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Abstract

Air platforms, such as unmanned aerial vehicles, airships, and balloons are expected to complement

traditional ground networks to provide flexible coverage solutions. However, most existing models for

air-ground integrated networks (AGINs) neglect the spatial dependence caused by the complementary

deployment of the aerial and ground nodes. Accordingly, in this paper, we propose two AGIN models

with horizontal dependence that differ in the vertical dimension, namely uniformly independent altitudes

and location-dependent altitudes. The air platforms serve as aerial base stations, distributed as a marked

Poisson hole process, and provide flexible beam coverage through varying altitudes. Under this setup,

we propose a region-based user association scheme and derive the association probabilities as well

as the serving distance distributions of an arbitrarily located user. Considering Nakagami fading and

air-to-ground propagation properties, we characterize the signal-to-interference ratio and area spectral

efficiency for each model. Using the proposed analytical framework, we demonstrate the importance of

deploying the air platforms more sensibly to provide targeted services and flexible beam coverage in

reducing the load of base stations and improving the user coverage and network capacity performance.
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I. INTRODUCTION

A. Motivation

To meet the increasing requirements of ubiquitous coverage and diverse services in future

B5G/6G networks, air-ground integrated networks (AGINs) provide a promising architecture for

ubiquitous and reliable service for anyone, anywhere, at any time [2–4]. Due to the capability

of flexible deployment, avoiding obstacles, and improving the possibility of line-of-sight (LOS)

links to ground users, unmanned aerial vehicles (UAVs) have recently been proposed to serve as

aerial base stations (ABSs). This means the UAV tier forms a complementary access layer for

the existing terrestrial network, which inevitably leads to correlation in the aerial and terrestrial

layers. For instance, aerial nodes are deployed in regions with poor or even no service, e.g., the

cell edge of the ground BSs (GBSs) or emergency areas with damaged or otherwise unavailable

infrastructure, to provide flexible and temporary coverage service. These typical scenarios have

the common feature that the air platforms are usually deployed in specific regions where GBSs

provide insufficient service rather than independently of the GBSs. Hence there is horizontal

dependence between the locations of GBSs and UAVs.

While the LOS propagation of ABSs provides good signal strength to their users, it causes

serious interference to the users served by other access points (GBSs and UAVs). To address

this problem, a possible method is to use a directional antenna array for UAVs to form a

downward beam. The region of such vertical beam coverage depends on the UAV’s altitude

and the beamwidth of the main lobe. It is straightforward that it increases with the altitude,

which allows more users access. But at the same time, the desired signal strength decreases with

the serving distance. As a consequence of this trade-off, there exists an optimum altitude and an

optimum distance from GBSs in the UAV deployment. This deployment determines the UAV’s

altitude (also the beam coverage) as a function of the distance from its nearest GBS in the

horizontal dimension (termed vertical dependence). Such vertical dependence is an important

feature of the spatial configuration of network nodes induced by the integration of the aerial

nodes, which has not been investigated yet. This type of dependence is inextricably linked

with the UAV deployment, the coverage of the whole AGINs, as well as the user-perceived
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performance. As a consequence, models for AGINs accounting for both the horizontal and

vertical dependence should be devised and analyzed to reveal the impacts of different UAV

deployment schemes on the trade-offs between the link- and network-level performances. The

results provide guidelines on how to achieve an effective integration between aerial and terrestrial

network layers.

B. Related Work

Due to the capability of accurately capturing the irregularity and variability of the spatial

network topology, stochastic geometry has been widely used to establish various terrestrial

network models and analyze the key performance metrics [5]. Recently, it has also been applied

in aerial networks by capturing the salient aerial properties to characterize different performance

metrics. In [6, 7], a homogeneous Poisson point process (PPP) is used to model the spatial

distribution of the GBSs, and the expected signal-to-interference-plus-noise ratio (SINR) as well

as the signal-to-interference ratio (SIR) distribution for the typical UAV are derived to investigate

how the antenna pattern of GBSs affect the GBS-UAV link. In [8–10], a non-orthogonal multiple

access (NOMA) scheme is adopted for both aerial and terrestrial users, and stochastic geometry

is utilized to model their spatial randomness and analyze the SINR distribution and average rate

and show the gain achieved by the NOMA schemes in different scenarios. In these works, the

UAVs act as cellular-connected aerial users, and different from them, the articles of [11–15]

focus on the case where UAVs act as the aerial access points to provide service for terrestrial

users. However, merely single-tier aerial networks are considered, disregarding the coexistence

between the aerial and terrestrial networks.

In the context of AGIN modeling and analysis, the authors in [16] focus on a scenario

where a single UAV is deployed over a disk-shaped malfunction region within which GBSs

are inoperational, distributed according to a PPP. Under this setup, a user-centric cooperative

scheme is proposed for users in the malfunction region and the SIR distribution as well as the

normalized spectral efficiency are analyzed with the tools from stochastic geometry. In [17], the

UAVs are again deployed over a disk, following a binomial point process, and coexist with GBSs

modeled by an independent PPP in the plane. Based on this model, the SIR distribution and area

spectral efficiency are analyzed by considering a probabilistic LOS and non-line-of-sight (NLOS)

propagation model. The same model is adopted in [18], where the SIR distribution is investigated
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by introducing the backhaul links between UAVs and GBSs. Extending the UAV deployment to

an (elevated) plane at a fixed altitude, the authors in [19–21] model the (projection) locations of

UAVs and GBSs as two independent PPPs to investigate the interplay between UAVs and GBSs

on different key performance metrics, such as the SIR/SINR distribution, achievable rate and

medium access probability, etc. Furthermore, considering different altitudes for different types

of ABSs, multiple independent PPPs are used to model the projection locations of multi-layer

ABSs in [22].

Although there are many works that proposed models for AGINs to capture the variability

and randomness of the locations of network nodes, the spatial correlation between the aerial

and terrestrial network layers is rarely considered. In [23, 24], the locations of UAVs follow a

clustered point process around the GBSs to serve the hotspot or post-disaster recovery regions,

which shows the spatial attraction correlation between UAVs and GBSs. Another type of spatial

exclusion correlation is considered in [25, 26], where GBSs are distributed according to a PPP

and UAVs are deployed in the cell edge region, and bounds on the SIR/SINR distribution of users

associated with UAVs and GBSs are provided. However, they both assumed that all UAVs hover

at a fixed common altitude, neglecting the vertical dependence present in practical scenarios.

In summary, while previous works in modeling and evaluating AGINs have provided solid

design guidelines, important issues remain unexplored. To our best knowledge, no prior work has

considered the spatial dependence between the aerial and ground tiers taking the flexibility of air

platforms (e.g., location-dependent altitudes) and vertical coverage (e.g., directional downward

beams) into account, which is addressed comprehensively in this paper.

C. Contributions

• Different from the current mutually independent models for ground and aerial tiers, we pro-

pose two new AGIN models with horizontal dependence that differ in the vertical dimension,

namely uniformly independent altitudes (Model 1) and location-dependent altitudes (Model

2). Since these models capture the dependence between the tiers, they are more accurate

than previously proposed models.

• To fully exploit the agility of the UAVs and mitigate the interference, we propose a flexible

beam coverage approach for UAVs equipped with a directional antenna array, which is tied

to the UAVs’ altitudes and the beamwidth of the main lobe.
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• We propose a region-based user association scheme and derive the association probabilities

for the typical user accessing the ground and aerial tiers, respectively.

• To facilitate the performance analysis, we provide two key intermediate results: the hori-

zontal serving distance distributions and altitude distributions for the two models.

• We analyze the signal-to-interference ratio (SIR) distribution and the area spectral efficiency

for the two models with Nakagami fading and air-to-ground propagation properties. A

modified Weibull distribution and an approximate distribution for the serving UAV’s altitude

are adopted to provide simple yet highly accurate analytical expressions.

• We use the Möbius homeomorphic distance [27] to quantify the accuracy of the analytical

results under the proposed approximations, which match the simulations well. It is also

shown that a better performance can be obtained if the UAVs are deployed smartly, i.e., by

keeping a certain distance from the GBSs or hovering at an appropriate altitude.

