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Abstract—The current analysis of wireless networks with
transceivers confined to streets is primarily based on Poissonian
models, such as Poisson line processes and Poisson line Cox
processes. We demonstrate important scenarios where a model
with a finite and deterministic number of streets, termed the
binomial line process (BLP), is more accurate. We characterize
the statistical properties of the BLP and the corresponding
binomial line Cox process (BLCP) and apply them to analyze
the performance of a network whose access points are deployed
along the streets of a city. Such a deployment scenario will
be typical for 5G and future wireless networks. In order to
obtain a fine-grained insight into the network performance, we
derive the meta distribution of the signal-to-interference and
noise ratio. Accordingly, we investigate the mean local delay
in transmissions and the density of successful transmission.
These metrics, respectively, characterize the latency and coverage
performance of the network and are key performance indicators
of next-generation wireless systems.

Index Terms—Stochastic geometry, Line processes, Cox pro-
cess, Wireless communications

I. INTRODUCTION

A. Motivation

Line processes are useful statistical tools for studying
various engineering problems such as transportation and urban
infrastructure planning, wireless communications, and indus-
trial automation scenarios [3], [4]. In the two-dimensional
Euclidean plane, a line process is a random collection of lines
whose locations and orientations reside in a parameter space
(to be defined shortly) according to a spatial stochastic process.
Leveraging a line process, researchers often study doubly
stochastic processes called Cox processes, which are Poisson
point processes defined with the line process as their restricting
domain [5]. These models are key in deriving insights into
engineering and planning questions such as: 1) How many
electric vehicle charging points does a city need to have along
the streets? 2) From a typical urban home, how far is the
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nearest bus stop? Accordingly, what should be the density
of bus stops in a given city? 3) For on-road deployments of
wireless small cells as envisaged in 5G and future networks,
what would be the cellular coverage performance of a user
in the city? In the context of wireless communications in
particular, AT&T plans to deploy compact Ericsson street
radio small cells integrated with the street lights to accelerate
5G deployments [6]. Similarly, New York City has already
deployed such small cells focusing on high-speed connec-
tivity for pedestrian users [7]. Such deployments seamlessly
integrate access points (APs) in the urban infrastructure to
provide ubiquitous connectivity to the users. In this regard,
the network coverage of any point in the network for such
on-street deployed small cells is a significant point of interest
for network operators.

In this paper, we examine a novel line process called
BLP, which is a shift from the traditional Poisson processes
used in wireless communication. Our research has shed light
on the key characteristics of the BLP and the Cox process
driven by it, i.e., the binomial line Cox process (BLCP),
providing new insights into how they can be applied to
wireless communication scenarios in practical urban settings.
The BLP and BLCP offer a more accurate depiction of road
networks in both urban and suburban areas, taking into account
varying levels of density and street structures. By analyzing
the density characteristic of BLP, it can be used for optimizing
the placement of APs, reconfigurable intelligent surfaces (RIS)
deployment, vehicle charging points, and estimating accident-
prone intersection areas, among others.

B. Related Work

In the literature, several line processes have been used
to study the structure of streets, e.g., the PLP, the Poisson
Voronoi tessellation (PVT), and the Poisson lilypond model
[9]–[15]. Of all the candidate line processes, the most pop-
ular one for modeling streets, especially in wireless network
studies, is the PLP. The doubly stochastic Poisson process
driven by the PLP was first studied in [9] where the author has
characterized the Palm distribution and the Laplace functional
of the Poisson line Cox process (PLCP) and employed it to
study the coverage performance of a wireless network. The sta-
tistical properties of the PLP provide significant tractability in
developing insights into the engineering problems of interest.
For example, in [16], the authors have employed the PLCP for



2

(a)

-1000 -500 0 500 1000
-1000

-500

0

500

1000

(b) (c)

Fig. 1. PVT models for fitting for streets of Lyon [8]. For a PVT, the model parameter is the underlying Poisson point process
(PPP) density, (b) A BLP with nB = 10 and R = 100 (c) A Poisson line process (PLP) whose underlying PPP has intensity
nB
2πR

with nB = 10 and R = 100. Note: Here, R is the circle’s radius in which BLP lines are generated.
PLP BLP

Generating domain Open Cylinder: D := [0, π) × (−∞,∞) Closed Cylinder: D := [0, π) × [−R,R]
Intensity of point process λ -

Number of points Poisson Distributed - (2πλR)ke(−2πλR)

k!
Fixed - nB

Dist. of points in D θ ∼ U [0, π], r ∼ U [−R,R] θ ∼ U [0, π], r ∼ U [−R,R]
Spatial Distribution Homogeneous Non-homogeneous

Table I: Difference between PLP and BLP.

studying the on-street deployment of small cell base stations
(BSs) and derived the performance of a pedestrian user in a
multi-tier multi radio access technique (RAT) cellular network.
Choi et al. [17] introduce an integrated design for cellular
networks, in which the BSs are distributed according to a
PPP, and vehicles act as both BSs and users. It simulates the
distribution of vehicles using PLCP, and uses Palm calculus to
analyze statistical aspects like coverage probability and user
association. The authors then extended their work in [18],
[19], and [20] where they first analyze statistical properties of
the PLCP to an extensive scale, then model and analyze the
performs of a vehicular network in correlated blockages; even-
tually they develop a framework to analyze user behavior in
a PLCP-based vehicular network with road-side units (RSUs)
and vehicle relays, thus determining user behavior changes in
a heterogeneous network. Furthermore, Choi et. al in [21],
have developed an analytical framework to examine the line-
of-sight (LOS) coverage area in vehicular networks.

