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Abstract—In the analysis of wireless networks, the standard
signal-to-interference (SIR) distribution does not capture the
performance at the individual link level. The meta distribution
(MD) of the SIR resolves this problem by separating different
sources of randomness, such as fading and point process(es).
While it allows for a much sharper performance characterization,
it can in most cases only be calculated based on the moments
of the underlying conditional distribution, i.e., by solving a
Hausdorff moment problem. Several methods to reconstruct MDs
from the moments have been proposed but a rigorous analysis,
comparison of their performance, and practical implementations
are missing. In addition, a standard is needed for a consistent and
objective comparison. This paper addresses the above-mentioned
important shortcomings, introduces a tweaking mapping for
adjusting approximations, presents terminology to categorize the
quality of approximations, proposes the use of the Fourier-
Legendre method, which has not previously been applied to MDs,
and provides the achievable lower and upper bounds on the MD
given the first 𝑛 moments. Further, to facilitate the use of MDs, we
give comprehensive guidance on the selection of the best method
to determine MDs, and we offer ready-to-use implementations
of the proposed algorithms. This study fills an important gap
in the literature by rigorously analyzing the MDs, comparing
the performance of different methods, and offering user-friendly
implementations for recovering MDs from moments.

Index Terms—Meta distribution, Hausdorff moment problem,
stochastic geometry, signal fraction

I. INTRODUCTION

A. Motivation and Related Work

Due to the rapid development of smart devices, many
advanced applications, e.g., augmented reality and interactive
online gaming, demand strict reliability in wireless networks,
and wireless users expect a consistent performance experience.
However, while cellular and WiFi equipment manufactures’
and service providers’ advertisements mostly focus on the peak
performance, neither the peak performance nor the average
performance is what a user actually experiences. Instead, it is
necessary to consider the performance that 95%/50%/5% of
the users can achieve. In the practical evaluation of wireless
network performance, as in the evaluation for the recent 5G
standards [1] and WiFi standards [2], the throughput that
95% of the users should achieve has been specified. However,
analytical approaches usually focus on the distribution of the
signal-to-interference ratio (SIR), which is the performance-
limiting metric [3] and from which many other metrics can be
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derived, such the data rate and the spectral efficiency [4], [5].
The SIR distribution lumps all the randomness (such as point
process(es), fading, shadowing, and channel access schemes)
together, which obfuscates the impact of the individual random
elements. For example, in an ergodic model, it reveals the
fraction of links that achieves a certain SIR at any time instant.
But the composition of the successful links is time-varying,
and it is possible that a significant fraction of links consistently
suffer from bad connections even when the SIR distribution
has a relatively high value at the target SIR. To address this
issue, different from the traditional use of stochastic geometry
to derive averages, [6], [7] introduce the concept of deep
stochastic geometry that is based on meta distributions (MDs).
MDs are distributions of conditional complementary cumula-
tive distribution functions (cccdfs) that by design disentangle
different sources of randomness, which allows an analysis of
the effects of different sources of randomness and capture
the disparity of the performance of individual links [4], [8]–
[13]. The cccdfs are the complementary cumulative distribu-
tion functions (ccdfs) of the conditional random variables.
Consequently, they are random variables themselves.

For most network models, the calculation of MDs is chal-
lenging. In some simplified cases, where signal power or SIR
MDs with only the nearest interferer are considered, closed-
form expressions of MDs can be obtained [6], [7]. For more
complete models, e.g., the SIR MDs with all interferers in the
Poisson cellular network model [8], it is quite likely impossible
to directly obtain analytic (let alone closed-form) expressions.
However, it is often possible to calculate moments of the
underlying cccdfs [8], [9], [14]. This prompts us to study
and develop moment transform methods to reconstruct MDs
(distributions of cccdfs) from moments (of cccdfs). While
MDs are two-argument functions, they can be viewed as a
family of univariate distributions and thus in the literature,
univariate approximations have been applied [4], [8], [13].
Depending on the type of moments that are used, there are two
categories of methods. The first category consists of the Gil-
Pelaez (GP) method which utilizes only imaginary moments,
while the methods in the second category utilize only positive
integer moments. The GP method is based on the Gil-Pelaez
theorem [15] and entails an integral of infinite range which
is too complicated to be analytically calculated.1 Its numer-
ical approximation requires a careful selection of integration
upper limits and step sizes, and the integrand may contain a
singularity. Furthermore, the accurate calculation of imaginary

1In wireless applications, we are not aware of any case where the GP
integral has an analytical solution. However, there are some special abstract
cases where analytic solutions exist [16].



2

moments can be time-consuming. Thus, here we mainly focus
on methods in the second category, where integer moments
are used to recover the cumulative distribution function (cdf)
or the ccdf.

In probability theory, such problems that ask for the ex-
istence of a distribution that matches a sequence of integer
moments are known as moment problems. Due to the bounded
support of the MDs, the one relevant to our work is the
Hausdorff moment problem (HMP) where the support of the
distribution is bounded. Hausdorff has shown that such a
distribution exists if and only if the infinite sequence is
completely monotonic (c.m.) and that the distribution is unique
if it exists [17]. Although the solution to the HMP is unique
(if exists), in practice, we are concerned with the truncated
version where only a finite sequence of integer moments is
available to recover/approximate the distribution. Instead of
merely asking for the existence of solutions, the truncated
HMP asks for a solution or an approximation. We call a
method that finds or approximates a solution of the truncated
HMP from integer moments a Hausdorff moment transform
(HMT). Naturally, it also approximates the unique solution to
the HMP.

A popular method in the second category is to approximate
the MDs by a family of beta distributions [8], [10], [14],
which only requires the first and second moments. It is
convenient and efficient when computing moments is time-
consuming [18].2 However, it fails to capture the properties of
the distribution determined by the higher-order moments, such
as the skewness and kurtosis. Thus, the beta approximation
is an approximation without any accuracy guarantee. To the
best of our knowledge, the binomial mixture (BM) [19] and
Fourier-Jacobi (FJ) [20] methods are the only two HMTs
(other than the beta approximations) that have been applied
to MDs [4], [13]. There are also some other HMTs in the
literature that have not been applied to MDs yet, such as
the Fourier-Legendre (FL) [21], [22], Fourier-Chebyshev (FC)
[23], and Chebyshev-Markov (CM) [21] [23] methods. In [23],
the advantages and disadvantages of the BM, FJ, FL, FC, and
CM methods have been discussed. One critical shortcoming
of the FJ method is that its coefficients vary significantly for
different moment sequences and its convergence properties
vary strongly as well. No method has been found to give a
conclusive answer to whether the FJ approximations converge
or not for general moment sequences [23]. Based on the
conclusions in [23], here we focus on the BM and FL methods.
The former computes very fast while the latter has good
convergence properties.

B. Contributions

• Different from the SIR that is commonly considered,
here we consider the signal fraction (SF), which is the
ratio of the signal power to the total received power.
The SF is constrained to [0, 1] and has other advantages
over the SIR for both analysis and visualization [24].

2Though the calculation of higher-order moments can be time-consuming,
we are not aware of any cases where there are fundamental obstacles in
calculating higher-order moments if the second moment can be calculated.

Since SFs are bounded in support and range, natural
metrics, such as the distance between the MDs and the
approximations, are also bounded. Thus, we can infer
whether an approximation is accurate or not directly from
the distance. Moreover, SF MDs can be plotted in the unit
cube, and we can visually estimate their distance from the
plot. In contrast, the SIR MDs have unbounded support,
and there is no way to visually estimate how large the
distance is between two of them.

• Our work provides a rigorous foundation to the recon-
struction of MDs via integer moments and makes the
analysis of MDs practical.
To make the reconstruction of MDs rigorous:

– We introduce terminology to categorize the quality of
approximations by the total distance. The categories
agree with the visual impression.

– We provide the infima and suprema of the MDs
given a finite sequence of integer moments and an
algorithm to determine the number of moments that
are needed to obtain the smallest interval in which the
distribution is guaranteed to lie at an arbitrary point
of interest. The infima and suprema are tighter than
the bounds in [8]. Their average naturally provides a
good approximation.

– We provide the convergence properties of the BM
and FL methods and analyze their computational
complexity.

To make the analysis of MD reconstructions practical:
– In addition to approximating MDs as a family of

univariate distributions, we also propose a method to
approximate MDs in their entirety, i.e., as functions
[0, 1]2 → [0, 1]. In particular, we approximate MDs
of network models by abstract MDs. This method is
simple but there is no accuracy guarantee. Its key
advantage over the commonly used beta approxima-
tion is that it directly approximates the complete two-
argument function.

– We compare the performance of the methods in terms
of both the MD and its corresponding percentile
functions. The percentile functions are a key tool in
the practical analysis of the network performance as
they quantify the user experienced performance. Be-
sides, we focus on relevant SIR/SF thresholds and we
numerically evaluate the computational complexity
of the methods in wireless applications.

– We provide comprehensive guidelines for which
HMT should be used depending on the objective,
such as accuracy or computational complexity.

– We provide MATLAB implementations for the ap-
plications of the methods and the evaluations.