II. SYSTEM MODEL

A. Network Model

We consider an air-ground integrated network (AGIN) composed of GBSs and UAVs sharing

the same spectrum. The locations of the GBSs follow a homogeneous PPP Φg = {x1, x2, . . .} ⊂

R2 of density λg. Each GBS is equipped with an omnidirectional antenna1 in the horizontal

plane, and the transmit power is µm. The potential UAVs follow a marked PPP Φ̃u = {(y, hy)}

[29, Def. 7.1], where the points y ∈ R2 constitute an unmarked point process of density λ̃u

corresponding to the locations of UAVs projected to the ground plane and the hy are the marks

specifying the hovering altitudes. The locations of the UAVs actually deployed depend on the

locations of the GBSs and are obtained by deleting certain points in Φ̃u as specified in Sec. II-B.

Each UAV has a directional antenna array to provide flexible beam coverage downward, and the

transmit power is µu. The antenna gain function with the sectorized model is

G(φ) =

 Gm if |φ| ≤ ψm

Gs otherwise,
(1)

where Gm and Gs are antenna gains of the main and side lobes, respectively, ψm is the half

of the half-power beamwidth (HPBW), and φ is the direction angle of the transmit signal off

1It is straightforward to analyze the multi-antenna scenarios via the widely-used sectorized antenna pattern model [28].
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the baseline downward direction. As a result, the beam coverage of the UAV (y, hy) is a disk

centered at y with radius Ry = hy tanψm formed by its main lobe beam.

As discussed in [30], the UAVs have a high chance to provide LOS propagation to ground

users, resulting in lower signal attenuation than NLOS propagation. To capture this unique

feature, a common probabilistic model is adopted in which the LOS probability of the channel

between the UAV and a user with the horizontal distance r and vertical distance u is [30]

PL(r, u) =
1

1 + ν exp(−κ(180
π

arctan(u/r)− ν))
, (2)

where ν and κ are constants that allow an adjustment to different propagation environments. The

NLOS probability is PN(r, u) = 1− PL(r, u). From (2), it can be seen that the LOS probability

increases with the elevation angle, which is consistent with the real situation. Different path loss

exponents are applied to different links, denoted as αL and αN, for LOS and NLOS channels,

respectively, where 2 < αL ≤ αN. The random path loss function associated with the link from

UAV (y, hy) to the origin is given by

`u(y) =


(
‖y‖2 + h2

y

)−αL/2 w.p. PL(‖y‖, hy)(
‖y‖2 + h2

y

)−αN/2 w.p. PN(‖y‖, hy),
(3)

where all `u(y)(y,hy)∈Φ̃u
are independent. For the ground-to-ground links, both the transmitters

and receivers are on the ground plane and the link is always assumed NLOS with a power path

loss law `g(x) = ‖x‖−αN . Nakagami fading is adopted to model the small-scale fading, and the

power fading coefficient follows a gamma distribution Gamma(M, 1/M), where M = ML > 1

for the LOS link and M = MN = 1 for the NLOS link (i.e., Rayleigh fading). The power fading

coefficients are mutually independent and also independent of Φg and Φ̃u.

B. AGIN Models with Dependence

Owing to the unique attributes (such as flexibility and 3D deployment) of UAVs, the spatial de-

pendence between the aerial- and terrestrial-network tiers (i.e., the inter-tier dependence) becomes

more intricate than in traditional ground networks. Therefore, we propose two AGIN models

that capture the inter-tier dependence in the horizontal and vertical dimensions, corresponding

to different UAV deployments.

In the horizontal dimension, since users at the cell center mostly experience a high quality

of service from GBSs, an effective and economic way is to deploy UAVs over the cell edge to
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assist GBSs in improving the performance of cell edge users. Accordingly, each GBS is assumed

to have an exclusion disk with radius D centered at the location of the GBS, and UAVs are

deployed outside these disks, which significantly reduces the interference from UAVs to the users

served by GBSs. Under this setup, the UAVs follow a marked Poisson hole process (MPHP),

expressed by

Φu = {(y, hy) ∈ Φ̃u : min
x∈Φg

‖y − x‖ > D}, (4)

where the projections of the UAVs form a PHP [29, Example 3.7] with density λu = λ̃ue
−λgπD2 ,

capturing the dependence between GBSs and UAVs in the horizontal dimension.

In the vertical dimension, to capture different deployment schemes, we propose the following

two models for UAV altitudes, where hmin and hmax are the minimum and maximum allowable

altitudes as regulated by the government and industrial association [31].

1) Uniformly Independent Altitudes (Model 1): The altitudes of the UAVs are uniformly in-

dependent random variables with identical probability density function (PDF) f(u) = 1
hmax−hmin

,

u ∈ [hmin, hmax], which are also independent of the projected locations of UAVs. When hmax =

hmin = hf , the altitudes of the UAVs are the same and this model reduces to the special case of

equal deterministic altitudes.

2) Location-Dependent Altitudes (Model 2): Considering that UAVs with a lower altitude can

provide stronger signals to their users but lead to smaller beam coverage regions, we also consider

a location-dependent model case where each UAV’s altitude is a non-decreasing function of the

horizontal distance to its nearest GBS. By sensibly choosing this function, the trade-off between

the per-user performance and the total coverage region of UAVs can be well managed. This

model induces a dependence between GBSs and UAVs in the vertical dimension. To make sure

the UAVs significantly enhance the network performance, the desired altitude h̃y of the UAV over

location y is determined such that the received power at y from the UAV is ζ times larger than

that received from the nearest GBS on average, where ζ is a design parameter. Mathematically,

letting z = min
x∈Φg

‖y − x‖, we have µuh̃
−αL
y = ζµgz

−αN . Since h̃y may fall outside the interval

[hmin, hmax], it will be clipped to this interval. So hy is given by

hy = max{min{h(z), hmax}, hmin}, (5)

where h(z) , ( µu

µgζ
)1/αLzαN/αL . Fig. 1 illustrates this network scenario, the PHP realization for

UAV projections as well as Model 2 with flexible beam coverage, jointly considering horizontal
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Fig. 1. Network architecture of an AGIN composed of GBSs and UAVs and its model with inter-tier dependence

shown in (a). The circles around the GBSs indicate their exclusion regions, the circles around the UAV projections

are their coverage regions, and the horizontal and vertical dependence between the UAVs and GBSs are shown in

(b) and (c), respectively.

and vertical dependences.

C. User Association and SIR Analysis

Due to the exclusion regions of GBSs and the beam coverage of UAVs, the plane is divided

into three parts, and we propose a region-based user association scheme. Specifically, we denote

by C1, C2 and C3 the union of the exclusion regions of GBSs, the union of the beam coverage

regions of UAVs but excluding C1 and the remaining region, respectively, i.e.,

C1 =
⋃
x∈Φg

b
(
x,D

)
, C2 =

⋃
(y,hy)∈Φu

b
(
y, hy tanψm

)
\ C1, C3 = R2 \

(
C1 ∪ C2

)
, (6)

where b(x, r) denotes the disk centered at x with radius r. Then, a user lying in C1 or C3 is

associated with its nearest GBS, called a ground central user (GCU) or ground edge user (GEU),

respectively, and a user lying in C2 is served by the UAV with the smallest horizontal distance

and called a UAV edge user (UEU).

We focus on an interference-limited network and consider the typical user at the origin o,

which is the typical user for an arbitrary stationary point process of users that is independent

of the GBSs and UAVs. If the typical user is a GCU or GEU, its serving GBS is denoted by

x0, and the typical user suffers from two types of interference: one from the other GBSs, and

the other from all UAVs. If the typical user is a UEU, its serving UAV is denoted by (y0, hy0),
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and the user also suffers from two types of interference: one from all GBSs and the other from

the other UAVs. We further assume that all BSs and UAVs are fully loaded to characterize the

worst-case SIR-based coverage performance, and thus the interfering BSs (or UAVs) are the ones

in Φg (or Φu) except the serving BS (or UAV). For notational simplicity, we let Φ!
g = Φg \{x0},

Φ!
u = Φu \ {(y0, hy0)}, and we give a unified expression for the SIR at the typical user as

SIR =


µggx0`g(x0)

Ig+Iu
if o ∈ C1 ∪ C3,

µuGmgy0`u(y0)

Ig+Iu
if o ∈ C2,

(7)

where Ig and Iu denote the two types of the interference, given by

Ig =


∑

x∈Φ!
g
µggx`g(x) if o ∈ C1 ∪ C3,∑

x∈Φg
µggx`g(x) if o ∈ C2,

Iu =


∑

(y,hy)∈Φu
µuG(φy)gy`u(y) if o ∈ C1 ∪ C3,∑

(y,hy)∈Φ!
u
µuG(φy)gy`u(y) if o ∈ C2,

(8)

and φy presents the direction angle of the transmit signal from the UAV (y, hy) to the typical user

off the baseline vertically downward direction, and gx and gy are the power fading coefficients

from GBS x and UAV (y, hy), respectively, to capture the small-scale fading effect as described

in Sec. II-A. Although the SIRs of GCUs and GEUs have the same expressions, the spatial

distributions of the interfering nodes and the desired signal strength are different due to the

different locations in the cell. The main symbols and parameters are summarized in Table I, and

default values are given where applicable.