Chetlur et. al in [22] have studied a vehicular network
with wireless nodes distributed along roads using Poisson
processes to model roadways and node locations, determining
coverage probability for a typical receiver while addressing
interference challenges. Similarly, in [23], [24], the authors
have characterized the performance of C-V2X networks based
on the PLP model for streets and, consequently, PLCP for
emulating vehicular nodes. Recently, authors in [25] explore
the analytical characterization of the Manhattan Poisson line
Cox process (MPLCP) but are yet to provide a vehicular net-
work framework for performance analysis. Likewise, authors
in [26] explore a stochastic framework for the application of
platooning using a triply-stochastic point process PLP-MCP
and derive load distribution served by the typical BS. However,
one major drawback of the PLP is that it fails to accurately
consider some salient features of urban street networks, e.g.,
finite street lengths, T-junctions, and varying density of streets

across a given city. In [27], authors have introduced a trans-
dimensional approach to simplify the analysis of complex
vehicular network models, proving improved accuracy under
shadowing offering insights for network congestion control
even for non-linear street geometries. The recent work by
Jeyaraj et al. [12] proposed a generalized framework for Cox
models to study vehicular networks. The authors significantly
improved the accuracy of line process models to account for
finite street lengths by considering T-junctions, stick processes,
and Poisson lilypond models. However, their work does not
consider varying line densities from the perspective of a single
city. This is an important aspect of applications such as
urban transport networks and wireless deployment planning,
in which streets near the city center are denser than in the
suburbs. This paper primarily examines the characteristics of
these urban scenarios using a non-homogeneous line process.

To illustrate this, in [8], researchers have emulated the
streets of Lyon with multi-density Poisson-Voronoi tessella-
tions (PVTs) and Poisson line tessellations (PLTs). Details on
the mathematical framework to develop these models can be
found in [28]. As shown in Fig. 1a, the authors tuned the
parameters of the PVT model to emulate the distinct street
structures in different parts of the city, e.g., the red-colored
zone corresponds to a PPP of intensity 107 km−2 as compared
to the green (PPP with intensity 50 km−2) or purple. In
contrast, this paper introduces a novel stochastic line process
that, with a fixed set of parameters, can emulate distinct street
layouts in both the city center and suburbs.

Furthermore, since the city administrations construct the
streets on a case-by-case basis, a deterministic number of
streets is more likely to characterize the street network in a
city. In essence, for initial infrastructure planning, it’s more
relevant to address the questions mentioned when a specific
number of streets, denoted as nB, exists in a city rather
than focusing on street density. This prompts us to study the
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Features Our
work [29] [17] [22]

[5] [27]

Decreasing lines ✓ ✓ ✗ ✗ ✗
Spatial characterization
of line process ✓ ✗ ✗ ✓ ✓

Non-homogeneous
density of AP/BS ✓ ✗ ✗ ✗ ✗

Success probability ✓ ✗ ✓ ✓ ✓
Performance analysis
w.r.t. location of user ✓ ✗ ✗ ✗ ✗

Meta distribution ✓ ✗ ✗ ✗ ✓
Network optimization ✓ ✗ ✗ ✗ ✓

Table II: Difference between our work and other papers.

properties of the street network parameterized by nB.
To address these aspects of urban street networks, recently,

in a short note, we have introduced the BLP as a new stochastic
line process that consists of a deterministic number of lines
generated in a bounded generating set [29]. Fig. 1 shows a
realization of BLP and PLP, which helps us visualize the
difference in the network formed by them. In Fig. 1b, we
plot a BLP realization with nB = 10 streets within a distance
of R = 100 from the origin, contrasting it with a PLP
realization in Fig. 1c where the generating PPP has an intensity
of nB/(2πR) = 0.016. It is apparent that the BLP captures
a single city’s varying street length densities by virtue of its
non-stationarity, while the stationary PLP-based models are
limited to a single fixed density. Table I points out the major
difference between BLP and PLP. As will be revealed later,
the BLP is either characterized by its model parameters - nB

and R (the city radius), or its statistical features such as the
line length density and the intersection density.

Difference from the existing works: Table II effectively
highlights the differences between existing works and this
paper. In contrast to the existing literature, this paper offers a
fresh perspective on the non-homogeneous spatial geometry
of road structures in urban and sub-urban cities. None of
the existing papers have considered such a stochastic model
and developed a framework for location-based performance
analysis of users in a city. Ghatak in [29] introduced the
novel BLCP model and derived its distance-based probability
distributions. However, the work [29] is just an introduction,
and it does not truly characterize the BLP as a prospective
model for modeling road networks. Likewise, in comparison to
papers mentioned in Table II, our work showcases its novelty.
Most of the features of our work are absent from other papers.
While some characteristics may be ubiquitous, they are not
truly common due to the complexity of the non-homogeneous
line process model.

