ![v] <
G![v] < Ĝ![v].

Proof: See Appendix C.

Since bc(o,R) ⊂ bc(o, ‖x‖) if x ∈ b(o,R), the lower bound
Ǧ![v] with three nested integrals can be used to obtain an
approximation in a simpler form (two nested integrals) as

Ǧ![v] ≈ 1

Pp(R)
exp
(
−β
∫
bc(o,R)

1− e−λIV (R,y)dy
)

×
∫
b(o,R)

βe−βπ‖y‖
2−λIV (R,y)dy. (25)

Remark 2: To maintain tractability, the overlaps of the disks
in the Boolean model are not considered in deriving the lower
bounds in Theorems 1 and 2. Hence, the points located in the
overlaps will be repeatedly considered in calculating the lower
bound of the PGFL. As a consequence, the tightness of the
lower bounds depends on the number of disks that cause a
point to be retained due to the overlaps in the Boolean model,
which follows a Poisson distribution with mean βπR2 [17,
Thm. 13.5]. This also indicates that the tightness of the lower
bounds is agnostic to Φ2. Denoting by Pc the probability that
the typical point is covered by less than two disks, we have
Pc = e−βπR

2

(1 +βπR2). Then, when Pc → 1, i.e., βπR2 →
0, the lower bounds get tight.

Remark 3: The tightness of the uppers bounds is mainly
determined by the monotonicity of v(x) with ‖x‖ and the
number of points of Φ2 in the closest disk, since only the
closest disk to the origin in the Boolean model is considered,
thereby neglecting the effect of the distant points in the PDP.
When v(x) is monotonically decreasing with ‖x‖, e.g., when
using it to represent path loss, the upper bounds are also rather
tight. Moreover, denoting by Pn the probability that there is
no point of Φ2 located in the closest disk, we have Pn =
e−λIπR

2

. The higher the probability Pn, the more likely the
upper bounds deviate from the exact results. When λI → 0 or
R → 0, Pn → 1. In this case, there is almost no point in the
PDP. But, obviously, this is a rather unrealistic situation. That
is to say, for a wide variety of scenarios (where parameters
like λI and R are seldom set very small), the above upper
bounds are quite tight.

From the discussions above, we conclude that both the upper
and lower bounds are very tight for scenarios with small β
and large λI. More details on the tightness are provided in the
numerical results section.

C. Important Distances
1) Contact distribution function: The contact distance at

location u of a point process Φ is ‖u − Φ‖, and the contact
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distribution function or empty space function Fu is the cumu-
lative distribution function (cdf) of ‖u− Φ‖ [17, Def. 2.38]:

Fu(r) , P(‖u− Φ‖ ≤ r) = P
(
Φ(b(u, r)) > 0

)
. (26)

If Φ is stationary, Fu does not depend on the location u and is
given by F (r) = P

(
Φ(b(o, r)) > 0

)
. Upper and lower bounds

on the cdf of the contact distance for the PDP are derived
next.

Theorem 3. Let

F̂ (r) , 1− exp
(
− 2πβ

∫ ∞
0

(1− e−λIÃ(R,r,t))tdt
)
, (27)

F̌ (r) , 1−
∫ ∞

0

2πβte−βπt
2−λIÃ(R,r,t)dt, (28)

where

Ã(R, r, t) =

π(min{r,R})2, t ≤ |R− r|
R2ϕR + r2ϕr − χ(R, r, t), |R− r|<t<R+ r
0, otherwise

(29)

is the intersection area of two disks with radii R and r at
distance t,

ϕR = arccos(
R2 + t2 − r2

2Rt
),

ϕr = arccos(
r2 + t2 −R2

2rt
),

χ(R, r, t) = 2
√
p(p−R)(p− r)(p− t),

and p = (R+ r + t)/2. Then, the cdf of the contact distance
for the PDP is bounded by F̌ (r) < F (r) < F̂ (r).