III. ASSOCIATION PROBABILITY

In this section, for each of the proposed AGIN models, we provide the association probabilities

of the typical user (the probabilities of the typical user lying in C1, C2 and C3), which also reflects

the fractions of GCUs, UEUs, and GEUs in the network.

A. AGIN Model with Uniformly Independent Altitudes (Model 1)

In this model, each UAV has an altitude hy with PDF f(u) = 1/(hmax−hmin), u ∈ [hmin, hmax]

and the beam coverage radius of the UAV is Ry = hy tanψm.

Lemma 1. In Model 1, the probabilities of the typical user lying in Ck, k = 1, 2, 3, are

Ar
1 = 1− e−λgπD2

, Ar
2 < e−λgπD2

(1− e−λ̃uπR̄2
r ), Ar

3 > e−λgπD2−λ̃uπR̄2
r , (9)
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TABLE I. Symbols and descriptions. The default values are those used in the numerical results.

Symbol Description Default value

Φg, λg The point process of the GBSs and its density λg =1 × 10−5 m−2

Φ̃u, λ̃u The marked point process of the potential UAVs and its density λ̃u =5 × 10−5 m−2

Φu, λu The marked point process of the UAVs and its density N/A

µg, µu The transmit power of the GBS and UAV µg =40 W, µu = 1 W

D The exclusion radius of the GBSs 80 m

Gm, Gs, ψm The antenna gains of main lobe and side lobe, and the half HPBW 10, 1, π
6

αL, αN The path loss exponents for the LOS and NLOS links 2.5, 4

ML,MN The fading parameters of the LOS and NLOS links 4, 1

ν, κ The parameters in the LOS probability model 11.95, 0.136 [17]

hmin, hmax The altitude constraints for the UAVs 50 m, 300 m

ζ The design factor in the dependent-altitude deployment model 10

where R̄r = (hmin + hmax) tanψm/2 is the average beam coverage radius for UAVs.

Proof: Firstly, according to [29, Def. 13.4], C1 is a Boolean model where the germ point

process is a uniform PPP and the grains are the disks with the same deterministic radius D.

Hence, using [29, Thm. 13.5] yields Ar
1 = P(o ∈ C1) = 1− e−λgπD2 .

Next, with Ry = hy tanψm, C2 =
⋃

(y,hy)∈Φu

b
(
y,Ry

)
and C̃2 =

⋃
(y,hy)∈Φ̃u

b
(
y,Ry

)
, we have

Ar
2 = P(o ∈ C2, o /∈ C1)

(a)
< P

(
o ∈ C̃2, o /∈ C1

) (b)
= (1− e−λ̃uπR̄2

r )e−λgπD2

, (10)

where step (a) follows from C2 ⊂ C̃2, step (b) follows since C̃2 is a Boolean model where the

germ point process is a uniform PPP and the grains are disks with i.i.d. radius, and the final

result provides a bound to the association probability Ar
2.

Finally, the probability of the typical user lying in C3 is Ar
3 = 1− Ar

1 − Ar
2.

When hmax = hmin = hf , the result in Lemma 1 is reduced to the equal deterministic altitude

case.

B. AGIN Model with Location-Dependent Altitudes (Model 2)

In this model, the altitude of each UAV is a function of the horizontal distance to its nearest

GBS. As a result, the altitudes of the nearby UAVs are correlated since they may share the

same nearest GBS and hence have comparable horizontal distance, which makes the analysis of
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the association probability quite challenging. Thus, to facilitate the further analysis, we adopt

an independent-altitude approximation to decouple the altitudes of different UAVs2. Letting

z = min
x∈Φg

‖y−x‖ be the horizontal distance from the UAV (y, hy) to its nearest GBS, the PDF of

z is fz(v) = 2πλgve
−πλg(v2−D2)1v>D, from which we can obtain the PDF fhy(ν) of its altitude

according to (5). Then, the altitude of each UAV is assumed to be independently and identically

distributed with fhy(ν). From (5), letting zmin = h−1(hmin) and zmax = h−1(hmax), the average

coverage radius of the UAVs according to the total probability law is given by

R̄d =

∫ ∞
D

h(v) tanψmfz(v)dv

=



[
hmin

(
1− e−πλg(z2

min−D
2)
)

+ hmaxe
−πλg(z2

max−D2) + ( µu

µgζ
)

1
αL (πλg)

2αL
αN

×eπλgD2
(
γ( αN

2αL
+ 1, πλgz

2
max)− γ( αN

2αL
+ 1, πλgz

2
min)

)]
tanψm if D < zmin,[

( µu

µgζ
)

1
αL (πλg)

2αL
αN eπλgD2

(
γ( αN

2αL
+ 1, πλgz

2
max)

−γ( αN

2αL
+ 1, πλgz

2
min)

)
+ hmaxe

−πλg(z2
max−D2)

]
tanψm if zmin < D < zmax,

tanψmhmaxe
−πλg(z2

max−D2) if D > zmax,

(11)

where γ(s, x) =
∫ x

0
ts−1e−tdt is the lower incomplete gamma function. Finally, the association

probabilities of the typical user are given in the following lemma.

Lemma 2. In Model 2, the probabilities of the typical user lying in Ck, k = 1, 2, 3, are

Ad
1 = Ar

1, Ad
2 ≈ e−λgπD2

(1− e−λ̃uπR̄2
d), Ad

3 ≈ e−λgπD2−λ̃uπR̄2
d . (12)

Proof: The proof is similar to that of Lemma 1, and the results are approximate due to the

independent-altitude approximation.

IV. SIR DISTRIBUTION

In this section, we first give some auxiliary results that are essential for the SIR analysis,

including the distance distribution to the serving node and the Laplace transform (LT) of different

types of interference, and then provide analytical results on the SIR complementary cumulative

distribution functions (CCDFs) of GCUs, GEUs, and UEUs for the two AGIN models.

2The independent-altitude approximation can be viewed as a variant of the independent-interferer approximation in [32, 33],

which is often adopted to deal with the intractable coupling among different interferers.
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A. Model 1

We first analyze the uniformly independent altitude case and then the special case with equal

deterministic altitude.

Lemma 3. For the typical user lying in C1, the PDF of the horizontal serving distance is

f r
1(r) =

2πλgr exp(−πλgr
2)

1− e−λgπD2 , 0 < r ≤ D. (13)

For the typical user lying in C2, the PDF of the serving UAV’s altitude is %r
2(u) = ω′(u)

ω(hmax)
, where

ω(u) =

∫ u tanψm

0

u−$(t)

hmax − hmin

exp
(
− 2πλ̃u

∫ t

0

hmax −$(v)

hmax − hmin

vdv
)
tdt, (14)

ω′(u) is the first-order derivative of ω(u) w.r.t u, and $(t) = max(hmin,
t

tanψm
). The conditional

PDF of the horizontal serving distance is approximated as

f r
2(r | hy0 = u)≈ 2πλ̃ur exp(−πλ̃ur

2)

1− e−λ̃uπu2 tan2 ψm

, 0 < r ≤ u tanψm. (15)

For the typical user lying in C3, the PDF of the horizontal serving distance f3(r) is

f r
3(r)≈ 2πλgre

−πλgr2+λuW(r,D)∫∞
D

2πλgte−πλgt2+λuW(t,D)dt
, r > D, (16)

where when hmax tanψm < 2D,

W(t,D) =

2
∫ hmax tanψm

t−D arccos(v
2+t2−D2

2vt
)hmax−$(v)
hmax−hmin

vdv if D < t < D + hmax tanψm,

0 if t ≥ D + hmax tanψm,

and when hmax tanψm ≥ 2D,

W(t,D) =


2
∫ t+D
t−D arccos(v

2+t2−D2

2vt
)hmax−$(v)
hmax−hmin

vdv if D < t ≤ hmax tanψm −D,

2
∫ hmax tanψm

t−D arccos(v
2+t2−D2

2vt
)hmax−$(v)
hmax−hmin

vdv if |t− hmax tanψm| ≤ D,

0 if t > D + hmax tanψm.