C. Contributions

This research presents a novel viewpoint on the non-uniform
spatial configuration of road networks in urban and suburban
areas, which differs from the overly simplistic PLCP and other
homogeneous Cox vehicular network models. The statistical
characterization of the model validates its non-homogeneous
nature and how closely it resembles real-world road networks.
We present an analytical method for determining network
performance based on a user’s location in a city. The following

sections provide technical details on spatial characteristics and
system-level insights.

1) Characterization of BLP: First, we characterize the
statistical properties of the BLP, where we derive the radial
density features - the line length density and the intersection
density for the BLP. By comprehensively analyzing these
properties, we better understand BLP dynamics and show its
resemblance to real-world road networks. Furthermore, we
derive the distance distribution to the nearest intersection point
of a BLP from a given test point. Although critical in analyzing
real-world networks, these aspects of a BLP have not been
previously reported in the literature.

2) Derivation of Probability Generating Functional: Then,
we derive the probability generating functional (PGFL) of
a shifted and reduced version of BLCP. Importantly, BLCP
requires careful treatment and analysis due to its reduced palm
distribution compared with traditional PLCP due to the fixed
number of lines in the former.

3) Transmission Success Probability: Leveraging the ob-
tained PGFL, we analyze the transmission success probabil-
ities in wireless networks with APs locations modeled by a
BLCP. We assume that the receiver is connected to its nearest
transmitting node in the network. This model is adaptable for
simulating various network scenarios, such as Wi-Fi, APs in
industrial environments, on-street 5G small cell deployments,
etc. Unlike standard stationary models like PPP and PLCP,
which are limited to uniform setups, our analysis shows
insights into the location-based performance of a user.

4) Meta Distribution of SINR: We delve deeper into
the analysis of wireless networks modeled using the BLCP
by characterizing the meta distribution of the signal-to-
interference-plus-noise ratio (SINR). Specifically, we derive
the moments of the conditional success probability to study
the mean local delay and the density of successful transmis-
sions, providing valuable insights into network latency and
coverage. Subsequently, we analyze the optimum transmission
probability in the ALOHA scheme, which minimizes the delay
depending on the location of the user.

D. Notations

Line processes are denoted by calligraphic letters, e.g., L,
point processes are denoted by Φ, and a BLP typically consists
of nB lines unless specified otherwise. Capital math-font
characters, e.g., Z, indicate random variables, with specific
instances represented by lowercase letters, e.g., z. Scalar
quantities are denoted by small letters, e.g., d. In the two-
dimensional Euclidean plane, locations are bolded, e.g., x.
We use E for expectation and P for probability operators. For
reference, additional notations can be found in Table III.

II. CHARACTERIZATION OF BLP AND BLCP

A. Binomial Line Process

A BLP L is a finite collection of lines, i.e., nB in the two-
dimensional Euclidean plane. Formally,

L ⊂ Q ≜
⋃

r∈[−R,R],θ∈[0,π)

{(x, y) ∈ R2 : x cos θ + y sin θ = r}.
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Notation Description
L Binomial line process
Li i−th line of a BLP
R Radius of circle in which BLP L is generated
B((θ, r), t) A disk of radius t centered at (θ, r)
nB Number of lines of the BLP L
r0 Distance of test point from the origin.
l = r0 cos θ − r Perpendicular distance of test point located at (0, r0) to a line (θ, r).
DB(r0, t) Domain band corresponding to B((0, r0), t)
AD(r0, t) Area of the domain bands corresponding to B((0, r0), t)
VBLP(nB,B) Void probability of the BLP with nB lines on B
VBLCP(nB,B) Void probability of the BLCP with nB lines on B
ρS Density of length of chords/line segments in a bounded Borel set S
ρi(w) Density of length of chords/line segments in the i−th annulus of equal width w
R and ρ(r) Line length measure and density
ρ×,i(w) Density of intersections in the i−th annulus of equal width w
R× and ρ×(r) Intersection measure and density of BLP
ρp(λPPP) Intersection density of PLP
ADI(r0, t) Area of the domain bands corr. to the nearest intersection from the test point
Φi 1D PPP on Li

λ Intensity of Φi

C(θ, r) Length of a chord generated by a line corresponding to (θ, r) on B((0, r0), t).
ξ(r0) SINR received at the test point
pS(γ) Success probability at threshold γ
PM(γ, β) Meta distribution evaluated at SINR threshold γ and reliability threshold β

Table III: Summary of notations used in the paper.

Each line of L corresponds to the point of a BPP defined
on the finite cylinder D := [0, π) × [−R,R]. We call D, the
generating set or the domain set of L, and a point (θi, ri) ∈ D,
corresponding to a line Li ∈ L, the generating point of Li.
The line segment is drawn from the origin to (θi, ri) forms the
normal to the line Li. It should be noted that the generating
points1 do not form a BPP in B((0, 0), R) but rather in D.
Also, we see that regardless of the generating points forming
a BPP in a cylinder D in the representation space or in a disc
B((0, 0), R) in the Euclidean plane, the resulting line process
will always be non-homogeneous due to the finite domain of
the generating set.