Proof: According to (26), the contact distribution function
of Φp is expressed as

F (r) = 1− P
(
Φp(b(o, r)) = 0

)
= 1− E

( ∏
x∈Φp

[
1− 1(‖x‖ ≤ r)

])
= 1− G

[
1− 1(‖x‖ ≤ r)

]
. (30)

Following the results in Theorem 1, the upper and lower
bounds of the contact distribution function are obtained.
Specifically, the upper bound is given by

F (r) < 1− Ǧ
[
1− 1(‖x‖ < r)

]
= 1− exp

(
− β
∫
R2

1− exp
(
− λI

∫
b(y,R)

1(‖x‖ ≤ r)dx
)

dy

)
(a)
= 1− exp

(
− 2πβ

∫ ∞
0

(1− e−λIÃ(R,r,t))tdt
)
, (31)

and the lower bound is given by

F (r) > 1− Ĝ
[
1− 1(‖x‖ < r)

]
= 1− β

∫
R2

e−βπ‖y‖
2−λI

∫
b(y,r)

1(‖x‖≤r)dxdy

(b)
= 1−

∫ ∞
0

2πβte−βπt
2−λIÃ(R,r,t)dt, (32)

where steps (a) and (b) are derived using polar coordinates
and

∫
b(y,R)

1(‖x‖ ≤ r)dx which is the area of the overlap
between b(o, r) and b(y,R).

2) Nearest-neighbor distance distribution function: The
nearest-neighbor distance is the distance from a point x ∈ Φ
to its nearest neighbor, given by ‖x − Φ \ {x}‖ [17, Def.
2.39]. The corresponding distribution function is the nearest-
neighbor distance distribution function, denoted by Gx, which
is the cdf of ‖x− Φ \ {x}‖:

Gx(r) , Px(‖x− Φ \ {x}‖ ≤ r)
= P!x

(
Φ(b(x, r)) > 0

)
, (33)

where Px and P!x are the Palm and reduced Palm measures
(at x). If Φ is stationary, Gx does not depend on the location
x and is given by G(r) = P!o

(
Φ(b(o, r)) > 0

)
. Upper and

lower bounds on the cdf of the nearest-neighbor distance for
the PDP are derived in the following theorem.

Theorem 4. Let

Ĝ(r) , 1− 1

Pp(R)

R∫
0

2πβt exp
(
− βπt2 − λIÃ(R, r, t)

−2πβ

∞∫
t

(
1− e−λIÃ(R,r,x)

)
xdx

)
dt, (34)

Ǧ(r) , 1− 1

Pp(R)

R∫
0

2πβte−βπt
2−λIÃ(R,r,t)dt. (35)

The cdf of the nearest-neighbor distance for the PDP is
bounded by Ǧ(r) < G(r) < Ĝ(r).

Proof: According to (33), the nearest-neighbor distance
distribution function of Φp is expressed as

G(r) = 1− P!o
(
Φp(b(o, r)) > 0

)
= 1− E!o

( ∏
x∈Φp

[
1− 1(‖x‖ ≤ r)

])
= 1− G![1− 1(‖x‖ ≤ r)]. (36)

Following the results in Theorem 2, the upper and lower
bounds of G(r) are obtained. Specifically, the upper bound
is given by

G(r) < 1− Ǧ![1− 1(‖x‖ ≤ r)]

= 1− 1

Pp(R)

∫
b(o,R)

βe−βπ‖x‖
2−λI

∫
b(x,R)

1(‖z‖≤r)dz

× exp
(
− β

∫
bc(o,‖x‖)

1− e−λI

∫
b(y,R)

1(‖z‖≤r)dzdy
)

dx

= 1− 1

Pp(R)

R∫
0

2πβte−βπt
2

e−λIÃ(R,r,t)

× exp
(
− 2πβ

∞∫
t

(1− e−λIÃ(R,r,x))xdx
)

dt, (37)

and the lower bound is given by

G(r) > 1− Ĝ![1− 1(‖x‖ ≤ r)]
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=
1

Pp(R)

∫
b(o,R)

βe−βπ‖y‖
2−λI

∫
b(x,R)

1(‖z‖≤r)dzdy

= 1− 1

Pp(R)

R∫
0

2πβte−βπt
2−λIÃ(R,r,t)dt. (38)

Since the range of the outer integral in (34) is [0, R], setting
t = R as the lower limit of the inner integral yields a lower
bound on Ĝ(r), and accordingly, a simple approximation to
the nearest-neighbor distance distribution function is given by

G(r) ≈ 1− 1

Pp(R)
e−2πβ

∫∞
R

(1−e−λIÃ(R,r,x))xdx

×
R∫

0

2πβte−βπt
2−λIÃ(R,r,t)dt. (39)

This approximation is validated in Section V to provide an
excellent match for the nearest-neighbor distance distribution
function of the PDP.