(17)

Proof: See Appendix A.

To reduce the computational complexity of the SIR CCDFs of UEUs and GEUs, we propose

two easy-to-compute approximations as follows.
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1) UEU: The typical UEU might lie in the vertical coverage regions of several nearby UAVs,

and the one with the smallest horizontal distance becomes the serving UAV. Since a UAV with

a smaller altitude has a smaller coverage radius, the maximum horizontal distance between a

UEU and its potential serving UAV is less than the coverage radius and thus the typical UEU

is more likely to associate with the nearby UAV with the smallest altitude. Considering that

the altitude of the UAVs has the cumulative distribution function (CDF) Fhy(u) = u−hmin

hmax−hmin
,

u ∈ [hmin, hmax], and that the serving UAV is chosen from ϑ ≥ 1 nearby UAVs on average,

we propose an approximation F̃ r(u) = (Fhy(u))ϑ = (u−hmin)ϑ

(hmax−hmin)ϑ
for the distribution of the

serving UAV’s altitude (DSUA) with the approximate PDF %̃r
2(u) = dF̃ r(u)/du, termed DSUA

approximation.

2) GEU: For the typical GEU, it is observed from (16) that a term has the Rayleigh dis-

tribution form 2πλgre
−πλgr2 , and the term W(r,D) yields a higher order power (> 2) in the

exponential function. Since the Rayleigh distribution is a special case of the Weibull distribution

and a power function is often used to approximate complicated functions, we propose a modified

Weibull distribution f̃ r
3(r) = χ

ς
( r−D

ς
)χ−1e−( r−D

ς
)χ1r>D to approximate f r

3(r).

The values of ϑ, χ and ς can be obtained by using the nlinfit function (nonlinear least-squares

fit) in Matlab to fit %r
2(u) and f r

3(r).

Corollary 1. When hmax = hmin = hf , the PDFs f f
k(r) of the horizontal distance between the

typical user and its serving node are f f
1(r) = f r

1(r), 0 < r ≤ D, and

f f
2(r)≈ f r

2(r | hy0 = hf), 0 < r ≤ Rf ,

f f
3(r)≈ 2πλgre

−πλgr2+λuξ(Rf ,r,D)∫∞
D

2πλgte−πλgt2+λuξ(Rf ,t,D)dt
, r > D, (18)

where Rf = hf tanψm, and when Rf < 2D,

ξ(Rf , r,D) =


R2

f arccos(
R2

f +r2−D2

2Rfr
) +D2 arccos(

D2+r2−R2
f

2Dr
)

− 1
2

√
[(Rf +D)2 − r2][r2 − (Rf −D)2] if D < r < D +Rf ,

0 if r > D +Rf ,

and when Rf ≥ 2D,

ξ(Rf , r,D) =


πD2 if D < r < −D +Rf ,

R2
f arccos(

R2
f +r2−D2

2Rfr
) +D2 arccos(

D2+r2−R2
f

2Dr
)

− 1
2

√
[(Rf +D)2 − r2][r2 − (Rf −D)2] if |r −Rf | < D,

0 if r > D +Rf ,

(19)
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Proof: The results are directly obtained from Lemma 3.

Next, we focus on the conditional LT of the interference given the serving distance |x0| = r

(or |y0| = r). It should be noted that for the interference analysis, the main technical difficulty

lies in the lack of an analytical expression for the probability generating functional (PGFL) of

the PHP. As a result, an exact calculation of the LT of the interference from the UAVs seems

infeasible and we turn to giving an approximate analytical result by approximating the PHP with

a PPP ΦPPP of density λI outside the exclusion region of the serving GBS3. This approach has

been used in [34, 35] also.

Theorem 1. Given the serving distance |x0| = r (or |y0| = r), the LTs of Ig for the typical user

lying in Ck, k = 1, 2, 3, are

Lr
Ig1

(s) = exp
(
− 2πλgµgsr

2−αN

αN − 2
F (αN, µgsr

−αN)
)
,

Lr
Ig2

(s)≈ exp
(
− 2πλgµgsD

2−αN

αN − 2
F (αN, µgsD

−αN) + 2λg

∫ D+r

r2

arccos
(
r2+t2−D2

2rt

)
tdt

1 + (sµg)−1tαN

)
,(20)

and Lr
Ig3

(s) = Lr
Ig1

(s), where F (α, y) = 2F1(1, 1− 2/α; 2− 2/α;−y) is the Gaussian hyperge-

ometric function and r2 = max(D, r −D), and the LTs of Iu are

Lr
Iu1

(s)≈ exp

(
− 2λI

∫ hmax

hmin

f(u)
∑

i∈{L,N}

(∫ u tanψm

r1

πPi(t, u)Ψi(s, t, u,Gm)tdt

+

∫ ∞
r̄1

πPi(t, u)Ψi(s, t, u,Gs)tdt−
∫ r̃1

r1

Pi(t, u)Ψi(s, t, u,Gm) arccos(
r2+t2−D2

2rt
)tdt

−
∫ r̂1

u tanψm

Pi(t, u)Ψi(s, t, u,Gs) arccos(
r2 + t2 −D2

2rt
)tdt

)
du

)
,

Lr
Iu2

(s)≈ exp

(
− 2πλI

∫ hmax

hmin

f(u)
∑

i∈{L,N}

(∫ u tanψm

r

Pi(t, u)Ψi(s, t, u,Gm)tdt

+

∫ ∞
u tanψm

Pi(t, u)Ψi(s, t, u,Gs)tdt
)

du

)
,

Lr
Iu3

(s)≈ exp
(
− 2πλI

∫ hmax

hmin

f(u)
∑

i∈{L,N}

∫ ∞
u tanψm

Pi(t, u)Ψi(s, t, u,Gs)tdtdu
)
, (21)

where Ψi(s, t, u, x) = 1− (1+ sµux

Mi(t2+u2)αi/2
)−Mi , r1 = min(D − r, u tanψm), r̄1 = max(D −

r, u tanψm), r̃1 = min(D + r, u tanψm), and r̂1 = max(D + r, u tanψm).

3The approximating PPP is inhomogeneous with constant positive density outside the exclusion region of the serving GBS.
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Proof: See Appendix B.

Remark 1. A natural choice for λI is λ̃u or λu, where λ̃u yields an upper bound on the

interference Iu and λu provides an approximation. Since only UAVs outside the exclusion regions

are retained, the UAV density in the vicinity of the UEUs is close to λ̃u. Hence, in the integral of

(21), using the combination of λ̃u and λu in the range of t ∈ (r, u tanψm) and t ∈ (u tanψm,∞),

respectively, would enhance the accuracy.

When hmax = hmin = hf , the conditional LTs of the interference for the three types of

users, denoted by Lf
Ig1

(s), Lf
Ig2

(s), and Lf
Ig3

(s), respectively, have the same expressions as in the

uniformly independent altitude setting, and those of Iu are simplified in the following corollary.

Corollary 2. When hmax = hmin = hf , the LTs of Iu given the serving distance |x0| = r (or

|y0| = r) for the typical user lying in Ck, k = 1, 2, 3, are

Lf
Iu1

(s)≈ exp

(
− 2λI

∑
i∈{L,N}

(∫ Rf

r1

πPi(t, hf)Ψi(s, t, hf , Gm)tdt

+

∫ ∞
r̄1

πPi(t, hf)Ψi(s, t, hf , Gs)tdt−
∫ r̃1

r1

Pi(t, hf)Ψi(s, t, hf , Gm) arccos(
r2+t2−D2

2rt
)tdt

−
∫ r̂1

Rf

Pi(t, hf)Ψi(s, t, hf , Gs) arccos(
r2 + t2 −D2

2rt
)tdt

))
,

Lf
Iu2

(s)≈ exp

(
−2πλI

∑
i∈{L,N}

∫ Rf

r

Pi(t, hf)Ψi(s, t, hf , Gm)tdt+

∫ ∞
Rf

Pi(t, hf)Ψi(s, t, hf , Gs)tdt

)
,

Lf
Iu3

(s)≈ exp
(
− 2πλI

∑
i∈{L,N}

∫ ∞
Rf

Pi(t, hf)Ψi(s, t, hf , Gs)tdt
)
, (22)

where Rf = hf tanψm, r1 = min(D − r, Rf), r̄1 = max(D − r, Rf), r̃1 = min(D + r, Rf), and

r̂1 = max(D + r, Rf).