Furthermore, the BLP is a non-stationary process, and
unlike stationary point processes (like PLP), the statistics of
the BLP cannot be characterized from the perspective of a
single typical point located, say, at the origin. However, due
to the isotropic construction of the BLP, the properties of
the BLP, as seen from a point, depend only on its distance
from the origin and not its orientation. Accordingly, without
loss of generality, we consider a test point located at (0, r0).
Consider the line Li and the disk B((0, r0), t), all the points
(θi, ri) ∈ D that result in Li intersecting B((0, r0), t), creates
a set DB(r0, t) which we refer as domain bands. The area of
DB(r0, t) to the total area of the generating set gives us the
probability of a single intersecting B((0, r0), t).

Lemma 1. The probability that no line of the BLP intersects
with B((0, r0), t) is

VBLP(nB,B((0, r0), t)) =
(
2πR−AD(r0, t)

2πR

)nB

,

1The former would imply uniform location of points in the disk, while
the latter correspond to uniform distances of the generating points between 0
and R.

where, nB is the number of lines of L and AD(r0, t), the area
of the so-called domain band is evaluated as

AD(r0, t) =



2πt; for r0 + t ≤ R

2πt− 2r0

√
1−

(
R−t
r0

)2
+2 (R− t) cos−1

(
R−t
r0

)
;

for r0 + t > R and r0 − t ≤ R

2πt−2r0

(√
1−
(

R−t
r0

)2
−
√
1−
(

R+t
r0

)2)
+2 (R− t) cos−1

(
R−t
r0

)
−2 (R+ t) cos−1

(
R+t
r0

)
; for r0 − t ≥ R.

(1)

Thus, the CDF of the distance to the nearest line of
the BLP from a test point at (0, r0) is Fd(t) = 1 −
VBLP(nB,B((0, r0), t)). For further details on the derivation
and properties of domain bands, please refer to [29].

B. Binomial Line Cox Process

On each line Li of L, let us define an independent 1D
PPP Φi with intensity λ. A BLCP Φ, is the collection of all

such points on all lines of the BLP, i.e., Φ =
nB⋃
i=1

Φi. Thus,

the BLCP is a doubly-stochastic or Cox process of random
points defined on random lines. Similar to the BLP, the void
probability of the BLCP w.r.t. to the location of the test point
has been reported in [29]

Lemma 2. The probability that the disk B((0, r0), t) contains
no points of Φ is given by

VBLCP (nB,B((0, r0), t)) =

[
1

2πR

∫ 2π

0

∫ r0 cos θ+t

r0 cos θ−t
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exp (−λC(θ, r)) dr dθ

]nB

,

where,

C(θ, r) =

{
2
√
t2 − l2; t ≥ |r0 cos θ − r|,

0; otherwise,

is the length of the chord created by a line corresponding to
(θ, r) ∈ D in the disk B((0, r0), t) and l = |r0 cos θ − r|.

Following the void probability, the distance distribution of
the nearest BLCP point from the test point (0, r0) is

Fd1
(t) = 1− VBLCP (nB,B((0, r0), t)) . (2)

Using a wireless network model with AP locations as BLCP
points, the above result describes the distance distribution to
the nearest AP. This will be utilized to calculate communica-
tion performance metrics in Section III.

C. Statistical properties of BLP

1) Line Length Radial Density and Measure: Recall that
one of the objectives of studying the BLP is to emulate
different densities of streets in the city center and the suburbs.
The line length radial density and line length radial measure
of the BLP provide new perspectives into the process’s spatial
distribution. Finding the ratio of the average length of lines
within a disc to the area of a disk provides a way to calculate
line length measure, which can then be used to determine the
line length radial density. The analysis provides insights into
the spatial variations of line lengths, which directly influence
signal propagation, interference patterns, and connectivity. We
define line length radial measure as,

Definition 1. The line length measure is R(S) =
nB E (|L ∩ S|1), S ⊂ R2, where | · |1 is the Lebesgue measure
in 1D and L is a line of the BLP. The corresponding radial
density is

ρ(r) = lim
u→0

R
(
B((0, 0), r + u) \ B((0, 0), r)

)
π (2u+ u2)

.

The line length measure follows by integrating ρ(r), i.e.,
R(S) =

∫
S
ρ(|x|) dx, where S ⊂ R2. To study line length

density, we first calculate the expected total chord length
within a disk, i.e., the line length measure.

Theorem 1. For a BLP generated by nB lines within a disk
of radius R, the line length radial density at a distance r from
origin is,

ρ(r)=

{
nB

2R , if r ≤ R
nB

πR arcsin
(
R
r

)
if r > R.

Proof. See Appendix A

The radial density ρ(r) remains constant at nB

2R for r ≤
R and then decreases as O(1/r) as r → ∞. We note that
authors in [5] have derived the line density of PLP, which is
defined as the mean line length per unit area. Now, although
the metric of discussion is the same (line length density and the
corresponding measure), the implications for urban planning

and wireless network dimensioning are vastly different. The
major difference is that the line density for a PLP is constant
throughout the Euclidean plane because of the homogeneity
of PLP. In comparison, the line length radial density of BLP
depends on the distance from the origin r.