C. Layout

The remaining sections of this paper are organized as
follows. In Section II, we introduce the MDs considered,
discuss adjustments to approximations, evaluate their accuracy,
and highlight the inadequacy of the commonly used beta
approximation. Section III introduces the CM inequalities,
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which offer rigorous bounds for the MDs. In Section IV,
we describe efficient approximations applicable to the MDs,
specifically three one-dimensional methods and one two-
dimensional method. Section V compares the performance of
the beta approximation with that of the three one-dimensional
methods. Moreover, we provide comprehensive guidelines for
bounding or approximating MDs within this section. Sec-
tion VI presents an example illustrating how to obtain rigorous
bounds for MDs, explains the principle of choosing the desired
number of moments, and demonstrates the application of the
aforementioned methods. Finally, Section VII concludes the
paper.

Notation. [𝑛] ≜ {1, 2, ..., 𝑛} and [𝑛]0 ≜ {0} ∪ [𝑛]. N is the
set of positive integers. N0 is the set of non-negative integers.
R is the set of real numbers. R+0 is the set of non-negative real
numbers. C is the set of complex numbers.

II. PRELIMINARIES

A. MD of the Signal Fraction

We call the random variables, such as the SIR, that affect the
user experience performance random variables (PRVs). This
term is used to contrast them against performance metrics,
which are deterministic quantities. To analyze the performance
of wireless networks, it is natural to consider the distribution of
the PRVs. However, due to the nature of wireless networks, the
PRVs strongly depend on the user location and are also time-
varying. To characterize their statistics and, in turn, the user
experience, fully, we consider MDs that are conditioned on the
point process of the transceiver locations, i.e., the distributions
of the cccdfs

𝑃𝑡 ≜ P (𝑋 > 𝑡 | Φ) , 𝑡 ∈ R+, (1)

where 𝑋 is a PRV, such as the signal power, SIR, SF,
instantaneous rate, or energy, and Φ is the point process.
Since the probability measure here is that of the temporal
randomness while the spatial randomness is held fixed, the
MDs decompose the randomness of the network model into
the spatial and temporal parts [6].

The MD is the ccdf of 𝑃𝑡 , i.e.,

�̄� (𝑥, 𝑡) ≜ P (𝑃𝑡 > 𝑥) , 𝑥 ∈ [0, 1], 𝑡 ∈ R+, (2)

and the 𝑧-th moment of the cccdf 𝑃𝑡 is

𝑚𝑧 (𝑡) ≜
∫ 1

0
𝑧𝑥𝑧−1�̄� (𝑥, 𝑡)𝑑𝑥, 𝑧 ∈ C, (3)

which we call the (𝑧, 𝑡)-th moment of the MD. The character-
istic function of the cccdf 𝑃𝑡 is

𝜑𝑡 (𝑠) ≜ 1 + 𝑗 𝑠
∫ 1

0
�̄� (𝑥, 𝑡)𝑒 𝑗 𝑥𝑠𝑑𝑥, 𝑠 ∈ R. (4)

We also define the percentile functions for a partial mono-
tone MD, i.e., �̄� (·, 𝑡) is monotone for any 𝑡 ∈ R+ and �̄� (𝑥, ·)
is monotone for any 𝑥 ∈ [0, 1], as follows:

Definition 1 (Percentile functions). The percentile function
𝑄1

(
�̄�
)

of the PRV at a target cccdf value 𝑥0 is defined by

𝑄1
(
�̄�
)
(𝑥0, 𝑦) = min

�̄� (𝑥0 ,𝑡 )=𝑦
𝑡, 𝑦 ∈ [0, 1] . (5)

The percentile function 𝑄2
(
�̄�
)

of the cccdf random variable
at a target metric 𝑡0 of the PRV is defined by

𝑄2
(
�̄�
)
(𝑦, 𝑡0) = min

�̄� (𝑥,𝑡0 )=𝑦
𝑥, 𝑦 ∈ [0, 1] . (6)

The percentile function 𝑄1
(
�̄�
)
(𝑥0, 𝑦) = 𝑡 can be interpreted

as the threshold 𝑡 of the PRV that a fraction 𝑦 of links
can achieve with cccdf value 𝑥0. The percentile function
𝑄2

(
�̄�
)
(𝑦, 𝑡0) = 𝑥 can be interpreted as the cccdf value 𝑥 that a

fraction 𝑦 of links can achieve with a threshold 𝑡0 of the PRV.
For any 𝑡 ∈ [0, 1], the percentile function 𝑄2

(
�̄�
)
(·, 𝑡) is also

the quantile function of the distribution of 𝑃𝑡 . In Section III-B
will discuss how to bound the quantile function given the
moments of 𝑃𝑡 .

In this paper, we focus on the MDs of the SF [24], which
is defined as the ratio of the signal power to the total received
power, i.e., SF ≜ 𝑆/(𝑆 + 𝐼), where 𝑆 is the signal power and
𝐼 is the interference power. The cccdf of the SF is

𝑃𝑡 = P (SF > 𝑡 | Φ) , 𝑡 ∈ [0, 1], (7)

and the SF MD is given in (2). Note that for each 𝑡 ∈ [0, 1],
�̄� (·, 𝑡) is the ccdf of 𝑃𝑡 , thus we can view

(
�̄� (·, 𝑡)

)
𝑡∈[0,1] as a

family of univariate ccdfs. Based on the definition, there are
two basic properties of an SF MD:

Remark 1. Properties of SF MDs
• Partial monotonicity: �̄� (·, 𝑡) is monotonically decreasing

for all 𝑡 ∈ [0, 1] and �̄� (𝑥, ·) is monotonically decreasing
for all 𝑥 ∈ [0, 1], i.e., �̄� (𝑥1, 𝑡) ≤ �̄� (𝑥2, 𝑡) for all 𝑥1 ≥ 𝑥2
and �̄� (𝑥, 𝑡1) ≤ �̄� (𝑥, 𝑡2) for all 𝑡1 ≥ 𝑡2.

• Bounded domain and bounded range: �̄� : [0, 1]2 ↦→
[0, 1].

In contrast to the SIR, defined as SIR ≜ 𝑆/𝐼 ∈ [0,∞),
SF = SIR/(SIR+1) is supported on [0, 1], thus all its positive
moments always exist and no truncation is needed when
visualizing its distribution. Moreover, the bounded support and
range of SF MDs make it possible to compare the distance
between different approximations of SF MDs. The bounded
distance is critical to characterize how good the approximation
is.

For a wireless network modeled by a stationary and ergodic
point process, the SF MD �̄� (·, ·) yields the distribution of
the link success probabilities at a target SF, or, equivalently,
the distribution of the SF threshold at a target reliability [5,
Thm. 1]. So we can use the SF MD to directly derive the
spectral efficiency MD and its percentile performance at a
target value of the cccdf. By the Shannon–Hartley theorem
and [5, Thm. 1], this is obtained from the inverse function
with respect to the second argument of the spectral efficiency
MD, �̄�rate (𝑥, 𝑟) = �̄� (𝑥, 1 − 2−𝑟 ).

B. Adjustments of Approximations and Distance Metrics

In this part, we first introduce our method to adjust approx-
imations of MDs and then we define two distance metrics to
measure how close two functions are to each other.

As mentioned in Section II-A, the SF MDs can be viewed
as a family of univariate ccdfs, and many approximations
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operate on one of the arguments. In most cases, an SF MD
needs to be decomposed into many cccdfs with respect to the
SF threshold 𝑡. Moreover, some of the threshold values are
more important to analyze in practice. For example, in the 5G
ultra-reliable low-latency communication (URLLC) scenario,
certain signal-to-interference-plus-noise ratios (SINRs) are re-
quired to achieve a very small target block error rate.

For practical purposes, it is necessary to restrict the eval-
uation of MDs to a discrete and finite subset of its domain.
Here, we consider the uniform set U𝑚,𝑛 ≜ { 𝑖

𝑚
, 𝑖 ∈ [𝑚]0} ×

{ 𝑖
𝑛
, 𝑖 ∈ [𝑛]0}. Another issue is that the approximations may

not preserve properties of the SF MDs, such as the partial
monotonicity and ranges restricted to [0, 1]. Definition 2
introduces a tweaking mapping to adjust the values of the
approximations so that the adjusted approximations satisfy the
properties of SF MDs.

Definition 2 (Tweaking mapping). Let 𝑢𝑖, 𝑗 = ( 𝑖
𝑚
,
𝑗

𝑛
), 𝑖 ∈

[𝑚]0, 𝑗 ∈ [𝑛]0, denote the elements in U𝑚,𝑛. We define 𝑇
that maps 𝐹 : U𝑚,𝑛 ↦→ R to �̂� : U𝑚,𝑛 ↦→ [0, 1] such that

1) 𝑇 (𝐹) (𝑢𝑖, 𝑗 ) = 1, ∀𝑢𝑖, 𝑗 ∈ {𝐹 (𝑢𝑖, 𝑗 ) > 1}, and
𝑇 (𝐹) (𝑢𝑖, 𝑗 ) = 0, ∀𝑢𝑖, 𝑗 ∈ {𝐹 (𝑢𝑖, 𝑗 ) < 0}.

2) 𝑇 (𝐹) (𝑢0, 𝑗 ) = 0, ∀ 𝑗 ∈ [𝑛−1]0, 𝑇 (𝐹) (𝑢𝑖,0) = 0, ∀𝑖 ∈ [𝑚−
1]0, 𝑇 (𝐹) (𝑢𝑖,𝑛) = 1, ∀𝑖 ∈ [𝑚]0, and 𝑇 (𝐹) (𝑢𝑚, 𝑗 ) = 1,
∀ 𝑗 ∈ [𝑛]0.