Based on the conditional LT of the interference, the SIR CCDF is given in the following.

Theorem 2. The SIR CCDFs of the typical user lying in Ck, k = 1, 2, 3, are

P r
1(θ)≈

∫ D

0

Lr
Ig1

(θµ−1
g rαN)Lr

Iu1
(θµ−1

g rαN)f r
1(r)dr,

P r
2(θ)≈

hmax∫
hmin

u tanψm∫
0

∑
i∈{L,N}

Pi(r, v)

Mi−1∑
l=0

(−s)l

l!
L(l)

2 (r, v, s)|
s=

Miθ(r
2+v2)αi/2

Gmµu

f r
2(r | hy0 =v)%r

2(v)drdv,
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P r
3(θ)≈

∫ ∞
D

Lr
Ig3

(θµ−1
g rαN)Lr

Iu3
(Miθµ

−1
g rαN)f r

3(r)dr, (23)

where L2(r, v, s) = Lr
Ig2

(s)Lr
Iu2

(s) is the LT of Ig +Iu given that the serving UAV is at a distance

r and altitude v, and the superscript (l) stands for the l-th derivative of L(r, v, s) w.r.t. s.

Proof: See Appendix C.

The l-th derivative of L(r, v, s) can be calculated recursively as shown in the following.

Corollary 3. Letting

η2(r, v, s) = −2πλg

∫ ∞
D

tdt

1 + (sµg)−1tαN
+ 2λg

∫ D+r

r2

arccos
(
r2+t2−D2

2rt

)
tdt

1 + (sµg)−1tαN
−2πλI

∫ hmax

hmin

f(u)

×
∑

i∈{L,N}

(∫ u tanψm

r

Pi(t, u)Ψi(s, t, u,Gm)tdt+

∫ ∞
u tanψm

Pi(t, u)Ψi(s, t, u,Gs)tdt
)

du, (24)

we have L2(r, v, s) = exp(η2(r, v, s)), and L(l)(r, v, s) is given recursively by

L(l)(r, v, s) =
l−1∑
n=0

(
l−1

n

)
η

(l−n)
2 (r, v, s)L(n)(r, v, s), (25)

where the n-th derivative of η2(r, v, s) w.r.t. s is

η
(n)
2 (r, v, s) = (−1)n2λgn!

(∫ ∞
D

πµng t
1−nαNdt

(1 + sµgt−αN)−n−1
−
∫ D+r

r2

µng t
1−nαN arccos

(
r2+t2−D2

2rt

)
dt

(1 + sµgt−αN)−n−1

)
+(−1)n2πλI

∫ hmax

hmin

f(u)
∑

i∈{L,N}

Γ(Mi + n)

Γ(Mi)

(∫ u tanψm

r

Pi(t, u)Ψ̃i(s, t, u,Gm, n)tdt

+

∫ ∞
u tanψm

Pi(t, u)Ψ̃i(s, t, u,Gs, n)tdt
)

du, (26)

and Ψ̃i(s, t, u, x, n) =
(
1 + sµux

Mi(t2+u2)−αi/2

)−Mi−n( µux

Mi(t2+u2)−αi/2

)n.

Proof: The result is obtained with Thm. 1 for UEUs and the Leibniz formula, similar as in

[36, Thm. 2].

Remark 2. The SIR CCDFs in this general model have four nested integrals, which can be

numerically evaluated via jointly using the built-in functions of two integral2 and one arrayfun

functions in Matlab 2016 and later versions, but may require extensive computations. To solve

this issue, we propose an average-altitude approximation justified by the mean field theory

that replaces all interactions with an average or effective interaction. Specifically, the average

altitude of the UAVs is substituted into the LTs of the interference in the special case with the

equal deterministic altitude, and we adopt these simplified results with three nested integrals to
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approximate the LTs of Iu. Furthermore, the numerical complexity of the SIR CCDF for UEUs

also comes from calculating the derivatives of the LT of the interference, and we use a common

upper bound for the incomplete gamma function to obtain a simple approximation to the SIR

CCDF in the following corollary.

Corollary 4. Letting βi = [Γ(Mi + 1)]−1/Mi , a simple approximation on the SIR CCDF of the

UEUs is given as

P r
2(θ) ≈

hmax∫
hmin

u tanψm∫
0

∑
i∈{L,N}

Pi(r, v)

Mi∑
m=1

(
Mi

m

)
L2(r, v, s)|

s=
mβiMiθ(r

2+v2)αi/2

Gmµu

f r
2(r | hy0 =v)%r

2(v)drdv.

(27)

Proof: Using the inequality Γ̃(M,x) ≤ 1− [1−exp(−βx)]M in [37] with β = [Γ(M+1)]−1/M

and Γ̃(M,x) = Γ(M,x)/Γ(M), a simple approximation can be easily obtained.

Remark 3. For the special case with equal deterministic altitude, i.e., hmax = hmin = hf , the

SIR CCDFs can be simplified by removing the expectation over the random UAV altitude, and

the expressions of the SIR CCDFs merely have two nested integrals. They can be numerically

evaluated efficiently via jointly using the built-in functions of two integral and one arrayfun

functions in Matlab 2016 and later versions, and the infinite upper limits in the multi-level

integral sometimes cause a larger numerical error than the predetermined requested accuracy,

which can be controlled by replacing the infinite upper limits with an increasing large finite value

until the difference between two evaluations with two finite values is less than a predetermined

tolerance (say 10−5).

B. Model 2

In this model, the altitude of each UAV depends on the horizontal distance to its nearest

GBS, i.e., both horizontal and vertical dependence are considered. To facilitate the analysis, the

independent-altitude approximation and the average-altitude approximation described above are

adopted. Letting h̄d = R̄d/ tanψm be the average UAV altitude, the PDF fd
k (r) of the horizontal

serving distance for the typical user lying in Ck, k = 1, 2, 3, are fd
1 (r) = f r

1(r), 0 < r ≤ D and

fd
2 (r)≈ 2πλ̃ur exp(−πλ̃ur

2)

1− e−λ̃uπR̄2
d

, 0 < r ≤ R̄d,

fd
3 (r)≈ 2πλgre

−πλgr2+λuξ(R̄d,r,D)∫∞
D

2πλgte−πλgt2+λuξ(R̄d,t,D)dt
, r > D. (28)
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Since the spatial distributions of the GBSs in the two models are the same, the conditional LTs

of Ig for the typical user lying in Ck, k = 1, 2, 3, given the serving distance r are the same as

in Model 1, i.e., Ld
Ig1

(s) = Lr
Ig1

(s), Ld
Ig2

(s) = Lr
Ig2

(s), and Ld
Ig3

(s) = Lr
Ig3

(s). Furthermore, the

LTs of Iu for three types of users are obtained via replacing hf and Rf with h̄d and R̄d in the

corresponding expressions in Corollary 2, respectively.

Finally, the SIR CCDFs of the typical user lying in Ck, k = 1, 2, 3, are

P d
1 (θ)≈

∫ D

0

Ld
Ig1

(θµ−1
g rαN)Ld

Iu1
(θµ−1

g rαN)fd
1 (r)dr,

P d
2 (θ)≈

∑
i∈{L,N}

∫ R̄d

0

Pi(r, h̄d)

Mi−1∑
l=0

(−s)l

l!
L(l)

2 (r, h̄d, s)|
s=

Miθ(r
2+h̄2

d
)αi/2

Gmµu

fd
2 (r)dr

≈
∑

i∈{L,N}

∫ R̄d

0

Pi(r, h̄d)

Mi∑
m=1

(
Mi

m

)
L2(r, h̄d, , s)|

s=
mβiMiθ(r

2+h̄2
d

)αi/2

Gmµu

fd
2 (r)dr,

P d
3 (θ)≈

∫ ∞
D

Ld
Ig3

(θµ−1
g rαN)Ld

Iu3
(θµ−1

g rαN)fd
3 (r)dr, (29)

where L2(r, h̄d, s) = Ld
Ig2

(s)Ld
Iu2

(s).