The result of Theorem 1 can be used in modeling real-world
road systems. By tuning its parameters, i.e., nB and R, we can
accurately emulate real data on the spatial density of roads.
Likewise, emergency service providers can use this analysis
to identify areas with low road density, making it difficult for
emergency vehicles to reach certain locations quickly. In our
current work, we use the result of Theorem 1 to determine the
average number of potential targets detected by a radar.

2) Radial Intersection Density: Here, we study the point
process formed by the intersections of the lines of the BLP.
We introduce and characterize the intersection measure and
the intersection density of the BLP. The analysis of radial
intersection density in the context of the BLP not only offers
insights into this specific model but also holds broader impli-
cations for the analysis of intersection patterns in various line
processes. Understanding intersection density can help analyze
traffic flow and congestion patterns in road networks, allowing
transportation planners to identify potential bottlenecks and
congestion-prone areas.

Theorem 2. The radial intersection density at a distance r
from the origin for a BLP generated by nB lines within a disk
of radius R is

ρ×(r)=

{
nB(nB−1)

4πR2 , if r ≤ R,
nB(nB−1)
4π2R2r

(
2r arcsin

(
R
r

)
− 2R

r

√
r2 −R2

)
if r > R.

(3)

Proof. See Appendix B

From (3), we see that intersection density first remains
constant and then scales as O

(
1
r

)
as r → ∞. By integrating

the intersection density, we get the intersection measure

R(S) =

∫
S

ρ×(|x|) dx, S ⊂ R2.

Remark 1. The intersection measure in the R2 plane, as
expected, is

R× =

∫ 2π

0

∫ ∞

0

ρ×(r) r dr dθ =

(
nB

2

)
=

nB(nB − 1)

2
,

Lemma 3. The intersection density for a PLP with density
λPPP is

ρP(λPPP) = πλ2
PPP.

Proof. The proof follows from derivations similar to those in
Theorem 2 but with the consideration of a Poisson distributed
number of lines in S. We are omitting the proof as similar
results have been derived by other papers. [30].

Since the intersection density of a PLP remains constant
regardless of the distance from the origin, it cannot capture
the intricate spatial characteristics needed for real-world road
network modeling. This uniform intersection density of the
PLP doesn’t reflect the complexities of actual road systems.
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Fig. 2. Illustration of distances rL and rU (denoted by
blue lines respectively) for a line (denoted by the green
line) passing through (0, r0).

On the other hand, the BLP has a varying intersection density,
making it a more realistic representation of real-world road
networks. The result in Theorem 2 and Lemma 3 demonstrates
this contrasting perspective between the BLP and PLP, respec-
tively, highlighting the BLP’s capacity to offer a more realistic
and nuanced representation of road network patterns.

3) Distance Distribution to the Nearest Intersection: The
distance distribution to the nearest intersection of BLP refers
to a way of understanding how close intersections are to each
other in a road network modeled using the BLP. In real-world
road systems, vehicle charging points or bus stops are usually
placed closer to intersections.

Consider a test point (0, r0) that lies on a line of the BLP.
Consequently, nB − 1 lines of the BLP intersect the line
containing the test point almost surely. Let t be the distance
to the nearest intersection from the test point. Also, let ω0 be
the angle formed between the line passing through (0, r0) and
the x-axis. For an intersection to be located at a distance of t
from the test point at an angle of ω0, there may exist a set of
r for a given θ wherein no lines should be generated (see Fig.
2). Accordingly, to find the distance distribution, we need the
set of all such (θi, ri) for which lines Li ∈ L do not intersect
the line passing through (0, r0) at an angle of ω0 within a
distance of t from the test-point. For a given θ, the range of
r where if a line is generated, intersects the test point within
a distance t is [rL, rU] calculated as:

rL = max {−R,min {R, (r0 cos θ − t| cos (θ − ω0)|}} (4)

rU = max {−R,min {R, (r0 cos θ + t| cos (θ − ω0)|}} (5)

The above equations of rL and rU are obtained using simple
trigonometric calculations and include all possible cases for
different values of r0, t, θ, and ω0. As an example, the case
presented in Fig. 2 corresponds to θ < ω0 +

π
2 and ω0 < π

2 ,
accordingly, we have rL < rU. We see that when θ > ω0 +

π
2

we can end up with scenarios rL > rU, thus equation (4) and
(5) have been defined in such a way that rL will always be
less than rU for all possible values of r0 and t. Also, (4) and
(5) consider the cases when rL and rU exceed [R,−R]. Let
DI be the set of all such (θ, r) for which lines Li ∈ L do
not intersect the line passing through (0, r0) at an angle of ω0

within a distance of t from the test-point. Fig. 3 shows some

Fig. 3. Illustration of the region DI(r0, t) for different
values of r0, ω0 and t. Here R = 50.

examples of the domain band regions wherein a line should
not be generated for it not to intersect the line passing through
(0, r0) within a distance t from the test point at an angle of
ω0. In Fig 3(a), as r0 = 0, ω0 = 0 and t > R we see that
|r0|+ t > R, the domain bands are getting clipped at 50 and
-50 for most of the initial and final values of θ. Likewise, in
Fig. 3 (c), when the test point lies outside the circle of radius
R and t = 10, i.e., |r0| − t > R and, more values of rL and
rU are clipped for θ < π

2 and the total width of the band is
also small, thus showcasing that test points lying outside and
having small t would experience fewer intersections.