IV. TRANSMISSION SUCCESS PROBABILITY OF
WIRELESSLY POWERED NETWORKS

In this section, we analyze the information transmission
success probability in a wirelessly powered network, account-
ing for the energy correlation. The information transmission
success probability4 is a fundamental communication perfor-
mance metric, defined as the complementary cumulative dis-
tribution function (ccdf) of the SIR, i.e., P (θ) , P(SIR > θ),
where θ is the SIR threshold. We first adopt the PDP to model
the spatial configuration of the energized nodes and provide
upper and lower bounds on the information transmission
success probability. Secondly, we provide two approximations
by a homogeneous PPP and a MCP with the same density.

A. PDP-Based Analysis

In this subsection, we provide the information transmission
success probability analysis of a wirelessly powered network,
where the locations of the transmitters in the communication
phase (i.e., the energized RF-powered nodes) are modeled by a
PDP. Since the success probability can be derived through the
Laplace transform of the interference, we focus on the Laplace
transform of the interference for both Type I and Type II next.

1) Type I: In this case, the Laplace transform of I is
expressed as

LI(s) = E
[

exp
(
− s

∑
x∈Φp

`(x)hxo

)]
= E

[ ∏
x∈Φp

1

1 + s`(x)

]
(a)
= G

[
1

1 + s`(x)

]
, (40)

4Another important performance metric is the information transmission
outage probability P o = 1−PeP (θ), which is the complement of the success
probability.

where step (a) follows from the definition of the PGFL.
According to the bounds on the PGFL of the PDP derived in
Theorem 1, we can also give bounds on the Laplace transform
of I as follows. Let ĽI(s) and L̂I(s) be a lower bound and
upper bound of LI(s), respectively. Using polar coordinates,
we have

ĽI(s) = Ǧ
[

1

1 + s`(x)

]
= exp

(
− 2πλf

∫ ∞
0

(
1− e−λdγ(v,R,s)

)
vdv

)
,(41)

L̂I(s) = Ĝ
[

1

1 + s`(x)

]
= 2πλf

∫ ∞
0

e−λfπv
2−λdγ(v,R,s)vdv, (42)

where

γ(v,R, s) =


2
∫ R+v

R−v arccos
(
v2+r2−R2

2vr

)
rdr

1+s−1rα

+ 2π
∫ R−v

0
rdr

1+s−1rα , v ≤ R,

2
∫ R+v

v−R arccos
(
v2+r2−R2

2vr

)
rdr

1+s−1rα , v > R.

(43)

Since the transmission success probability is the Laplace
transform of I evaluated at s = θdα, i.e., P1(θ) = LI

(
θdα

)
,

we obtain the upper and lower bounds on the success proba-
bility by substituting s = θdα into (41) and (42).

It is worth noting that the success probability necessarily
tends to zero for θ → ∞ while its upper bound L̂I

(
θdα

)
tends to e−λdπR

2

. This indicates that the upper bound on the
success probability deviates more from the exact result when θ
gets large. This is mainly due to the fact that the upper bound
of the PGFL Ĝ[v] is obtained by merely considering the points
in Φ2 ∩ b(y0, R) with y0 ∈ Φ1 the nearest point to the origin,
thereby neglecting the contribution from the more distant
points in Φp. To solve this problem, we further approximate
the spatial distribution of the points in Φ2\b(y0, R) with a PPP
with density λp, which results in an accurate approximation
to the Laplace transform of the interference, given in the
following corollary.

Corollary 1. Let γ̃(v,R, s) = 2π
∫∞
R+v

r
1+s−1rα dr and

L̃I(s) = 2πλf

∫ ∞
0

e−λfπv
2−λdγ(v,R,s)−λpγ̃(v,R,s)vdv. (44)

The Laplace transform of the interference is approximated as
LI(s) ≈ L̃I(s).