C. Overall Performance

According to the association probabilities of the typical user lying in different regions and

their corresponding SIR CCDFs, the overall SIR distribution of the typical user is

P (θ) =
∑

k=1,2,3

AkPk(θ). (30)

In addition to the SIR distribution which characterizes the link-level performance, it is necessary

to investigate the area spectral efficiency, which characterizes the network-level performance.

Since the users lying in C1 and C3 are served by GBSs, the overall SIR distribution of GBSs is

Pg(θ) =
A1P1(θ) + A3P3(θ)

A1 + A3

. (31)

Hence, under the fixed-rate transmission, each UAV provides the spectral efficiency by P2(θ) log2(1+

θ) and each GBS provides the spectral efficiency by Pg(θ) log2(1+θ), and then the area spectral

efficiency (ASE) is obtained via multiplying the corresponding densities of UAVs and GBSs,

respectively, which can be expressed by

ASE=
(
λgPg(θ) + λuP2(θ)

)
log2(1 + θ). (32)
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V. NUMERICAL RESULTS

In this section, we present numerical results of the performance evaluation in different UAV

deployment strategies, and simulation results are also provided to validate the approximations.

The simulation region is [0, 20000]2, and the horizontal locations of the GBSs and potential

UAVs are first generated via following the homogeneous PPP realization. Then, the horizontal

distance of each potential UAV to its closest GBS is calculated to determine whether it is retained

according to the exclusion radius, and the altitudes of UAVs are generated according to the two

models. For each network realization, the locations of 10000 users are generated following

the random and uniform distribution in the simulation region, and the association procedure is

performed on each user to determine its serving access point, i.e., the user type is determined.

This way, the simulation results for the association probabilities and the empirical distribution

of the serving distances for the three user types can be obtained. The received SIR is further

calculated via independently generating gamma-distributed random variables as the small-scaling

power coefficients and determining the antenna gain from the UAV to the user after determining

whether the user lies in the vertical coverage region of the UAV. This process is repeated until the

number of the GCU samples, GEU samples, and UEU samples all reach 100000, and then the

empirical distributions of the SIRs for the three user types are obtained. To avoid the boundary

effect, we focus on the users located in the central square of [5000, 15000]2. The default values

of the parameters are given in Table I where applicable.

Figs. 2 and 3 show how the density of the potential UAVs λ̃u and the exclusion radius of

GBSs D affect the association probabilities of the typical user lying in different regions (or being

a GCU, GEU, or UEU), where a special case of Model 1 with hmax = hmin = hf = 175 is also

considered. It can be seen that the analytical results match the simulations well, validating the

accuracy of the approximations. The association probabilities in Model 1 are the same for equal

deterministic altitude and uniformly independent altitude settings because the coverage radius

of UAVs with equal deterministic altitude hf = 175 is equal to the average coverage radius

in the uniformly independent altitude model under the current parameter settings. From both

figures, we can observe that the density and altitude of UAVs as well as the exclusion radius

are key parameters that can be used to balance the load between the GBSs and UAVs flexibly.

In particular, more edge users can be assigned to the UAVs with location-dependent altitudes to

get better performance than from the GBSs.
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Fig. 2. The association probability of the typical user

versus the density of potential UAVs with D = 80m.

Fig. 3. The association probability of the typical user

versus the exclusion radius of GBSs.
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Fig. 4. The validation of the approximations for the distance distributions for Model 1.

Fig. 4 validates the approximation on the horizontal and vertical serving distance distributions

in both equal deterministic- and uniformly independent-altitude models, where the conditional

horizontal serving distance of the UEU is obtained given that hy0 = 120. It can be seen that

the analytical results of both distances match well with their simulations. The proposed Weibull

distribution provides an excellent approximation to the horizontal serving distance distribution

for GUEs in both cases, and the proposed DSUA approximation is quite close to the distribution

of the serving UAV’s altitude in the uniformly independent altitude model.
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Fig. 5. The validation of the approximations for the SIR CCDFs of GCUs, UEUs and GEUs for Model 1.

Since the SIR threshold in linear unit is θ ∈ R+ (or θ ∈ R in dB form), a plot showing the

SIR distribution as a function of θ or θ in dB cannot reveal the complete information. Hence,

we plot it in Möbius homeomorphic (MH) units, via the transformation θ (MH) = θ/(1 + θ),

resulting in θ (MH) ∈ [0, 1] [38] in Fig. 5. It can be seen that the analytical results on the SIR

distributions match well with their simulations. The proposed average-altitude approximation

performs well in calculating the SIR CCDFs for GCUs, UEUs and GEUs, exhibiting its high

efficiency in reducing the computational complexity without sacrificing the accuracy. The simple

approximation using the inequality of incomplete gamma function on the UEU SIR distribution

are also close to the simulations, which further improves the computational efficiency in the

scenarios with Nakagami fading. To quantify the match level of the approximate results, we use

the MH distance [27], defined as dMH(F,G) ,
∫ 1

0
|F (t)−G(t)|dt, where F (t) is the curve in MH

units based on simulation data serving as the ground truth and G(t) is the analytical curve in the

MH unit. The MH distance is bounded by 1 and the specific value directly and unambiguously

measures the match between the analytical approximation and simulation results on the SIR

distributions. As in [27], we also use the six match levels “bad”, “mediocre”, “acceptable”,

“good, “excellent, “perfect” corresponding to the MH distance ranges 0.05-1, 0.02-0.05, 0.01-

0.02, 0.005-0.01, 0.002-0.005, 0-0.002, respectively. The final results are shown in Table II for

the three types of users in different models. In addition, we observe that the SIR performance of

UEUs in Model 1 with uniformly independent altitude is slightly worse than that in Model 1 with
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TABLE II. The MH distance and match level of the analytical approximations.

Equal deterministic altitude model Uniformly independent altitude model Model 2

MH Distance Match Level MH Distance Match Level MH Distance Match Level

GCU 0.0021 Excellent 0.0166 Acceptable 0.0078 Good

GEU 0.0034 Excellent 0.0048 Excellent 9.4 × 10−4 Perfect

UEU 0.0070 Good 0.0074 Good 0.0269 Mediocre

Simple

Approx.
0.0288 Mediocre 0.0242 Mediocre 0.0372 Mediocre
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Fig. 6. The validation of the approximations for Model 2.

equal deterministic altitude under the same parameter settings. This implies that random altitudes

increase the uncertainty of the quality of service from UAVs but would be more realistic.

Fig. 6 validates the approximations concerning the serving distance and SIR distributions in

Model 2, where the SIR distributions are also plotted in the MH unit in Fig. 6(b) with the MH

distance and match level for each type of user shown in Table II. Due to the adoption of the

average-altitude approximation, the analytical serving distance distribution of GEUs shows an

obvious deviation from the simulation. But the proposed Weibull distribution provides a rather

close approximation, making up for this deviation and ensuring the accuracy of the further

analytical results on the SIR distribution. Compared with Fig. 5, it is found that although the

SIR performance improvement of the UEUs in Model 2 is not as large as in Model 1, the

fraction of the GEUs is significantly decreased from 0.1645 in Model 1 to 0.0281 in Model
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Fig. 7. The overall SIR distribution of the typical

user.

Fig. 8. The ASE versus the density of potential

UAVs.

2, i.e., dropping about sixfold, seen from Fig. 3 with D = 80 m. This reveals an important

trade-off between the link and network performance in terms of the UAV’s altitude. Specifically,

the UAV’s altitude determines its beam coverage and the received signal strength at the served

users. The beam coverage increases with the UAV’s altitude, leading to more edge users to be

served by UAVs rather than GBSs. At the same time, however, the desired signal strength of

the UEUs decreases with the increase of the altitude due to the propagation loss. Thus, to fully

study the intricate relations, we further analyze the overall performance of AGINs next.