3) 𝑇 (𝐹) (𝑢0,0) = 𝐹 (𝑢0,0) and 𝑇 (𝐹) (𝑢𝑖, 𝑗 ) =

max(𝐹 (𝑢𝑖−1, 𝑗 ), 𝐹 (𝑢𝑖, 𝑗−1), 𝐹 (𝑢𝑖, 𝑗 )), ∀𝑖 ∈ [𝑚] and
𝑗 ∈ [𝑛].

In order to avoid assigning values multiple times, the last two
steps are done in a zigzag and diagonal order of all the ele-
ments in U𝑚,𝑛, i.e., in the order of 𝑢0,0, 𝑢1,0, 𝑢0,1, 𝑢0,2, ..., 𝑢𝑚,𝑛.

The tweaking mapping in Definition 2 eliminates the out-
of-range points and restores the partial monotonicity. Let
𝐹 : U𝑚,𝑛 ↦→ R be an approximation obtained for an SF MD.
After tweaking, we obtain monotone and bounded approxi-
mations over a discrete set, denoted as �̂� = 𝑇 (𝐹). Next, we
interpolate the discrete points to obtain continuous functions.
We first apply linear interpolation to �̂� (·, 𝑡) for each 𝑡 in the
discrete subset and then we apply linear interpolation on 𝑡.
Linear interpolation preserves monotonicity. For convenience,
we refer to the function after interpolation as �̂� as well,
and we call the original function 𝐹 the raw function and
the tweaked and interpolated �̂� the polished function. The
polished function is partially monotone and has a bounded
domain and range.

Next, we introduce two distance metrics to measure how
close two functions are to each other. Let 𝐹1, 𝐹2 : 𝑈 ↦→ 𝑌 be
two bounded functions. For SF MDs, 𝑈 ≜ [0, 1]2 and 𝑌 ≜
[0, 1]. This domain reflects the fact that the MD is inherently
a two-argument function.

Definition 3 (Maximum and total distances). The maximum
and total distances between functions 𝐹1 and 𝐹2 are defined

as the L∞-norm and L1-norm of 𝐹1 and 𝐹2 over 𝑈, i.e.,

𝑑M (𝐹1, 𝐹2) ≜ ∥𝐹1 − 𝐹2∥L∞ (𝑈)
= max
𝑥∈𝑈

|𝐹1 (𝑥) − 𝐹2 (𝑥) |,

𝑑 (𝐹1, 𝐹2) ≜ ∥𝐹1 − 𝐹2∥L1 (𝑈)

=

∫
𝑈

|𝐹1 (𝑥) − 𝐹2 (𝑥) |𝑑𝑥.

(8)

(9)

(10)

(11)

We mainly focus on the total distance and use the maxi-
mum distance as a secondary metric. Since 𝑈 = [0, 1]2 and
𝑌 = [0, 1], both 𝑑M (𝐹1, 𝐹2) and 𝑑 (𝐹1, 𝐹2) ∈ [0, 1]. Thanks
to the bounded distance, we can directly infer the quality
of the approximation simply by its value. Specifically, we
declare 𝐹1 and 𝐹2 a perfect match, an excellent match, a
good match, an acceptable match, a mediocre match, and a
bad match if the total distance 𝑑 (𝐹1, 𝐹2) is in [0, 0.002),
[0.002, 0.005), [0.005, 0.01), [0.01, 0.02), [0.02, 0.05), and
[0.05, 1] respectively. The correspondence is shown in Table I.
This classification agrees well with the visual impression of the
gap between two curves. More details about the classification
and a dynamic visualization can be found in [25].

Figure 1 and Figure 2 give examples of |𝐹1 (𝑥) −𝐹2 (𝑥) | and
|𝐹1 (𝑤, 𝑣) − 𝐹2 (𝑤, 𝑣) | for total distances of the order of 10−1

and 10−2, respectively.
We also calculate the maximum and total distance of the

percentile functions, called the maximum and total horizontal
distance. Since the total distances are the same, we only
consider the maximum horizontal distance. The corresponding
maximum horizontal distances of the percentile functions are
defined as

𝑑H1 (𝐹1, 𝐹2) ≜ 𝑑M (𝑄1 (𝐹1), 𝑄1 (𝐹2)),
𝑑H2 (𝐹1, 𝐹2) ≜ 𝑑M (𝑄2 (𝐹1), 𝑄2 (𝐹2)),

(12)
(13)

respectively. We refer to the first one as maximum horizontal
distance 1 and the second one as maximum horizontal distance
2.

C. Inadequacy of the Beta Approximation

As a simple approach that only requires the first two
moments, the beta approximation has been widely used to
recover MDs from moments [8], [9], [14]. However, due to
the nature of the beta approximation, it is unsuitable for
certain distributions, such as multi-modal distributions and
non-smooth distributions.

As an example, in Figure 3, we compare the beta approxi-
mations and the actual ccdf of the cccdf 𝑃𝑡 ≜ P(SF > 𝑡 | Φ)
in a downlink Poisson cellular network where base stations
(BSs) form a stationary PPP Φ with nearest-BS association,
power-law path loss 𝛼 and Nakagami-𝑚 fading, and only the
nearest interfering BS is considered [7].

We can observe that the beta approximation cannot capture
the non-smooth points and instead smooths out the entire
distribution. Moreover, the total distance is 0.0502 and 0.0208
for 𝑚 = 10 and 𝑚 = 1, which indicates that the beta
approximation is a bad/mediocre match in these cases. Thus, it
is necessary to consider other methods, including the rigorous
bounding techniques discussed in the next section.
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TABLE I
TOTAL DISTANCE AND TERMINOLOGY FOR THE QUALITY OF THE APPROXIMATION.

Terminology perfect excellent good acceptable mediocre bad
𝑑 (𝐹1, 𝐹2 ) ∈ [0, 0.002) [0.002, 0.005) [0.005, 0.01) [0.01, 0.02) [0.02, 0.05) [0.05, 1]
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(a) 𝑑 (𝐹1, 𝐹2 ) = 0.077 and 𝑑M (𝐹1, 𝐹2 ) =

0.185. 𝐹1 and 𝐹2 are a bad match.
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(b) 𝑑 (𝐹1, 𝐹2 ) = 0.016 and 𝑑M (𝐹1, 𝐹2 ) =

0.035. 𝐹1 and 𝐹2 are an acceptable match.

Fig. 1. 𝐹1, 𝐹2 and |𝐹1 − 𝐹2 |. The type of match is obtained from Table I.

III. RIGOROUS BOUNDING USING THE
CHEBYSHEV-MARKOV INEQUALITIES

A. The Hausdorff Moment Problem and the CM Inequalities

The Hausdorff moment problem asks for the existence of
a distribution 𝐹 supported over [0, 1] such that its moments
match a given infinite sequence (𝑚𝑘)∞𝑘=1, i.e.,∫ 1

0
𝑥𝑘 𝑑𝐹 (𝑥) = 𝑚𝑘 , ∀𝑘 ∈ N. (14)

The solution exists if and only if the infinite sequence is c.m.,
and the distribution is unique if it exists [17].

When trying to recover distributions from moments, the
existence of the unique solution to the HMP can be determined
directly by checking whether the infinite sequence is c.m.
In most cases of the reconstruction of MDs, the sequences
are c.m. since they are based on analytic expressions for the
moments. However, our goal is to find a distribution whose

(a) 𝑑 (𝐹1, 𝐹2 ) = 0.058 and 𝑑M (𝐹1, 𝐹2 ) =

0.1111. 𝐹1 and 𝐹2 are a bad match.

(b) 𝑑 (𝐹1, 𝐹2 ) = 0.029 and 𝑑M (𝐹1, 𝐹2 ) =

0.0565. 𝐹1 and 𝐹2 are a mediocre match.

Fig. 2. 3D plot of |𝐹1 − 𝐹2 |. The type of match is obtained from Table I.
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Fig. 3. The reconstructed ccdfs of the cccdf 𝑃𝑡 at threshold 𝑡 = 3/4 of the
downlink Poisson cellular network with Nakagami-𝑚 fading and power-law
path loss 𝛼 = 3 [7, Eq. (8)]. The total distance between the beta approximation
and the original ccdf is 0.0502 and 0.0208, which are a bad match and a
mediocre match per Table I, respectively.
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moments (closely) match the finite sequence, which leads to
the truncated HMP [21]: given a finite sequence (𝑚𝑘)𝑛𝑘=1,
𝑛 ∈ N, find or approximate an 𝐹 that solves∫ 1

0
𝑥𝑘 𝑑𝐹 (𝑥) = 𝑚𝑘 , ∀𝑘 ∈ [𝑛]0, (15)

where 𝐹 is right-continuous and increasing with 𝐹 (0−) = 0
and 𝐹 (1) = 1, i.e., 𝐹 is the cdf of a random variable supported
on [0, 1]. Let F𝑛 denote the set of all possible 𝐹 that solve
(15). Assuming F𝑛 ≠ ∅, it is natural to consider the infimum
and supremum of 𝐹 at the point of interest, i.e., inf𝐹∈F𝑛

𝐹 (𝑥0)
and sup𝐹∈F𝑛

𝐹 (𝑥0) for any 𝑥0 ∈ [0, 1].
Markov [26] provided a method to obtain the infimum and

supremum for any 𝑥0 ∈ [0, 1]. The most important step of
the method is the construction of a discrete distribution in
F𝑛 where the difference between the infimum and supre-
mum, or, equivalently, the maximum mass [27, Cor. 2.5.4],
is concentrated at 𝑥0 such that its moments are the prescribed
ones. Let 𝑝0 denote this maximum mass that can be con-
centrated at 𝑥0 and 𝐹∗ denote the discrete distribution where
𝑝0 is concentrated at 𝑥0, i.e., 𝐹∗ (𝑥0) − 𝐹∗ (𝑥−0 ) = 𝑝0. Then,
inf𝐹∈F𝑛

𝐹 (𝑥0) = 𝐹∗ (𝑥−0 ) and sup𝐹∈F𝑛
𝐹 (𝑥0) = 𝐹∗ (𝑥0). In the

following, we provide a step-by-step high-level description of
how to construct 𝐹∗. For a discrete random variable, the jump
locations correspond to the possible values of the discrete
random variable, and the jump heights correspond to the prob-
ability mass assigned to each value. These two are sufficient
to determine such a discrete distribution. Suppose that 𝐹∗ is
constructed by jumps at 𝑥𝑖 with heights 𝑝𝑖 , 1 ≤ 𝑖 ≤ 𝑣, 𝑣 ∈ N,
and the first 𝑛 moments of 𝐹∗ are the prescribed ones.