Proof: To capture the effect from the interfering nodes
outside the disk b(y0, R), we adopt a PPP denoted by Φout

with density λp to approximate the spatial distribution of these
nodes. Letting Ψp = Φp ∩ b(y0, R) we have

LI(s) ≈ E
[ ∏
x∈Ψp

1

1 + s`(x)

∏
x∈Φout

1

1 + s`(x)

]
= 2πλf

∫ ∞
0

e−λfπv
2

vE
[ ∏
x∈Ψp

1

1 + s`(x)
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×
∏

x∈Φout

1

1 + s`(x)
| ‖y0‖ = v

]
dv

= 2πλf

∫ ∞
0

e−λfπv
2

ve
−λd

∫
b(y0,R)

1− 1
1+s`(x)

dx

×e−λp

∫
bc(y0,R)

1− 1
1+s`(x)

dx
dv

(a)
≈ 2πλf

∫ ∞
0

e−λfπv
2

ve
−λd

∫
b(y0,R)

1− 1
1+s`(x)

dx

×e−λp

∫
bc(o,v+R)

1− 1
1+s`(x)

dxdv, (45)

where step (a) follows from the fact bc(o, v+R) ⊂ bc(y0, R).
The final result is obtained by using polar coordinates.

2) Type II: Because of the stationarity of the PDP, in this
case, we condition on the desired transmitter belonging to the
PDP and being located at the origin. Hence, this node does not
contribute to the interference. Letting LI!(s) be the conditional
Laplace transform of I !, we have

LI!(s) = E!o

[ ∏
x∈Φp

1

1 + s`(x− z)

]
= G!

[
1

1 + s`(x− z)

]
. (46)

In the bipolar communication model, since the distance d be-
tween a transmitter-receiver pair is usually set relatively small
(i.e., d � λ

−1/2
p ) to avoid many low-reliability links, we ap-

proximate I !(z) with I !(o), resulting in LI!(s) ≈ G![ 1
1+s`(x) ].

Under this approximation, expressions for the lower and upper
bounds on LI!(s) can be significantly simplified as follows.

Let ĽI!(s) and L̂I!(s) be a lower and upper bounds on
LI!(s), respectively. Using polar coordinates, we have

ĽI!(s) ≈ Ǧ!

[
1

1 + s`(x)

]
(b)
≈

2πλf

∫ R
0
e−λfπv

2−λdγ(v,R,s)vdv

Pp(R)

× exp
(
− 2πλf

∫ ∞
R

(
1− e−λdγ(v,R,s)

)
vdv

)
,(47)

L̂I!(s) ≈ Ĝ!

[
1

1 + s`(x)

]
=

2πλf

Pp(R)

∫ R

0

e−λfπv
2−λdγ(v,R,s)vdv, (48)

where step (b) is obtained using the simplified approximation
in (25).

It should be noted that as d gets larger, the impact of the
condition that the typical transmitter belongs to the PDP on
I ! gradually diminishes, and accordingly, I ! tends to have the
same statistics as the interference in Type I.

Similar to Type I, we further obtain an approximation of
LI!(s) based on its upper bound by considering the distant
interferers outside the closest disk to the origin, and the
following corollary gives the explicit result.

Corollary 2. Letting

L̃I!(s) ,
2πλf

Pp(R)

∫ R

0

e−λfπv
2−λdγ(v,R,s)−λpγ̃(v,R,s)vdv, (49)

the Laplace transform of the interference is approximated as
LI!(s) ≈ L̃I!(s).

Although the PDP-based analysis involves two nested in-
tegrals, it can be efficiently calculated by using numerical
methods since the integrand in the Laplace transform of
the interference essentially decreases exponentially with the
integration variable.