Fig. 7 shows the overall SIR distributions for the two models with λ̃u = 2λg and hf = 120 m,

comparing with the case without exclusion regions of GBSs obtained through simulations, where

the distribution of UAVs follows a marked PPP with the same density λu = λ̃ue
−λgπD2 . It can be

seen that the proposed AGIN model with exclusion regions yields a better overall performance

than the case without exclusion regions in ranges with low SIR (e.g., θ < 0.25MH ≈ −5dB) and

a comparable performance for other ranges (e.g., θ > 0.25 MH ≈ −5 dB). This corroborates the

necessity of using an exclusion region when deploying the UAVs in AGINs, which effectively

reduces the mutual interference and improves the edge user’s performance. Furthermore, Model

2 performs the best in serving the users with a relatively low SIR which are likely to be located

near the cell edge. Since the location-dependent UAV deployment provides a flexible beam

coverage that closely tracks the locations of users and their received signal strength from the

nearest GBSs, it allows more edge users to access the UAVs and effectively improves their
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performance, thus driving the improvement of the overall performance. This shows that Model

2 is suitable for scenarios with low rate but massive connectivity requirements.

Fig. 8 investigates the influence of the potential UAV density on the ASE for the two models

with θ = 0 dB. It is observed that the ASEs first increase and then decrease after reaching the

maximum point with λ̃u in the cases of Model 1 with equal deterministic altitude and Model 2,

while Model 1 with uniformly independent altitude yields a slightly different trend in the range

of λ̃u ∈ [4×10−5, 3×10−4]. Increasing λ̃u means to deploy more UAVs to assist GBSs enhancing

the performance of more edge users, which, however, exacerbates the mutual interference and

hence decreases the link transmission reliability. The competing effects on the ASE lead to the

varying trend of the three curves. Furthermore, Model 2 with D = 50 m and ζ = 100 performs

best in the sparse UAV deployment (λ̃u < 1.5 × 10−4 m−2) since it provides the best coverage

given the current parameter setting, while the case with ζ = 10 leads to the worst performance.

This shows that the key parameter ζ should be judiciously chosen to show the advantage of

the location-dependent UAV deployment scheme. When λ̃u > 1.5 × 10−4 m−2, Model 1 with

uniformly independent altitude provides the best ASE, because the UAVs may hover at a low

altitude, providing a small beam coverage and causing less interference to other concurrent links.

Hence this deployment can tolerate more UAVs coexisting in the AGINs.

VI. CONCLUSION

In this paper, we propose two new AGIN models to capture the spatial dependence present in

real deployments. The horizontal dependence is modeled by an exclusion region of each GBS

such that UAVs can only be deployed outside, and the vertical dependence is reflected by the

varied altitude settings of the UAVs. The locations of GBSs and UAVs are modeled as a PPP

and a MPHP, respectively, where the marks in the MPHP correspond to the UAVs’ altitude. Each

UAV is equipped with a directional antenna array to provide a downward beam coverage flexibly

adapted to the UAV’s altitude and the beamwidth of the main lobe. In stark contrast, existing

works disregarded the coverage by the UAVs or assumed a fixed coverage region independent of

the other network parameters. Using the tools from stochastic geometry, we provide analytical

results for each model, including the association probability, horizontal distance distributions,

altitude distributions, SIR distribution as well as area spectral efficiency. The adoptions of a
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modified Weibull distribution and an approximate distribution for the serving UAV’s altitude in

the analysis help simplify the results significantly, without affecting their accuracy.

The results expose two key insights: 1) there is a trade-off between the link-level and network-

level performance regarding to the UAV deployment, i.e., increasing the UAV’s altitude expands

its beam coverage but weakens the desired signal strength of the served user at the same time; 2)

it is necessary to propose and study AGIN models with spatial dependence between the aerial and

terrestrial network layers; the results obtained based on such models can in turn more sensibly

guide the deployment of actual networks than the current independent models.

APPENDIX A

PROOF OF LEMMA 3

For the typical user lying in C1, the CDF of the serving distance ‖x0‖ is

F1(r) =P(‖x0‖ ≤ r | ‖x0‖ ≤ D) =
1− e−λgπr2

1− e−λgπD2 , 0 < r ≤ D. (33)

Next, for the typical user lying in C2, both the altitude and horizontal distance of the serving

UAV are random variables due to the uniformly independent altitude deployment. Thus, we

first derive the altitude distribution and then give the conditional distribution of the horizontal

distance given the altitude. Letting (y0, hy0) be the serving UAV and

E(u,Φu) ,
∑

(y0,hy0 )∈Φu

1‖y0‖≤hy0 tanψm,hy0≤u
∏

(y,hy)∈Φ!
u

(
1‖y‖>‖y0‖ + 1hy tanψm<‖y‖≤‖y0‖

)
, (34)

we have E(u,Φu) ∈ {1, 0}, where E(u,Φu) = 1 is the event that the typical user lies in the

coverage region of the UAV (y0, hy0) and hy0 ≤ u, and vice versa. Then we have

F r
hy0

(u) =

P(hy0 ≤ u,min
x∈Φg

‖x‖ > D, E(hmax,Φu) = 1)

P(min
x∈Φg

‖x‖ > D, E(hmax,Φu) = 1)

=

P(E(u,Φu) = 1,min
x∈Φg

‖x‖ > D)

P(min
x∈Φg

‖x‖ > D, E(hmax,Φu) = 1)

(a)
≈ P(E(u, Φ̃u) = 1)

P(E(hmax, Φ̃u) = 1)
=

E(E(u, Φ̃u))

E(E(hmax, Φ̃u))
, hmin ≤ u ≤ hmax, (35)
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where step (a) follows the fact that the nearest horizontal distance to the points in Φ̃u is smaller

than that in Φu ⊂ Φ̃u and the independence between Φg and Φ̃u. According to the Campbell-

Mecke theorem [29, Thm. 8.2], we have

E[E(u, Φ̃u)] = λ̃u

∫
R2

E
[
1‖y0‖≤hy0 tanψm,hy0≤u

∏
(y,hy)∈Φ̃!

u

(
1‖y‖>‖y0‖ + 1hy tanψm<‖y‖≤‖y0‖

)]
dy0

= 2πλ̃u

∫ u tanψm

0

u−$(t)

hmax − hmin

exp
(
− 2πλ̃u

∫ t

0

(1− E1hy tanψm<v)vdv
)
tdt

= 2πλ̃u

∫ u tanψm

0

u−$(t)

hmax − hmin

exp
(
− 2πλ̃u

∫ t

0

hmax −$(v)

hmax − hmin

vdv
)
tdt, (36)

and E[E(hmax, Φ̃u)] can be derived similarly.

Given the serving altitude u, the CDF of the serving horizontal distance ‖y0‖ is

F2(r) =P(‖y0‖ ≤ r | min
x∈Φg

‖x‖ > D, ‖y0‖ ≤ u tanψm)

=

P(‖y0‖ ≤ r,min
x∈Φg

‖x‖ > D)

P(min
x∈Φg

‖x‖ > D, ‖y0‖ ≤ u tanψm)

(b)
≈ 1− e−λ̃uπr2

1− e−λ̃uπu2 tan2 ψm

, 0 < r ≤ u tanψm,(37)

where step (b) follows the same fact as in step (a).

Finally, for the typical GUE, letting x0 be the serving GBS and Ẽ(Φu) ,
∏

(y,hy)∈Φu

1hy tanψm<‖y‖,

the CDF of the serving distance ‖x0‖ is

F3(r) =
P(‖x0‖ ≤ r, ‖x0‖ > D, Ẽ(Φu) = 1)

P(‖x0‖ > D, Ẽ(Φu) = 1)
. (38)

We further obtain that

P(‖x0‖ > D, Ẽ(Φu) = 1) =

∫ ∞
D

f‖x0‖(t)E
[
Ẽ(Φu)

]
dt

≈
∫ ∞
D

f‖x0‖(t) exp
(
− λu

∫
R2\b(x0,D)

1− E1hy tanψm<‖y‖dy︸ ︷︷ ︸
W̃(t,D)

)
dt,(39)

where f‖x0‖(t) = 2πλgte
−πλgt2 is the serving distance PDF of the typical user, and W̃(t,D) can

be obtained with the integral technique and the geometry relationship of two circles. Similarly,

we obtain the numerator of (38) and thus the PDF f r
3(r), and W(t,D) in Lemma 3 is further

obtained by removing a common factor in both numerator and denominator of (38), given by

W(t,D) = W̃(t,D)− 2π

∫ hmax tanψm

0

hmax −$(v)

hmax − hmin

vdv. (40)
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APPENDIX B

PROOF OF THEOREM 1

Given that the serving distance is r, we derive the conditional LTs of the interference Ig and

Iu for each type of the user.