Corollary 1. For a BLP line passing through (0, r0), the CDF
of the distance dI to the nearest intersection is

FdI
(t) = 1− VBI

(r0, t).

The area of DI for a BLP L defined on [0, 2π)×[0, R] corre-
sponding to (0, r0) and t is ADI

(r0, t) =
∫ π

0

∫ π

0
rU dθ dω0 −∫ π

0

∫ π

0
rL dθ dω0. Accordingly, the probability that no line of

the BLP intersects the line passing through (0, r0) within a dis-
tance t from the test point is VBI

(r0, t) =
(
1− ADI

(r0,t)

2πR

)nB

.

From Fig. 4, the nearest intersection is closer for greater
nB and lower r0 values. A user near the origin can reach the
nearest intersection in fewer steps than those outside the city
center. These findings can aid in creating effective algorithms
for reaching intersections where nearby bus stops or charging
points are typically accessible.

D. Palm Perspective of the BLCP

Next, we study the BLCP from the perspective of a point of
the process itself, using Palm calculus2. Let us recall that for a
PLCP ΦPLCP with λ as the density of the points on the lines,
we have P(ΦPLCP ∈ Y | o) = P(ΦPLCP ∪ Φ0 ∪ {o} ∈ Y ),
where Φ0 is a 1D PPP on a line that passes through the origin.
In other words, the Palm distribution, i.e., conditioning on a
point of the PLCP ΦPLCP to be at the origin, is equivalent to
adding (i) an independent Poisson process of intensity λ on
a line through the origin with uniform independent angle and
(ii) an atom at the origin to the PLCP. Similarly, for a BLCP,
conditioning on a point to be located at x is equivalent to
considering an atom at x, a 1D PPP on a line passing through

2In point process theory, the Palm probability refers to the probability
measure conditioned on a point of the process being at a certain location [31].
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‘
Fig. 4. Distance distribution to the nearest intersection
from (0, r0).

x and a BLCP Φ! defined on a BLP consisting of nB−1 lines
in the same domain. Thus, the Palm measure of the BLCP can
be expressed as follows.

Lemma 4. For a BLCP Φ defined on a BLP P with nB lines,
we have

P (Φ ∈ Y | x ∈ Φ) = P
(
Φ! ∪ Φx ∪ {x} ∈ Y

)
, (6)

where Φx is a 1D PPP on a randomly oriented line that passes
through x.

The applications of the Palm measure will be evident in
the next section, where we employ the derived framework to
analyze a wireless communication network. Prior to that, let
us derive the PGFL of the shifted and reduced point process
by conditioning on the location of the nearest point from the
origin.

E. Probability Generating Functional
Here, we characterize the PGFL of the BLCP Φ. In this

paper, we are interested in isotropic functions that depend only
on the distance of the points from the origin, i.e., we consider
functions of the form f(||x||).

Definition 2. Let x1 be the nearest point of a BLCP from
(0, r0). Then, the shifted and reduced point process is defined
as Φ′ = Φ− (0, r0)\{x1}.

The motivation for studying the properties of Φ′ in the
context of wireless networks is as follows: if the AP locations
are modeled as a BLCP, then Φ′ represents the locations of
the interfering APs from the perspective of a user located at
a distance r0 from the origin and connected to an AP located
at a distance ||x1|| from the user. The concept of shifting
and reducing the point process to focus on a specific user’s
perspective introduces a unique aspect not commonly found
in other line process models. In contrast, the PGFL of the
PLCP typically deals with a stationary and homogeneous line
process, making the derivation comparatively simpler. This
differentiation showcases the BLCP’s suitability for modeling
real-world wireless networks, where user perspectives and spe-
cific interference scenarios play a crucial role. The following
theorem characterizes the PGFL for the shifted and reduced
BLCP Φ′.

Theorem 3. For a shifted and reduced BLCP Φ′ = Φ −
(0, r0)\{x1} defined on a BLP with nB lines generated

within B((0, 0), R), the PGFL of a function f(r) = f(||x||),
conditioned on d1 = ||x1|| is given as

G(r0, f(·)) =
1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

1−

f
(√

y2 + l2
)
dy

)
drdθ ×

(
1

2πR

)nB−1

 ∫∫
DB(0,d1)

exp

(
−2λ

∫ ∞

√
d2
1−l2

1− f
(√

y2 + l2
)
dy

)
drdθ+

∫∫
D\DB(0,d1)

exp

(
−2λ

∫ ∞

0

1− f
(√

y2 + l2
)
dy

)
drdθ


nB−1

.

where d1 = ||x1|| is the distance to the nearest point of Φ−
(0, r0) from the origin and l = r0 cos θ − r. Consequently,
the PGFL of Φ′ is evaluated as Ed1 [G(r0, f(·))], where the
distribution of d1 is given by (2).