B. Approximation with PPP
Due to the energy correlation, an exact calculation of the

success probability of the typical receiver in a wirelessly pow-
ered network seems unfeasible. The approximate expressions
for the more realistic model can be traded off against exact
ones for a less realistic one, namely the Poisson model, where
the spatial distribution of the energized RF-powered nodes is
approximated by a homogeneous PPP with the same density.
From Slivnyak’s theorem [17], conditioning on a point at the
origin does not change the distribution of the rest of the
process, i.e., the reduced Palm distribution is the same as
the distribution of the original PPP. Hence, in the PPP-based
approximation, the Laplace transforms of the interference for
Types I and II are the same and given by

LIPPP(s) = exp
(
− λe

∫
R2

1

1 + s−1`−1(x)
dx
)

= exp
(
− λeπ

πδ

sin(πδ)
sδ
)
, (50)

and the resulting success probability with the PPP approxima-
tion is

P (θ) = exp
(
− λe

π2δ

sin(πδ)
d2θδ

)
. (51)

Remark 4: The PPP approximation yields the most tractable
analytical results for the wirelessly powered networks but leads
to the largest deviation from the exact results due to the neglect
of the energy correlation.

C. Approximation with MCP
As discussed above, there are some similarities between

a PDP and a MCP. Thus, by setting λ = λf , D = R,
and matching the density λp = λc̄, we provide another
approximation for the performance analysis with an MCP
as follows. The interference in a PDP-based network can
be approximated by the one in a Poisson cluster network.
According to [28, Eq. (34)], the Laplace transforms of the
interference for Types I and II are

LIPCP
(s) = exp

{
−λ
∫
R2

[
1− exp(−c̄ν(s, y, z))

]
dy

}
(52)

LI!PCP
(s) = LIPCP

(s)

∫
R2

exp(−c̄ν(s, y, z))f(y)dy, (53)

where

ν(s, y, z) =

∫
R2

f(x)

1 + (s`(x− y − z))−1
dx, (54)

and f(x) is the probability density function of the node
distribution around the parent point. For the MCP, we have

f(x) =
1

πR2
1(x ∈ b(o,R)). (55)
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Remark 5: Despite the accuracy of the approximation
provided by the MCP, the resulting expressions for perfor-
mance metrics are more complicated compared to the PDP-
based analysis and the PPP-based approximation. In addition,
the MCP approximation may still be not accurate beyond a
specific range of system parameters. After all, the higher-order
statistics are also ignored.

V. NUMERICAL RESULTS

In this section, we provide numerical results for the prop-
erties of the PDP and the performance of PDP-modeled wire-
lessly powered communication networks. The default values
of the main parameters are β = λf = 0.1, λI = λd = 1,
α = 4, ξ = 1, and d = 0.1 where applicable.

A. Basic Properties of the PDP

Figure 3 shows how the key parameter R changes with the
energy threshold ξ when the PDP is adopted to characterize the
EPP via the proposed two different approaches. We observe

that the disk radius R in the PDP decreases with increasing
ξ, and the curves for different approaches and RF transmitter
densities tend to be consistent with each other when ξ is larger
than a certain value, about 10 dB. For a given ξ, the value of
R obtained by Approach I is smaller than that by Approach II,
because the former is based on a sufficient condition such that
λp < λe while the latter guarantees λp = λe. Furthermore, for
a relatively sparse energy harvesting network (i.e., a smaller
density of RF transmitters), the disk radius also gets smaller
in Approach II. However, in Approach I, the disk radius is
independent of λf . Thus, while Approach I is relatively simple,
its accuracy for approaching the PDP to the EPP is inferior to
that of Approach II.

Figure 4 shows the relationship between the density λp of
the PDP and the energy threshold ξ in the EPP for different
λf after determining the value of R via the two approaches.
Similar to Figure 3, the gap between the curves of Approaches
I and II gradually decreases and finally tends to zero as ξ
increases. Besides, the behaviors of R and λp as a function
of λf are the same. Since the energy correlation is stronger
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in a sparser energy harvesting network, the disk radius in the
case with a smaller density of RF transmitter is smaller, thus
resulting in a smaller density of the active RF-powered nodes.