• Step 1: Determine the jump locations. Finding the jump
locations (𝑥𝑖)𝑣𝑖=1 requires finding the roots of an orthog-
onal polynomial [20]. We refer to [21], [28], [29] for the
details. Note that 𝑥0 ∈ {𝑥𝑖 , 𝑖 ∈ [𝑣]}.

• Step 2: Calculate the jump heights. After obtaining the
jump locations (𝑥𝑖)𝑣𝑖=1, the jump heights

(
𝑝 𝑗

)𝑣
𝑖=1 can be

obtained by solving

©«
1 1 . . . 1
𝑥1 𝑥2 . . . 𝑥𝑣
...

...
. . .

...

𝑥𝑛1 𝑥𝑛2 . . . 𝑥𝑛𝑣

ª®®®®¬
©«
𝑝1
𝑝2
...

𝑝𝑣

ª®®®®¬
=

©«
𝑚0
𝑚1
...

𝑚𝑛

ª®®®®¬
. (16)

• Step 3: Equipped with jump locations (𝑥𝑖)𝑣𝑖=1 and jump
heights

(
𝑝 𝑗

)𝑣
𝑖=1, the infimum and supremum at 𝑥0 are

given by

inf
𝐹∈F𝑛

𝐹 (𝑥0) = 𝐹∗ (𝑥−0 ) =
∑︁
𝑗:𝑥 𝑗<𝑥0

𝑝 𝑗 ,

sup
𝐹∈F𝑛

𝐹 (𝑥0) = 𝐹∗ (𝑥0) =
∑︁

𝑗:𝑥 𝑗≤𝑥0

𝑝 𝑗 .

(17)

(18)

The inequalities established by the infima and suprema
obtained in the above procedure are the CM inequalities.
Our MATLAB implementation of the CM inequalities CM-
Bounds.m [30] takes the first 𝑛 moments and the point of
interest 𝑥0 ∈ [0, 1] as input and produces the infimum and
supremum of 𝐹 (𝑥0) as output.

In the following, we provide two examples of the CM
inequalities at 𝑛 = 1 and 𝑛 = 2. Zelen gives the explicit
expressions of the infima and suprema at 𝑛 = 4 [31].

Example 1 (𝑛 = 1). For 𝑛 = 1, the infima and suprema are

inf
𝐹∈F𝑛

𝐹 (𝑥0) =
{

0, 0 ≤ 𝑥0 ≤ 𝑚1,

1 − 𝑚1
𝑥0
, 𝑚1 < 𝑥0 ≤ 1,

sup
𝐹∈F𝑛

𝐹 (𝑥0) =
{

1−𝑚1
1−𝑥0

, 0 ≤ 𝑥0 ≤ 𝑚1,

1, 𝑚1 < 𝑥0 ≤ 1.

(19)

(20)

The infima are equivalent to Markov’s inequality.

Example 2 (𝑛 = 2). For 𝑛 = 2, consider the case where all
the Hankel determinants are positive, or, equivalently, 𝑚0𝑚2 >
𝑚2

1. Thus 𝜇1 ≜
𝑚1−𝑚2
𝑚0−𝑚1

<
𝑚2
𝑚1
≜ 𝜇2. The infima and suprema

are

inf
𝐹∈F𝑛

𝐹 (𝑥0) =


0, 0 ≤ 𝑥0 ≤ 𝜇1,

1 − 𝑚1−𝑚2
𝑥0−𝑥2

0
− 𝑚2−𝑚1𝑥0

1−𝑥0
, 𝜇1 < 𝑥0 ≤ 𝜇2,

(1−𝑚1 ) (𝑚1−𝑥0𝑚0 )
(𝑚1−𝑚2 )−(𝑚0−𝑚1 )𝑥0

, 𝜇2 < 𝑥0 ≤ 1,

sup
𝐹∈F𝑛

𝐹 (𝑥0) =


𝑚2−𝑚2

1
(𝑚2−𝑚1 )+(𝑚0−𝑚1 )𝑥0

, 0 ≤ 𝑥0 ≤ 𝜇1,

1 − 𝑚2−𝑚1𝑥0
1−𝑥0

, 𝜇1 < 𝑥0 ≤ 𝜇2,

1, 𝜇2 < 𝑥0 ≤ 1.

(21)

(22)

These infima and suprema are naturally tighter than the
bounds considered in [8].

Figure 4 shows two examples of the infima and suprema
for different 𝑛. The convergence of the infima and suprema as
𝑛 increases is apparent.

B. Bounding the Quantile Function at a Given Point

As discussed in the previous subsection, the CM inequalities
are a powerful tool to bound a distribution with support [0, 1]
based on its moments. They give the infimum and supremum
of the distribution at each point of interest, and, in turn, the
smallest interval in which the distribution is guaranteed to lie
at the point of interest. An important application in wireless
networks is to find the percentile performance. In an SF MD,
it characterizes the reliability that a certain fraction of users
achieve with a target SF threshold. Algorithm 1 returns the
possible range of the quantile function at a certain point.

Algorithm 1 Algorithm for bounding the quantile function at a
given point of the cdf 𝐹

Input: The moment sequence (𝑚𝑘)𝑛𝑘=1, the point of interest 𝑦 ∈
(0, 1), and tolerance 0 < 𝜖 ≪ 1

Output: The possible range of 𝐹−1 (𝑦) denoted as [𝑧0, 𝑧1]
if 𝐹 (0)+ ≤ 𝑦 then

Set 𝑥0 = 0 and 𝑥1 = 1.
Obtain 𝐹 (𝑥0)+ and 𝐹 (𝑥1)+ from the CM inequalities described
in Section III-A.
while |𝐹 (𝑥0)+ − 𝑦 | > 𝜖 do
𝑥 = (𝑥0+𝑥1)/2 and obtain 𝐹 (𝑥)+ from the CM inequalities.
if |𝐹 (𝑥)+ − 𝑦 | ≤ 𝜖 then

Set 𝑥0 = 𝑥.
end if
if 𝐹 (𝑥)+ − 𝑦 < −𝜖 then

Set 𝑥0 = 𝑥.
end if
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(a) 𝑚𝑘 = 1/(𝑘 + 1) , 𝑘 ∈ [𝑛]0.

0 0.2 0.4 0.6 0.8 1

x

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

F
(x

)

n = 4 infima

n = 4 suprema

n = 6 infima

n = 6 suprema

n = 8 infima

n = 8 suprema

n = 10 infima

n = 10 suprema

(b) 𝑚𝑘 = exp(−
√
𝑘 ) , 𝑘 ∈ [𝑛]0.

Fig. 4. The infima and suprema from the CM inequalities for 𝑛 = 4, 6, 8, 10.
𝑥 is discretized to U50 = {𝑖/50, 𝑖 ∈ [50]0}.

if 𝐹 (𝑥)+ − 𝑦 > 𝜖 then
Set 𝑥1 = 𝑥.

end if
end while
Set 𝑧0 = 𝑥0, 𝑥0 = 0, and 𝑥1 = 1.

else
Set 𝑧0 = 0, 𝑥0 = 0, and 𝑥1 = 1.

end if
if 𝑦 ≤ 𝐹 (1)− then

Obtain 𝐹 (𝑥0)− and 𝐹 (𝑥1)− from the CM inequalities de-
scribed in Section III-A.
while |𝐹 (𝑥0)− − 𝑦 | > 𝜖 do
𝑥 = (𝑥0+𝑥1)/2 and obtain 𝐹 (𝑥)− from the CM inequalities.
if |𝐹 (𝑥)− − 𝑦 | ≤ 𝜖 then

Set 𝑥0 = 𝑥.
end if
if 𝐹 (𝑥)− − 𝑦 < −𝜖 then

Set 𝑥0 = 𝑥.
end if
if 𝐹 (𝑥)− − 𝑦 > 𝜖 then

Set 𝑥1 = 𝑥.
end if

end while
Set 𝑧1 = 𝑥0.

else
Set 𝑧1 = 1.

end if

If a certain accuracy is required on this interval, such as
|𝑥1 − 𝑥0 | < 𝜂, where 𝜂 is the tolerance, 𝑛 can be increased

until the condition is satisfied.

IV. EFFICIENT APPROXIMATIONS

In SF MDs, for a fixed 𝑡, the function 𝐹 (·, 𝑡) is a cdf
of a conditional distribution. Naturally, there are two ways
to approximate the MDs: with a family of one-dimensional
approximations or with one two-dimensional approximation.