Proof. See Appendix C

The PGFL serves as an analytical tool for understanding the
behavior of BLCP-based wireless networks. Due to the non-
stationary nature of the BLCP, we are able to characterize the
SINR characteristics of a user conditioned on its location using
the PGFL. In particular, we see that a city-center user may
have a remarkably different network experience as compared
to a suburban user from the same network deployment.

The fixed and deterministic number of lines in BLCP sets
it apart as a less intricate and more straightforward case
compared to PLCP. The fixed number of streets in BLCP
leads to careful analysis of success probability. The line that
contains the nearest AP has one set of interferers, and the other
nB−1 lines have another set of interferers. Depending on the
location of the test point, the line that contains the nearest AP
changes as the test point moves from the origin to the outskirts
of the city. The PGFL characterization takes care of these
two different sets of interferers. Likewise, the performance
of the test user also depends on its location, not only on
the number of streets and the intensity of PPP. The number
of streets will create a smaller or larger set of interferers,
which affects the performance of the wireless network. From
the user’s perspective, the interest lies in understanding the
mathematical assurances we can obtain when considering
one’s location within a city, particularly when comparing the
success probability relative to their proximity to the city center
versus the outskirts.

III. TRANSMISSION SUCCESS PROBABILITY IN WIRELESS
NETWORKS

In wireless networks, several performance metrics are stud-
ied using the transmission success probability. It is the CCDF
of the SINR over the fading coefficients and the spatial
process of the locations of the APs. In this section, we define
and characterize this metric using the results derived in the



8

previous sections. Instead of solely focusing on inventing new
methods, this paper applies existing tools and concepts to a
novel network architecture, i.e., BLCP. As a user, we want
to know what kind of mathematical guarantee we can get if
the user is at the city’s center compared to the city’s outskirts.
Thus, having success probability as a function of r0, i.e., the
distance of the test point from the origin, is quite a novel result
which, according to our knowledge, cannot be found in any
other line process models.

A. Success Probability - Definition

Let Φ be a point process (not necessarily a BLCP) consisting
of points {xi} ⊂ R2, i = 1, 2, . . .. Consider a separate test
point located at the origin. For convenience, let us assume that
the points of Φ are ordered according to their distance from
the origin, i.e., ||x1|| ≤ ||x2|| ≤ . . .. If the points of Φ emulate
the locations of the APs relative to a receiver located at the
origin, the receiver connects to the AP located at x1. This is
known as the nearest-AP association.

Each wireless link experiences fluctuations of the received
power due to the constructive and destructive superposition of
multiple reflecting paths in the propagation environment. This
is termed small-scale fading. Classically, this impact is taken
into account by multiplying the received signal with a random
variable h with exponential distribution with parameter 1 [32].
For a path-loss exponent α, the SINR ξ(r0) is

ξ(r0) =
ξ0||x1||−αh1

1 + ξ0
∑

x∈Φ\{x1} ||x||
−αhx

, (7)

where ξ0 is a constant that considers the transmit power,
AWGN noise, path-loss constant, and transmit and receive
antenna gains. We assume that this parameter is the same for
each transmit node. Typically, each hx is independent of each
other and identically distributed [32]. For the ease of notation,
let us represent ||xi|| by dx. Now, the transmission success
probability at a threshold of γ is defined as the CCDF of ξ(r0):
pS(γ) = P[ξ(r0) > γ] [32]. This represents the probability
that an attempted transmission by the nearest AP located at
x1 is decoded successfully by the receiver at the origin. In
what follows, we refer to the transmission success probability
as success probability.

B. Success probability for BLCP Locations of APs

The BLCP is a relevant model for studying deployment
locations of APs along the streets of a city or, e.g., along
alleyways of industrial warehouses. As discussed before, the
network performance depends on the location of the test
point2. However, since the BLP is isotropic, we may infer
that its properties, as seen from a point, only depend on its
distance from the center, not its orientation. Accordingly, the
test point can be considered to be located along the x-axis, i.e.,
we analyze the performance from the perspective of a test point
located at (0, r0), without loss of generality. Equivalently,

2It may be noted that the wireless network performance analyzed at the
test point referred here corresponds to the performance evaluated at the typical
point at a location x of a stationary receiver point process.

we can consider the receiver at the origin and study the
statistics of the shifted point process Φ − (0, r0). Recall that
due to non-stationarity, this characterization allows us to study
and contrast the performance of the users conditioned on
their location. Let us assume that the receiver establishes a
connection with its nearest AP (i.e., the nearest BLCP point
from the receiver), consequently experiencing interference
from all other APs. In such a case, the success probability
is characterized by the following result.

Theorem 4. For the network where locations of the APs
are modeled as BLCP, the success probability for a receiver
located at (0, r0) is given by

pS(γ) = Ed1

exp( −γ

ξ0d1
−α

)
G

r0,
1

1 + γr−α

d−α
1

 ,

where G(r0, f(·)) is given by Theorem 3.