Figures 5 and 6 compare the pcfs of different point pro-
cesses for different RF transmitter densities and energy thresh-
olds, where the one of the EPP is obtained via simulation using
the spatstat library in the R language and the one of the PDP
is obtained analytically according to (15) in Section III-A. For
the MCP, the pcf is [17, Section 6.4]

gM(r) = 1 +
1

λ

A(D, r)

π2D4
, (56)

where λ = λf , D = R and λp = λc̄. It can be observed that
while the PDP and the MCP provide excellent approximations
to the EPP in terms of the pcf, the Approach II-based PDP
performs best for different parameter setups. An important
observation is that all the pcfs are larger than in the PPP
case, indicating the positive energy correlation (clustering
behavior) among the active RF-powered nodes. Furthermore,
we observe that a smaller density of RF transmitters or a larger
energy threshold leads to stronger clustering, which means
the clustering behavior is increasingly prominent as the RF
transmitters become sparse or the required amount of energy
increases (i.e., fewer RF-powered nodes are retained).

Figure 7 plots the bounds on the contact distribution func-
tions of the PDP in comparison with that of the EPP. It
validates the accuracy of the PDP in modeling the energized
RF-powered nodes and demonstrates the tightness of the
derived bounds.

Figure 8 plots the bounds on the nearest-neighbor distribu-
tion functions of the PDP in comparison with that of the EPP.
Here the lower bound is relatively loose in the case of λf = 0.1
and λd = 0.5. Such deviation occurs when there is no other
point in the closest disk to the origin. In contrast, the proposed
approximation, simpler than the bounds, is extremely close to
the simulation result.

B. Information Transmission Success Probability

Figure 9 compares the transmission success probability in
the communication phase using different approaches for Types
I and II, where the simulation result is based on a given EPP
incorporating practical energy harvesting factors. We observe
that for both types of success probabilities, the proposed lower
bound and the approximation by the PDP are quite close
to the simulation results, demonstrating the effectiveness and
rationality of using the PDP to characterize the EPP. While
the upper bound deviates from the actual result in Type I, it
provides a good approximation to that in Type II. It can be also
seen that the PPP-based results always deviate significantly
from the simulations while the MCP-based results provide
the best approximation in terms of both types of success
probabilities. A key observation is that the PPP-based curve
is the same in both types of scenarios, and in particular, it is
pessimistic for Type I but optimistic (with larger deviations)
for Type II. In Type I, we focus on the interference from all
nodes in a point process to the origin. Obviously, the node
density of the PPP is larger than the disk/cluster density in
a PDP or MCP, hence the probability of having a strong
interferer nearby in the PPP case is higher than in the other
cases. In contrast, in Type II, we focus on the interference
at a node belonging to this point process suffered by all the
other nodes. In this case, the probability that there is a strong
interferer nearby in the PDP or MCP case is much higher than
in the PPP case, since points in these point processes exhibit
clustering. In other words, the positive energy correlation
has a more important effect on the Type II communication
performance.

Figure 10 compares the EPP-based simulations and the
PDP-based analytical results for two types of success prob-
abilities with different RF transmitter densities and energy
thresholds. It is observed that the PDP-based approximation
matches with the actual result extremely well for different
parameter setups since it incorporates both strong interferers
nearby and the weak ones far away. The lower bound is tight
for certain parameter settings, e.g., for a small density of RF
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Fig. 9. The comparison of different approaches for the transmission success probability analysis.
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Fig. 10. The success probability for the PDP-based network with different λf and ξ.

transmitters (sparse deployment) or a large energy threshold
(strong clustering behavior). The reason is that the overlaps
among different disks are ignored in the PDP model, and the
larger λf or the smaller ξ (leading to a larger R), the more
likely the overlaps occur.

VI. CONCLUSIONS

Since the energy correlation establishes a dependence be-
tween energy and information transfer, it plays an important
role in the communication phase. Although some prior work
has addressed the energy correlation issue, an exact character-
ization of the communication performance is still unavailable.
To address this, we propose a tractable yet accurate model,
named PDP, for the energized RF-powered nodes and focus
on the accurate performance characterization of a wirelessly
powered network with energy correlation. The PDP can be
viewed as a kind of EPP but with a simpler structure, which

is fully characterized by its first- and second-order statistics.
We provided tight bounds and accurate approximations for
its PGFL, contact distribution function as well as nearest-
neighbor distance distribution function, respectively. Hence,
the Laplace transform of the interference and the informa-
tion transmission success probability in wirelessly powered
networks can be characterized. As the energy correlation
is considered, the resulting performance reflects the impact
of the energy harvesting on the communication phase more
accurately than the previous one based on the independence
assumption.