For simplicity, we refer to the 𝑛-th moment of the distribu-
tion 𝐹 (·, 𝑡) as the (𝑛, 𝑡)-th moment of 𝐹, denoted as 𝑚𝑛 (𝑡).
For SF MDs, 𝑡 ∈ [0, 1], and for SIR MDs, 𝑡 ∈ R+0 .

A. One-dimensional Methods: the CM, BM, and FL Methods

As discussed in [23], there are several different ways to
approximate the distribution. In this paper, we will only
discuss the methods recommended in [23], namely the CM,
BM, and FL method. We first apply them separately to 𝐹 (·, 𝑡)
with different 𝑡 and then we interpolate across 𝑡 to obtain the
overall approximation. More details on this procedure can be
found in Section II-B and Section V-A.

1) Chebyshev-Markov (CM): As the infima and suprema
obtained by the CM inequalities naturally converges as the
number of moments increases, it is sensible to consider their
average as an approximation and we call it the CM method.
For any 𝑛 ∈ N and 𝑥, 𝑡 ∈ [0, 1], the approximation by the CM
method is

𝐹CM,n (𝑥, 𝑡) ≜
1
2

(
sup
𝐹∈F𝑛

𝐹 (𝑥, 𝑡) + inf
𝐹∈F𝑛

𝐹 (𝑥, 𝑡)
)
, (23)

where sup𝐹∈F𝑛
𝐹 (𝑥, 𝑡) and inf𝐹∈F𝑛

𝐹 (𝑥, 𝑡) are given by the
CM inequalities with the moment sequence (𝑚𝑘 (𝑡))𝑛𝑘=1. It is
worth noting that by averaging, the error can be bounded.

2) Binomial mixture (BM): A piecewise approximation of
the cdf based on binomial mixtures is proposed in [19]. For
any 𝑛 ∈ N and 𝑡 ∈ [0, 1], the approximation by the BM method
is

𝐹BM,𝑛 (𝑥, 𝑡) ≜
{ ∑⌊𝑛𝑥⌋

𝑘=0 ℎ𝑘 (𝑡), 𝑥 ∈ (0, 1],
0, 𝑥 = 0,

(24)

where ℎ𝑘 (𝑡) ≜
∑𝑛
𝑖=𝑘

(𝑛
𝑖

) ( 𝑖
𝑘

)
(−1)𝑖−𝑘𝑚𝑖 (𝑡). As 𝑛 → ∞,

𝐹BM,𝑛 (𝑥, 𝑡) → 𝐹 (𝑥, 𝑡) for each 𝑥 at which 𝐹 (𝑥, 𝑡) is continuous
[32], [33].

According to [4], h(𝑡) ≜ (ℎ𝑘 (𝑡))𝑛𝑘=0 can be written as a
linear transform of m(𝑡) ≜ (𝑚𝑘 (𝑡))𝑛𝑘=0, i.e.,

h(𝑡) = Am(𝑡), (25)

where the transform matrix A ∈ Z(𝑛+1)×(𝑛+1) is given by

𝐴𝑖𝑘 ≜

(
𝑛

𝑘

) (
𝑘

𝑖

)
(−1)𝑘−𝑖1(𝑘 ≥ 𝑖), 𝑖, 𝑘 ∈ [𝑛]0, (26)

and 1 is the indicator function. As the transform matrix needs
to be calculated only once for the number of moments 𝑛

and thus can be done offline, the matrix-vector multiplication
requires (𝑛+1) (𝑛+2)

2 multiplications.
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3) Fourier-Legendre (FL): The shifted Legendre polynomi-
als

𝑅𝑛 (𝑥) =
𝑛∑︁
𝑗=0

(
𝑛

𝑗

) (
𝑛

𝑛 − 𝑗

)
(𝑥 − 1)𝑛− 𝑗𝑥 𝑗 (27)

are a class of orthogonal polynomials defined on [0, 1]. They
are orthogonal w.r.t. the weight function 1, i.e.,∫ 1

0
𝑅𝑛 (𝑥)𝑅𝑚 (𝑥) 𝑑𝑥 =

𝛿𝑚𝑛

2𝑛 + 1
, (28)

where 𝛿𝑚𝑛 is the Kronecker delta function.
For any 𝑛 ∈ N and 𝑡 ∈ [0, 1], the approximation obtained

by the 𝑛-th partial sum of the FL expansion of the cdf 𝐹 (·, 𝑡)
is

𝐹FL,𝑛 (𝑥, 𝑡) ≜
𝑛∑︁
𝑙=0

𝑐𝑙 (𝑡)𝑅𝑙 (𝑥), 𝑥 ∈ [0, 1], (29)

where

𝑐𝑙 (𝑡) = (2𝑙 + 1)
∫ 1

0
𝐹 (𝑥, 𝑡)𝑅𝑙 (𝑥) 𝑑𝑥

= (2𝑙 + 1)
𝑙∑︁
𝑘=0

(1 − 𝑚𝑙−𝑘+1 (𝑡))

©« (−1)𝑘
𝑙 − 𝑘 + 1

𝑙−𝑘∑︁
𝑗=0

(
𝑙

𝑗

) (
𝑙

𝑙 − 𝑗

) (
𝑙 − 𝑗

𝑘

)ª®¬ .

(30)

(31)

For any 𝑡, pointwise convergence holds for the FL expansion
of 𝐹 (·, 𝑡) as 𝑛→ ∞.

According to [23], we can write c(𝑡) = (𝑐𝑙 (𝑡))𝑛𝑙=0 as a linear
transformation of m̂(𝑡) = (𝑚𝑙 (𝑡))𝑛+1

𝑙=1 , i.e.,

c(𝑡) = Â(1 − m̂(t)), (32)

where c(𝑡) and m̂(𝑡) are understood as column vectors, 1 is
the 1-vector of size (𝑛 + 1), and the transform matrix Â ∈
Z(𝑛+1)×(𝑛+1) is given by

�̂�𝑘𝑙 ≜
(−1) (𝑙−𝑘 )
𝑘 + 1
𝑘∑︁
𝑗=0

(
𝑙

𝑗

) (
𝑙

𝑙 − 𝑗

) (
𝑙 − 𝑗

𝑙 − 𝑘

)
1(𝑘 ≤ 𝑙), 𝑘, 𝑙 ∈ [𝑛]0. (33)

Similar to the BM method, the above matrix-vector multiplica-
tion requires (𝑛+1) (𝑛+2)

2 multiplications. Besides, the evaluation
of the shifted Legendre polynomial 𝑅𝑙 (𝑥) can be facilitated via
the recursion formula, i.e.,

𝑅𝑙 (𝑥) =
2𝑙 − 1
𝑙

(2𝑥 − 1)𝑅𝑙−1 (𝑥) −
𝑙 − 1
𝑙
𝑅𝑙−2 (𝑥), (34)

where 𝑅0 (𝑥) = 0 and 𝑅1 (𝑥) = 2𝑥 − 1. If the finite set of 𝑥 is
denoted as X, the calculation of R ≜ [𝑅𝑙 (𝑥)]𝑙∈[𝑛]0 ,𝑥∈X can be
done offline. Then the matrix-vector multiplication of Rc(𝑡)
requires (𝑛+1) |X| multiplications, where |X| is the cardinality
of the finite set X.

For the BM and FL methods, we use a series of moment
sequences of length 𝑛 to reconstruct the MDs. For the BM
method, we consider 𝐹BM,𝑛 |U𝑛+1,𝑚 , and for the FL method, we
consider 𝐹FL,𝑛−1 |U𝑛,𝑚

. The remaining steps are the same as in
Section II-B. In total, The BM method requires (𝑛+1) (𝑛+2) (𝑚+1)

2
multiplications, and the FL method requires 3(𝑛+1) (𝑛+2) (𝑚+1)

2
multiplications.

B. A Two-dimensional Method: Matching Moments to those
of Abstract MDs

In the previous sections, we use HMTs or other approxima-
tion methods based on univariate distributions to approximate
the MDs by univariate distributions. It is also possible that
we use a two-argument function to directly approximate the
MDs. First, we introduce a class of two-argument functions in
Definition 4 that serve as abstract MDs.

Definition 4 (A class of two-argument functions).

�̄�abs (𝑥, 𝑡) ≜𝑔
(( 𝑥

1 − 𝑥

) 𝑝
·
( 𝑡

1 − 𝑡

)𝑞)
,

(𝑥, 𝑡) ∈ [0, 1)2, 𝑝, 𝑞 > 0, (35)

where

𝑔(𝑢) = 𝑏𝑑𝑒−𝑎𝑢

(𝑏 + 𝑐𝑢)𝑑
, 𝑎, 𝑐, 𝑑 ≥ 0, 𝑏 > 0, (𝑎, 𝑐), (𝑎, 𝑑) ≠ (0, 0).

To make �̄�abs (·, 𝑡) right-continuous, we define �̄�abs (𝑥, 1) = 0,
𝑥 ∈ [0, 1] and �̄�abs (1, 𝑡) = 0 , 𝑡 ∈ [0, 1].

Next, we explore the possibility of approximating MDs
directly by (35). To find parameters (𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞) such that
𝐹abs closely approximates the MD, we match the moments
of 𝐹abs with moments of the MD. We denote the (𝑧, 𝑡)-th
moments of the abstract MD as �̃�𝑧 (𝑡), 𝑧 ∈ C.