Firstly, for the typical user lying in C1, we have r < D and the LT of Ig

Lr
Ig1

(s)
(a)
= E

[ ∏
x∈Φ!

g

1

1 + sµg`g(x)

]
(b)
= exp

(
− 2πλg

∫ ∞
r

(
1− 1

1 + sµg`g(t)

)
tdt
)

= exp
(
− 2πλgµgsr

2−αN

αN − 2
F (αN, µmsr

−αN)
)
, (41)

where step (a) uses the exponential distribution of the power fading coefficient for NLOS links,

step (b) follows the PGFL of a PPP, and F (α, y) = 2F1(1, 1−2/α; 2−2/α;−y) is the Gaussian

hypergeometric function. For the LT of Iu, it is difficult to exactly characterize the interference

from the UAVs due to the complexity of the PHP. Instead, we resort to approximating the PHP

with a PPP of density λI and removing the UAVs in the exclusion region of the serving GBS

[34, 35]. Thus, the approximate LT of Iu is given by

Lr
Iu1

(s)
(c)
= E

[ ∏
(y,hy)∈Φu

∑
i∈{L,N}

Pi(‖y‖, hy)(
1 + sG(φy)µu

Mi
(‖y‖2 + h2

f )−αi/2
)Mi

]
(d)
≈ E

[ ∏
y∈ΦPPP\ξex

∑
i∈{L,N}

Pi(‖y‖, hy)(
1 + sG(φy)µu

Mi
(‖y‖2 + h2

y)
−αi/2

)Mi

]
= exp

(
− 2πλI

∑
i∈{L,N}

∫ hmax

hmin

f(u)Pi(t, u)

(∫ u tanψm

r1

(
1− 1

(1+ sµuGm

Mi(t2+u2)αi/2
)Mi

)
tdt

+

∞∫
r̄1

(
1− 1

(1+ sµuGs

Mi(t2+u2)αi/2
)Mi

)
tdt−

r̃1∫
r1

(
1− 1

(1+ sµuGm

Mi(t2+u2)αi/2
)Mi

)
arccos(

r2+t2−D2

2rt
)tdt

−
∫ r̂1

u tanψm

(
1− 1

(1+ sµuGs

Mi(t2+u2)αi/2
)Mi

)
arccos(

r2 + t2 −D2

2rt
)tdt

)
du

)
. (42)

In step (c), the power fading coefficients follow the gamma and exponential distributions for

NLOS and LOS links, respectively, and in step (d), the PPP ΦPPP is adopted to approximate

the PHP and ξex = b(x0, D) denotes the exclusion region of the serving GBS x0. The last step

follows that the antenna gain from an interfering UAV is Gm if the horizontal distance is shorter

than Ry = u tanψm, otherwise, the gain is Gs.

February 4, 2023 DRAFT



28

Secondly, when the typical user is a UEU, we obtain the LT of Ig, given by

Lr
Ig2

(s) =E
[ ∏
x∈Φg

1

1 + sµg`g(x)

]
= exp

(
− λg

∫
R2\b(o,D)

1

1 + (sµg)−1‖x‖αN
dx+ λg

∫
ξex\b(o,D)

1

1 + (sµg)−1‖x‖αN
dx

)
= exp

(
− 2πλgµgsD

2−αN

αN − 2
F(αN, µmsD

−αN)+λg

∫
ξex\b(o,D)

1

1 + (sµg)−1‖x‖αN
dx)

)
, (43)

where ξex = b(y0, D) ∪ b(o,D) denotes the region without GBSs. We further have

∫
ξex\b(o,D)

1

1 + (sµg)−1‖x‖αN
dx =


∫ D+r

D

arccos
(
r2+t2−D2

2rt

)
tdt

1+(sµg)−1tαN
if r < 2D,∫ D+r

r−D
arccos

(
r2+t2−D2

2rt

)
tdt

1+(sµg)−1tαN
if r > 2D.

(44)

Combining the two cases, we obtain the unified expression

Lr
Ig2

(s) = exp
(
− 2πλgµgsD

2−αN

αN − 2
F(αN, µmsD

−αN) + 2λg

∫ D+r

r2

arccos
(
r2+t2−D2

2rt

)
tdt

1 + (sµg)−1tαN

)
,(45)

where r2 = max(D, r −D). For the LT of Iu, we adopt the PPP approximation and obtain

Lr
Iu2

(s)
(e)
≈ E

[ ∏
y∈ΦPPP\b(o,r)

∑
i∈{L,N}

Pi(‖y‖, hy)(
1 + sG(φy)µu

Mi
(‖y‖2 + h2

f )−αi/2
)Mi

]

= exp

(
−2πλI

∑
i∈{L,N}

∫ hmax

hmin

f(u)Pi(t, u)
(∫ u tanψm

r

(
1− 1

(1+ sµuGm

Mi(t2+u2)αi/2
)Mi

)
tdt

+

∫ ∞
u tanψm

(
1− 1

(1+ sµuGs

Mi(t2+u2)αi/2
)Mi

)
tdt
)

du

)
, (46)

where b(o, r) is excluded in step (e) since the interfering UAVs are farther than the serving UAV.

Finally, when the typical user is a GEU, we have r > D and the LT of Ig is same as the

GCU, namely, Lr
Ig3

(s) = Lr
Ig1

(s). For Iu, its LT is approximated by

Lr
Iu3

(s)
(f)
≈ E

[ ∏
y∈ΦPPP

∑
i∈{L,N}

Pi(‖y‖, hy)(
1 + sG(φy)µu

Mi
(‖y‖2 + h2

f )−αi/2
)Mi
| ‖y‖ > hy tanψm

]
= exp

(
− 2πλI

∑
i∈{L,N}

∫ hmax

hmin

∫ ∞
u tanψm

Pi(t, u)f(u)
(

1− 1

(1+ sµuGs

Mi(t2+u2)αi/2
)Mi

)
tdtdu

)
,(47)

where b(o,Ry) is excluded in step (f) due to that the GUE is outside the UAV coverage region.
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APPENDIX C

PROOF OF THEOREM 2

For the typical GCU, it is served by the nearest GBS, and we have

P r
1(θ) = P

(µggx0`g(x0)

Ig + Iu

> θ | o ∈ C1

)
(a)
=

∫ D

0

Lf
Ig1

(θµ−1
g rαN)Lf

Iu1
(θµ−1

g rαN)f f
1(r)dr, (48)

where step (a) follows the Rayleigh fading for the NLOS link. For the typical UEU, we have

P r
2(θ) =P

(µuGmgy0`u(y0)

Ig + Iu

> θ | o ∈ C2

)

=

hmax∫
hmin

u tanψm∫
0

∑
i∈{L,N}

Pi(r, u)E
[
Γ̃
(
Mi,

Miθ(r
2 + u2)αi/2

Gmµu

(Ig + Iu)
)]
f r

2(r | hy0 =u)%r
2(u)drdu

=

∫ hmax

hmin

∫ u tanψm

0

∑
i∈{L,N}

Pi(r, u)

Mi−1∑
l=0

E
[
e−

Miθ(r
2+u2)αi/2

Gmµu
(Ig+Iu)

×
(Miθ(r

2+u2)αi/2

Gmµu
(Ig + Iu)

)l
l!

]
f r

2(r | hy0 =u)%r
2(u)drdu

=

hmax∫
hmin

u tanψm∫
0

∑
i∈{L,N}

Pi(r, u)

Mi−1∑
l=0

(−s)l

l!
L(l)(r, u, s) |

s=
Miθ(r

2+u2)αi/2

Gmµu

f r
2(r | hy0 =u)%r

2(u)drdu,

where L(l)(r, u, s) = E[e−s(Ig+Iu)] = Lr
Ig2

(s)Lr
Iu2

(s) is the LT of Ig + Iu under the condition

that the serving UAV is at a distance r and altitude u, and the superscript (l) stands for the l-th

derivative of L(l)(r, u, s) w.r.t. s. For the typical GEU, the SIR CCDF is obtained similarly.
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