The key insight is that the PDP model lies in between the
PPP and MCP, achieving an excellent balance between accu-
racy and tractability. The PPP approximation leads to closed-
form results that deviate strongly from the exact results, as it
ignores the energy correlation. While the MCP approximation
is mostly accurate, its analytical expressions have the most
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complicated form (four-level integrals). In contrast, the PDP
model achieves almost the same accuracy in a much simpler
form (two-level integrals). Moreover, it should be noted that
the work in this paper is not limited to the performance
analysis of wirelessly powered networks but has applications
in a variety of wireless networks where the network topology
is modeled by a PDP.

APPENDIX A
PROOF OF LEMMA 1

Proof: According to the definition of Ripley’s K function
[17, Def. 6.8], we have

λpK(r) =
2π

λp

∫ r

0

ρ
(2)
mi (u)udu, (57)

where λpK(r) is the mean number of points y ∈ Φp that
satisfy 0 ≤ ‖y − x‖ ≤ r given that x ∈ Φp. Hence we have

λpK(r)

= E!o[Φp(b(o, r))]

= E
[ ∑
y∈Φ2

1
(
‖y‖ < r ∩ Φ1

(
b(y,R)

)
> 0
)
| Φ1

(
b(o,R)

)
>0
]

(a)
= λI

∫
b(o,r)

P
(

Φ1

(
b(y,R)

)
> 0 | Φ1

(
b(o,R)

)
> 0
)

dy

=
λ2

I

λp

∫
b(o,r)

P
(

Φ1

(
b(y,R)

)
> 0,Φ1

(
b(o,R)

)
> 0
)

dy, (58)

where step (a) uses Campbell’s theorem. Letting u , ‖y‖,
Vu(R) , b(o,R) ∩ b(y,R) and bc(y,R) , b(y,R) \ Vu(R),
the event {Φ1

(
b(y,R)

)
> 0,Φ1

(
b(o,R)

)
> 0} is partitioned

into two events: one is {Φ1

(
Vu(R)

)
> 0}; the other is

{Φ1

(
bc(o,R)

)
> 0,Φ1

(
bc(y,R)

)
> 0} conditioning on

{Φ1

(
Vu(R)

)
= 0}. According to the total probability law and

polar coordinates, we have

λpK(r) =
2πλ2

I

λp

∫ r

0

(
1− 2e−βπR

2

+e−β
(

2πR2−A(R,u)
))
udu. (59)

Comparing (58) and (59), the final result is obtained.

APPENDIX B
PROOF OF THEOREM 1

Proof: According to the definition the Boolean model, we
have

G[v] = E
( ∏
x∈Φ2∩Ξ

v(x)
)

(a)
> E

( ∏
y∈Φ1

∏
x∈Φ2∩b(y,R)
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[ ∏
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∫
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1− v(x)dx
)]

= exp
(
− β

∫
R2

1− e−λIV (R,y)dy
)
, (60)

where step (a) follows from Φ2∩Ξ ⊂ ∪
y∈Φ1

{
Φ2∩b(y,R)

}
and

V (R, y) =
∫
b(y,R)

[1−v(x)]dx. Since Φ2∩b(y0, R) ⊂ Φ2∩Ξ,
we have

G[v] < E
( ∏
x∈Φ2∩b(y0,R)

v(x)
)

= Ey0
[

exp
(
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=

∫ ∞
0

∫ 2π

0

1
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∫
R2
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APPENDIX C
PROOF OF THEOREM 2

Proof: According to the definition of the Boolean model,
we have
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where step (a) follows from Slivnyak’s theorem applied to Φ2

and bc(o, t) = R2 \ b(o, t) and step (b) follows that f̃(t) =
2πβte−βπt

2

Pp(R) is the conditional probability density function of
‖y0‖ given ‖y0‖ < R. Since Φ2∩b(y0, R) ⊂ Φ2∩Ξ, we have

G![v] < E!o
( ∏
x∈Φ2∩b(y0,R)

v(x) | Φ1(b(o,R)) > 0
)
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