There are two ways to proceed with this process: finding
parameters that exactly match six moments, or finding the
parameters that minimize the distance between the moments
of 𝐹abs and moments of the MD. In terms of the choice of
moments, there are two options. First, we choose the first few
moments for the same 𝑡, i.e., the 1st to 𝑛-th moments for the
same 𝑡. Second, we choose 0 < 𝑡 ≤ 1/2, since in practice, we
are mainly interested in small values of 𝑡.

To find parameters that exactly match six moments, we
formulate the following problem.

Problem 1 (Exactly matching six moments). Find
(𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞) such that

𝑁∑︁
𝑛=1

6/𝑁∑︁
𝑘=1

∥𝑚𝑛 (𝑡𝑛𝑘) − �̃�𝑛 (𝑡𝑛𝑘)∥ = 0, (36)

where 𝑁 ∈ {1, 2, 3, 6}, 𝑡𝑛𝑘 ∈ [0, 1] and 𝑡𝑛𝑘1 ≠ 𝑡𝑛𝑘2 , 𝑘1 ≠ 𝑘2.

Since Problem 1 is non-linear and non-convex, it is difficult
to determine whether a solution exists or not, and if it does,
the solution can be found numerically only when proper initial
points for the algorithm are chosen. Further, the accuracy of
the abstract MD is not guaranteed. To address this issue, we
run MATLAB’s fsolve multiple times, each time starting from
a randomly chosen initial value.

The second problem asks for the parameters that minimize
the gap between the moments of �̄�abs and moments of the MD.

Problem 2 (Minimization).

(𝑎, 𝑏, 𝑐, 𝑑, 𝑝, 𝑞)

= arg min
𝑁∑︁
𝑛=1

𝐾∑︁
𝑘=1

∥𝑚𝑛 (𝑡𝑛𝑘) − �̃�𝑛 (𝑡𝑛𝑘)∥2
2, (37)
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Fig. 5. The reconstructed cdfs 𝐹 (𝑥 ) of the conditional success probability
at threshold 𝑡 = 0.2 of a Poisson bipolar network and the GP approximation.
Their total distance at 𝑡 = 0.2 is 0.0096, which is a good match per Table I.

where 𝑁𝐾 ≥ 6, 𝑡𝑛𝑘 ∈ [0, 1] and 𝑡𝑛𝑘1 ≠ 𝑡𝑛𝑘2 , 𝑘1 ≠ 𝑘2.

If 𝑁𝐾 = 6, Problem 2 provides a solution to Problem 1 if
the minimum is 0. Involving different 𝑡 facilitates the process
of finding 𝑞 because 𝑞 is the exponent of 𝑡/(1 − 𝑡) in �̄�abs.

We provide an example of approximating the SF MD of
a Poisson bipolar network model (𝜆 = 1, 𝑝 = 2/3, 𝑅 =

1/5, 𝛿 = 1/2) by the two-dimensional method (minimization)
at 𝑡 = 0, 0.2, 0.4, 0.6, 0.8, 1 and 𝑁 = 6. The total distance is
0.015, which indicates that the abstract MD approximation is
an acceptable match in this case.

V. PERFORMANCE EVALUATION OF APPROXIMATIONS

In this section, we mainly focus on the performance evalu-
ation of the one-dimensional methods. To make comparisons,
moment sequences and a reference function serving as the
ground truth are needed. We would like to evaluate/compare
the methods based on moment sequences that are likely to
occur in wireless applications.3

Accordingly, we focus on the generation of moments from
real network models where analytic expressions of the mo-
ments have been derived (see Section V-A) and where analytic
expressions of MDs have been derived (see Section V-B). The
reference function of the first kind is obtained by the GP
method. The randomization is done over the parameters. This
way, moment sequences relevant for wireless applications are
obtained.

A. Comparison Based on MDs with Known Analytic Expres-
sions of Moments

In this subsection, the expressions of the moments are
known but the underlying MDs are unknown. We focus on
the Poisson bipolar network, where the transmitters form a
homogeneous Poisson point process (PPP) Φ of intensity 𝜆

3More broadly, we may want to evaluate their performance via randomly
generated MDs. However, no method exists for generating uniformly dis-
tributed random MDs. The method in [34] of generating uniformly ran-
domly distributed moment sequences of the univariate distributions cannot
be extended to the MDs. Also, the generation of uniformly random moment
sequences may distract from the practical scenarios, where certain sequences
are more likely to occur.

and each transmitter has a dedicated receiver at distance 𝑅

in a random orientation [35, Def. 5.8]. In each time slot,
nodes in Φ independently transmit with probability 𝑝, and all
channels are subject to Rayleigh fading and power-law path
loss with exponent 𝛼. The (𝑏, 𝑡)-th moment of the SF MD
of this network model is derived from the (𝑏, 𝑡/(1 − 𝑡))-th
moment of the corresponding SIR MD [8, Theorem 1] as4

𝑚𝑏 (𝑡) = exp
(
−𝐶

( 𝑡

1 − 𝑡

) 𝛿
𝑝𝑏 2𝐹1 (1 − 𝑏, 1 − 𝛿; 2; 𝑝)

)
, (38)

where 𝛿 ≜ 2/𝛼 and 𝐶 ≜ 𝜆𝜋𝑅2Γ(1 − 𝛿)Γ(1 + 𝛿).
As discussed earlier, we use MDs obtained by the GP

method as the reference and we consider the approximation
on a finite set U50,10. Denote the raw function as 𝐹GP |U50,10

and the polished one as �̂�GP. For the beta approximation, at
each value of 𝑡 considered, the first two moments 𝑚1 (𝑡) and
𝑚2 (𝑡) have been applied to reconstruct the cdf of the cccdf
at threshold 𝑡 and the moments are numerically evaluated
by (40). We use reconstruction over the finite set U50,10 for
the beta approximation. For the CM, BM, and FL method,
at each value of 𝑡 considered, a moment sequence of length
𝑛, i.e., (𝑚𝑘 (𝑡))𝑛𝑘=1, has been applied to reconstruct the cdf
of the cccdf at threshold 𝑡 and the (𝑘, 𝑡)-th moment is
numerically evaluated by (40). We use reconstruction over
the finite sets U10,10, U𝑛+1,10 and U𝑛,10, respectively. Denote
the raw functions as 𝐹CM |U10,10 , 𝐹BM |U𝑛+1,10 and 𝐹FL |U𝑛,10 ,
respectively. The polished ones are denoted as �̂�CM, �̂�BM,
and �̂�FL, respectively. Due to the high complexity of the CM
method, we only consider it when 𝑛 ≤ 6. Also, because of the
limitation of the standard beta approximation, we can only use
2 moments even when there are more moments available.

Since there are only two parameters 𝛿 and 𝑝 in (38), we set
𝛿 = (𝑉 + 1)/2, where 𝑉 ∼ Beta(2, 2) and 𝑝 ∼ Beta(2, 2). In
Figure 6, we plot the average of the total distance, maximum
vertical distance, maximum horizontal distance 1 and 2 versus
the number of moments for the beta approximation and the
CM, BM, and FL method. The average is taken over 100
randomized versions of (38). From Figure 6, we observe that
the average total distance decreases as the number of moments
increases for the CM, BM, and FL method. But that of the CM
and FL method is much smaller than that of the BM method.
The beta approximation achieves an acceptable match. The
CM method achieves a mediocre match with 6 moments. The
FL method achieves an excellent match with only 15 moments
and achieves a perfect match with 30 moments while the BM
method stays at a mediocre/acceptable match from 10 to 30
moments. In contrast, the CM, BM, and FL method do not
perform well with respect to the maximum vertical distance,
but they all show a decreasing trend.

In terms of the maximum horizontal distance 1 and 2, since
the CM, BM, and FL method only guarantee convergence in
the vertical direction, there is no guarantee in the horizontal
direction. But the results show the decreasing trend of the
maximum horizontal distance; here, the FL method performs
better than the BM method and the beta approximation.

4In [23], moment sequences have been categorized into six types based on
their tail behavior. This class of moment sequences is rich enough to produce
at least 2 out of 6 decay types introduced in [23, Def. 4.3].
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The computation time of the two methods will be discussed
later in Section V-B.

B. Comparison Based on MDs with Known Analytic Expres-
sions of Distributions

In this subsection, we consider a class of cases where the
underlying MDs are known. We consider the the downlink
cellular network where BSs form a stationary PPP Φ with
nearest-BS association, power-law path loss 𝛼 and Rayleigh
fading. Only the nearest interfering BS is considered. This is
a special case (𝑚 = 1) of the model considered in Figure 3.
The SF MD is [7, Cor. 3]

�̄� (𝑥, 𝑡) = min

{
1,

(
(1 − 𝑥) (1 − 𝑡)

𝑥𝑡

) 𝛿}
(39)

where 𝛿 = 2/𝛼. The corresponding (𝑏, 𝑡)-th moment is

𝑚𝑏 (𝑡) = 𝛿
(

1 − 𝑡
𝑡

) 𝛿
B∗ (1 − 𝑡; 𝑏 − 𝛿, 𝛿), (40)

where B∗ (𝑧; 𝑎, 𝑏) =
∫ 1
𝑧
𝑥𝑎−1 (1 − 𝑥)𝑏−1 𝑑𝑥 is the upper incom-

plete beta function.

Remark 2 (Abstract MDs). The SF MDs in (39) can also
be replaced by the more general abstract MDs. However, the
abstract MDs may lead to sequences that are unlikely to occur
in any practical scenarios.

We use the SF MD evaluated over a finite set U50,10 as the
reference and denote it as 𝐹 |U50,10 . For the beta approximation,
at each value of 𝑡 considered, the first two moments 𝑚1 (𝑡)
and 𝑚2 (𝑡) have been applied to reconstruct the cdf of the
cccdf at threshold 𝑡 and the moments are numerically evaluated
by (40). We use reconstruction over the finite set U50,10 for
the beta approximation. For the CM, BM, and FL method,
at each value of 𝑡 considered, a moment sequence of length
𝑛, i.e., (𝑚𝑘 (𝑡))𝑛𝑘=1, has been applied to reconstruct the cdf
of the cccdf at threshold 𝑡 and the (𝑘, 𝑡)-th moment is
numerically evaluated by (40). We use reconstruction over
the finite sets U10,10, U𝑛+1,10 and U𝑛,10, respectively. Denote
the raw functions as 𝐹CM |U10,10 , 𝐹BM |U𝑛+1,10 and 𝐹FL |U𝑛,10 ,
respectively. The polished ones are denoted as �̂�CM, �̂�BM
and �̂�FL, respectively. Due to the high complexity of the CM
method, we only consider it when 𝑛 ≤ 6. Also, because of the
limitation of the standard beta approximation, we can only use
2 moments even when there are more moments available.

Since the only parameter in (39) is the path-loss exponent
𝛼, we set 𝛿 = (𝑉 + 1)/2, where 𝑉 ∼ Beta(2, 2) as before. In
Figure 7, we plot the average of the total distance, maximum
horizontal distance 1 and 2, and computation time versus
the number of moments for the beta approximation and the
CM, BM, and FL method. The averaging is taken over 100
randomized versions of (39). From Figure 7, we observe that
the average total distance decreases as the number of moments
increases for the CM, BM, and FL method, while the beta
approximation stays at a mediocre match. The CM method
achieves an acceptable match with only 4 moments. The FL
method achieves an excellent match with only 15 moments
and achieves a perfect match with 30 moments while the
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Fig. 6. The average of the total distance, maximum vertical distance,
maximum horizontal distance 1, and maximum horizontal distance 2 versus
the number of moments for the BM and FL method. Averaging is performed
over 100 randomized versions of (38).
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BM method stays at an acceptable match from 10 to 30
moments. The average of the maximum vertical distance is not
shown since it is very similar to the one in Figure 6b. These
decreasing trends of the CM, BM, and FL method regarding
the vertical distance are consistent with our observations in
Section V-A since all these three methods guarantee conver-
gence. For the same reason mentioned in Section V-A, the BM
and FL method do not perform well regarding the maximum
distance; however, different from Figure 6, the BM method
generally performs better than the FL method which probably
results from the fact the the MD is 1 for 𝑥 ∈ [0, 1 − 𝑡].

Since the computation time in Section V-A is very similar
to the one in Section V-B, we only show the latter. From
Figure 7d, the computation time of the CM is more than 50
times of the computation time of the other methods. Also, we
observe that the computation time of the BM and FL method
grows quadratically as the number of moments increases. Up
to 30 moments, it is close to 3 s for the FL method and
close to 0.3 s for the BM method (each of which is operated
for 9 rounds in order to reconstruct the MD). Besides, the
computation time of the BM method is about 1/10 of that of
the FL method. Even though the two methods are both linear
transforms, there are some differences resulting the different
computational cost. First, the FL method requires three times
of the number of multiplications of the BM method. Second,
the largest entry in the transform matrix of the FL method is
much larger than the one of the BM method, therefore, the
digit requirement of the FL method is about twice of that of
the BM method. Last, the Legendre polynomials in the FL
method takes a longer time to compute than the step function
in the BM method.

Based on the results presented in Section V-A and Sec-
tion V-B, it can be concluded that the beta approximation
and the CM, BM, and FL method have their own advantages
and disadvantages. The beta approximation and BM method
demonstrates efficiency in terms of computation time, but
their accuracy is not as good as the CM and FL method.
Conversely, the CM and FL method take longer to run but
produce more accurate reconstructions. The choice of the best
method ultimately depends on the specific objective and the
desired trade-off between computational cost and accuracy.
The computational complexity is determined by two tasks:
the calculation of moments and the method itself. This choice
may also be affected by the information we know about the
distribution. We divide the entire process into three parts:
identifying the bottleneck of the computational cost which
could be either the moments or the reconstruction methods;
determining the maximum allowable order of the moments;
and selecting the appropriate method.

To include all the cases, the complete guidelines in choosing
the best method are as follows:

• If rigorous bounds are required: the CM inequalities needs
to be calculated.

• Otherwise, we identify the bottleneck of the compu-
tational cost by considering the computation time of
the moments and Figure 7d. If the bottleneck is the
reconstruction methods, the maximum allowable order of
the moments is set to be a large number, such as 1000;
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otherwise, we determine the maximum order based on
the computational cost limit.

– If the maximum order is less than 10: we will choose
between the CM method and the beta approximation.
The final choice depends on the trade-off between
the accuracy and computational complexity, which
can be found in Figure 6 and Figure 7. Specifically,
if we can only afford calculating 2 moments or the
distribution is known to be uni-modal and smooth,
the beta approximation is recommended.

– If the maximum order is greater than or equal to
10: we will choose between the BM method or beta
approximation (if the distribution is known to be
uni-modal and smooth) and the FL method. The
final choice depends on the trade-off between the
accuracy and computational complexity, which can
be found in Figure 6 and Figure 7. Generally, we
suggest the BM method/beta approximation for low
complexity and we recommend the FL method for
high accuracy. Moreover, if the BM/FL method is
chosen, we suggest calculating 15 to 20 moments,
which usually produces a good match.

VI. APPLICATION TO POISSON CELLULAR NETWORKS

In this section, we focus on a specific wireless network
model and show how we utilize the above-mentioned methods,
i.e., the CM, BM, and FL method, to infer the number of mo-
ments required, to derive the tightest possible bounds for the
distribution, and to recover the distribution. The performance
of the methods are shown in one particular case, and the results
agree with our comparison in Section V-A and Section V-B. At
the end of the section, we show how the reconstructions can
be used to infer and further improve the network performance.
We consider the standard downlink Poisson cellular model
with nearest-base station association, power-law path loss and
Rayleigh fading. The (𝑛, 𝑡)-th moment is given by [8]

𝑚𝑛 (𝑡) =
1

(1 − 𝑡)𝑛2𝐹1 (𝑛, 1; 1 − 𝛿, 𝑡) , 𝑡 ∈ [0, 1), (41)

where 2𝐹1 is the Gauss hypergeometric function and 2/𝛿 is the
path loss exponent. Here we consider the distribution of the
cccdf at the SF thresholds 𝑡 = 0.387, 0.5, 0.613 (corresponding
to the SIR thresholds −2 dB, 0 dB, 2 dB) and 𝛿 = 0.25, 0.5, 0.7.
We derive the number of moments needed, calculate the CM
inequalities, and apply the recommended CM, BM and FL
method, to recover the distribution of the considered cccdf.

First, we find the number of moments that are reasonable
for reconstruction with acceptable accuracy, i.e., at least a
mediocre match. Figure 8 shows the total distance between the
infima and suprema as a function of the number of moments
at different SF thresholds and 𝛿. At 𝑛 = 20, the total distance
is less than 0.1, which means that the total distance between
the average of the infima and suprema and the original cdf
is less than 0.05, and thus the average is at least a mediocre
match. From Figure 8a we observe that the curves flatten after
𝑛 approaches 30, which indicates that increasing the number
of moments do not offer much benefit for the single MD (with
fixed 𝛿). Similarly, from Figure 8b where 𝛿 = 0.25, the curve
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Fig. 8. The total distance between the infima and suprema as a function of
the number of moments for different 𝑡 and 𝛿.

flattens after 𝑛 = 20. However, the two curves for 𝛿 = 0.5
and 0.7 keep promising gradients even after 𝑛 approaches 40,
which indicates that under a small path-loss exponent setting,
increasing the number of moments is still helpful. That said,
we have to keep in mind that the more moments, the digit
requirements (both for moments and for each method) become
more strict. Also, with proper interpolations, we can infer that
at least 100 or more moments are required to guarantee the
average to be a perfect match for the original cdf.

Next, we focus on the case where 𝑡 = 0.387 and 𝛿 = 0.5.
The corresponding infima and suprema at 𝑛 = 20 are shown in
Figure 9. Since the actual cdf of the cccdf is not available, we
use the (time-consuming) approximation by the GP method as
a reference.

We apply the beta approximation and the CM, BM, and
FL method to recover the distribution, using 20 moments for
reconstruction. The absolute difference and the total distance
are shown in Figure 10 and Table II, respectively. We can
observe that the CM, BM, and FL method outperform the beta
approximation. In the meantime, the CM, BM, and FL method
take longer time to compute than the beta approximation.
But the computation of the FL and BM method takes much
less time than computing the CM method. Please note that in
Table II, we only apply the methods for 𝑡 = 0.387, while in
Figure 6 and Figure 7, we apply the methods for nine different
values of 𝑡. Therefore, the computation time in Figure 6 and
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TABLE II
TOTAL DISTANCE, THE TYPE OF MATCH AND COMPUTATION TIME OF

EACH METHOD

Method FL BM CM avg. beta
Total distance 7.09 × 10−4 0.0065 0.0018 0.0101

Match perfect good perfect acceptable
Comp. time (s) 0.2488 0.0469 22.52 0.0052
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Fig. 9. The reconstructed cdfs of the cccdf 𝑃𝑡 at threshold 𝑡 = 0.387 of the
downlink Poisson cellular network via the GP approximation and the inf. and
sup. via the CM inequalities at 𝑛 = 20.

Figure 7 is expected to be about nine times of the computation
time in Table II.

Finally, we show how the reconstructions can be used to
infer and optimize the network performance. Recall that for
an SF MD 𝐹 (𝑥, 𝑡) = 𝑦, it can be interpreted as the reliability
𝑥 at the threshold SF value 𝑡 that a fraction 1 − 𝑦 of users
achieves. For example, choosing 𝑡 and finding the pairs (𝑡, 𝑥)
for 𝐹 (𝑥, 𝑡) = 0.05 yields the reliability 𝑥 given a target SF
value 𝑡 that 5% of users cannot achieve, i.e., the pairs of the
reliability and the SF threshold value at the 5-th percentile. In
other words, it is the reliability and the SF threshold value that
95% of users achieve. In the following discussion, we call the
pairs (𝑡, 𝑥) for 𝐹 (𝑥, 𝑡) = 𝑦 as the pairs for the (100𝑦)-th user
percentile. To make it more easy to understand, we show the

0 0.2 0.4 0.6 0.8 1

x

0

0.005

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

0.05

A
b

s
. 

d
if
fe

re
n

c
e

CM

FL

BM

beta

Fig. 10. The abs. diff. between the reconstruction via the average of the
inf. and sup. of the CM inequalities, the FL and BM method, and the beta
approximation and the reference by the GP method of the downlink Poisson
cellular network.
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Fig. 11. Pairs (𝜃, 𝑥 ) and (log2 (1+𝜃 ) , 𝑥 ) where 𝐹 (𝑥, 𝜃/(1+𝜃 ) ) = 0.05, 0.1
and 0.5 for the BM and FL method at 𝑛 = 20.

pairs (𝜃, 𝑥) instead of (𝑡, 𝑥), where 𝜃 = 𝑡/(1 − 𝑡) is the SIR
threshold value corresponding to the SF threshold value 𝑡.

Figure 11 shows the pairs (𝜃, 𝑥) and the spectral efficiency-
reliability tradeoff (log2 (1+ 𝜃), 𝑥) via the BM and FL method
for the 5-th, 10-th, and 50-th user percentiles, respectively. By
incorporating these tradeoff curves, readers can gain valuable
insights into the relationship between spectral efficiency and
reliability, allowing them to make informed decisions to opti-
mize wireless network performance based on specific require-
ments. For instance, given a target spectral efficiency that 95%
of users must achieve, they can determine the corresponding
reliability using the curves provided and optimize the network
performance based on this procedure.

VII. CONCLUSION

To recover the MDs from moments, the widely used beta
distribution is simple but inadequate in accurately approximat-
ing many distributions, such as multi-modal or non-smooth
ones. Alternative approaches may not preserve the properties
of MDs and possess their own advantages and disadvan-
tages, which requires a practical tweaking mapping and a
comprehensive comparison for choosing the right one. Our
work provides a rigorous foundation and practical solutions
in reconstructing MDs. A tweaking mapping for adjusting
approximations and a categorization for a consistent and
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objective comparison of the quality of approximations are
presented. Based on our findings, for each MD at a specified
threshold value 𝑡 of the PRV, we suggest using 20 moments
(if possible) via the proposed/improved BM or FL method to
recover the distribution 𝐹 (·, 𝑡). The resulting approximation is
likely to be at least a good match to the exact one. Also, with
the given moments, the infima and suprema of the distribution
are obtained via the CM inequalities. Further, the tightest range
of the quantile function 𝑄2 (�̄�) at a certain point (𝑦, 𝑡) can
be found by Algorithm 1. Depending on the objective, the
beta approximation, the CM, BM, or FL method is chosen
for reconstruction. Specifically, with 10 or more moments
calculated, the FL method is preferred for accuracy, while
the BM method is preferred for low computational cost. With
less than 10 moments calculated and knowing that the dis-
tribution is uni-modal and smooth, the beta approximation is
recommended. When only 2 moments are calculated, the beta
approximation is preferred as well. Otherwise, we recommend
the CM method. When moments for different values of 𝑡 are
given, we can apply the above procedures to them and obtain
the complete MD by linear interpolation.

APPENDIX

A. Code

We provide solutions to six key problems in MATLAB that
occur in the use of MDs. These programs can be found at [30].
The pseudo codes and corresponding scenarios are provided
below.

• Algorithm 2: Use the CM inequalities to find infima and
suprema of a moment sequence.

• Algorithm 3: Produce uniformly random moment se-
quences.

• Algorithm 4: Compare the FL method and the BM
method by a random moment sequence with specific
decay rate.

• Algorithm 5: Use a moment sequence with an analytical
expression to recover the cdf.

• Algorithm 6: Find the number of moments needed such
that the total distance between infima and suprema is less
than 𝜖 = 1/100.

• Algorithm 7: Having 𝑁 > 1 moments available, plot
the difference of the supremum and the infimum at the
95% point (of the ccdf) as a function of the number of
moments, from 1 to 𝑁 moments.

Algorithm 2 Algorithm for finding the infima and suprema of
all possible cdfs from a moment sequence
Input: The moment sequence (𝑚𝑘)𝑛𝑘=1, the point of interest 𝑦 ∈

(0, 1).
Output: The infimum inf𝐹∈F𝑛

𝐹 (𝑦) and supremum sup𝐹∈F𝑛
𝐹 (𝑦).

1: Use the CM inequalities (CMClass) to calculate inf𝐹∈F𝑛
𝐹 (𝑦)

and sup𝐹∈F𝑛
𝐹 (𝑦).

Algorithm 3 Algorithm for producing uniformly random
moment sequences
Input: Length of the moment sequence 𝑛.
Output: Randomly distributed moment sequence (𝑚𝑘)𝑛𝑘=1.

1: Use the canonical moment method [23, Alg. 1] (canonicalMo-
mentClass) to generate (𝑚𝑘)𝑛𝑘=1.

Algorithm 4 Algorithm for comparing the FL and BM method
via a random moment sequence with specific decay rate
Input: Length of the moment sequence 𝑛, decay type, decay rate

and corresponding decay parameters.
Output: Reconstructions via the FL and BM methods.

1: Use [23, Alg. 2] to generate the moment sequence with desired
properties.

2: Use the FL method (FLClass) and the BM method (BMClass)
to reconstruct the cdf via the moment sequence, respectively.

Algorithm 5 Algorithm for recovering the accurate cdf via a
moment sequence with an analytic expression
Input: The analytic expression for the moment sequence, and the

length of integer moments 𝑛.
Output: Reconstructed cdf 𝐹.

1: Use the GP method (GPClass) to recover the cdf 𝐹GP and set
𝐹 = 𝐹GP.

2: if 𝐹GP does not follow the basic properties of a cdf then
3: Use the FL method (FLClass) to reconstruct the cdf 𝐹FL via

the moment sequence of length 𝑛 and set 𝐹 = 𝐹FL.
4: end if

Algorithm 6 Algorithm to find the number of moments needed
for bounding cdf

Input: The accurate moments (𝑚𝑘)𝑁𝑘=1, points of interest (𝑦𝑘)
𝑗

𝑘=1,
and tolerance 𝜖 .

Output: The number of moments needed 𝑛
1: Set 𝑛 = 1 and 𝑑 = max1≤𝑘≤ 𝑗 sup𝐹∈F𝑛

𝐹 (𝑦𝑘) − inf𝐹∈F𝑛
𝐹 (𝑦𝑘),

where sup𝐹∈F𝑛
and inf𝐹∈F𝑛

𝐹 (𝑦𝑘) are obtained from the CM
inequalities with moment sequence (𝑚𝑘)𝑛𝑘=1.

2: while 𝑑 > 𝜖 or 𝑛 < 𝑁 do
3: Set 𝑛 = 𝑛 + 1 and 𝑑 =

max1≤𝑘≤ 𝑗
(
sup𝐹∈F𝑛

𝐹 (𝑦𝑘) − inf𝐹∈F𝑛
𝐹 (𝑦𝑘)

)
, where

sup𝐹∈F𝑛
and inf𝐹∈F𝑛

𝐹 (𝑦𝑘) are obtained from the CM
inequalities with moment sequence (𝑚𝑘)𝑛𝑘=1.

4: end while

Algorithm 7 Algorithm for plotting the difference of the
supremum and the infimum at the 95% point as a function
of the number of moments
Input: The accurate moments (𝑚𝑘)𝑁𝑘=1, selected points (𝑦𝑘)

𝑗

𝑘=1.
Output: The difference of the 95% point (𝑑𝑘)𝑁𝑘=1.

1: Set 𝑛 = 1.
2: while 𝑛 ≤ 𝑁 do
3: Obtain sup𝐹∈F𝑛

𝐹 (𝑦𝑘) inf𝐹∈F𝑛
𝐹 (𝑦𝑘) from the CM inequal-

ities with moment sequence (𝑚𝑘)𝑛𝑘=1.

4: Do linear interpolations for
(
sup𝐹∈F𝑛

𝐹 (𝑦𝑘)
) 𝑗
𝑘=1

and(
inf𝐹∈F𝑛

𝐹 (𝑦𝑘)
) 𝑗
𝑘=1.

5: Find the values of the 5% point, set 𝑑𝑛 as their difference,
and set 𝑛 = 𝑛 + 1.

6: end while
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