Proof. See Appendix D

The result of transmission success probability can be used
to find the performance of the network with respect to the
different parameters of the model like distance of the user from
the center of the city r0, number of lines nB, the intensity of
1D PPP on lines λ, etc. The mathematical expression of the
success probability depends on the conditional probability dis-
tribution to the nearest BLCP point (2) and, more importantly,
on the user’s location r0. From the perspective of a network
planner, Equation (15) provides an insight into the network
performance depending on the location of the user, which is a
novel concept yet to be seen in any other line process models.
In Section IV, we will explore the delay and transmission
density of the BLCP network.

Corollary 2. For α = 2 and nB = 1, the PGFL of Φ′ for the
function 1

1+ γr−2

d
−2
1

is given as

G

r0,
1

1 + γr−2

d−2
1

 =
1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
−2λ

γd21√
γd21 + l2

× arctan

(√
γd21 + l2

d21 − l2

))
drdθ.

A single line in the BLCP is the simplest example of the
aforementioned corollary. If α = 2 is the path-loss constant in
free space, a path-loss coefficient of 2 indicates normal signal
attenuation with distance.

IV. APPLICATION - META DISTRIBUTION OF THE SINR IN
BLCP

Although the success probability is a useful metric for
planning a wireless network and tuning network parameters,
it only provides an average view of the network across all
possible realizations of Φ. This inhibits the derivation of a
fine-grained view into the network. In this regard, the meta
distribution, i.e., the distribution of the success probability con-
ditioned on Φ provides a more refined framework [33], [34],
allowing us to assess the coverage reliability under different
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conditions. The CCDF of conditional success probability, i.e.,
Ps(γ) = P(ξ(r0) ≥ γ|Φ) is a random variable due to Φ is
called the meta distribution of the SINR, and is given as

PM(γ, β) = P (Ps(γ) ≥ β) = P (P(ξ(r0) ≥ γ | Φ) ≥ β) .

which is a function of two parameters γ ≥ 0 and 0 ≤ β ≤ 1.
In addition, consider another important aspect of wireless
networks — not all transmitters transmit simultaneously but
are controlled by an access scheme. In particular, let us
assume a simple ALOHA access scheme wherein, when the
connected AP transmits, each interfering AP transmits with a
probability p [35]. Thus, each interference term is weighted
by the probability of the corresponding node transmitting. Let
the set of locations of the interfering nodes be denoted by
C ⊂ Φ′. In this scheme, the conditional success probability
can be obtained as

Ps(γ) = P (ξ(r0) ≥ γ | Φ)

= P

[
ξ0d1

−αh1

1 + ξ0
∑

x∈Φ′ hxd
−α
x 1(x ∈ C)

≥ γ | Φ

]
(a)
= Ehx

[
exp

(−γ − γξ0
∑

x∈Φ′ hxd
−α
x 1(x ∈ C)

ξ0d
−α
1

)]
= e

(
−γ

ξ0d
−α
1

)
Ehx

[
exp

(−γξ0
∑

x∈Φ′ hxd
−α
x 1(x ∈ C)

ξ0d
−α
1

)]
= e

(
−γ

ξ0d
−α
1

)(∏
x∈Φ′

pEhx exp

(
−γξ0d

−α
x hz

ξ0d
−α
1

)
+ 1− p

)

(b)
= exp

(
−γ

ξ0d
−α
1

)∏
x∈Φ′

p

1 + γd−α
x

d−α
1

+ 1− p

 .

Step (a) is due to the exponential distribution of h1. Step
(b) follows from the Laplace transform of the exponentially
distributed hx. In general, it’s not feasible to directly calculate
the distribution of Ps(γ). The standard way to tackle this
difficulty is by computing its moments and transforming them
to the distribution [36]. Analyzing the moments of Ps(γ) pro-
vides valuable insights into the variability and distribution of
successful transmissions. For example, it allows us to examine
the mean local delay, indicating the anticipated number of
transmissions needed for a successful communication event,
which has direct relevance to latency-sensitive applications.

Theorem 5. The b−th moment of Ps(γ) conditioned on d1
for any b ∈ C is given as

Mb(d1) = e
−bγ

ξ0d
−α
1

1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

1−

(
pd−α

1

d−α
1 + γ [y2 + l2]

−α
2
+ 1− p

)b

dy

)
drdθ×

(
1

2πR

)nB−1

 ∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

1−
(

pd−α
1

d−α
1 + γ [y2 + l2]

−α
2

+ 1− p

)b

dy

)
drdθ +

∫∫
D\DB(0,d1)

exp

(
− 2λ

∫ ∞

0

1−

(
pd−α

1

d−α
1 + γ [y2 + l2]

−α
2
+ 1− p

)b

dy

)
drdθ


nB−1

,

where l = |r0 cos θ−r|. Taking an expectation over d1 (see (2))
results in the unconditioned b−th moment.

Proof. We have

Mb = E!
x1


exp

(
−γ

ξ0d
−α
1

) ∏
x∈Φ′

p

1 + γd−α
x

d−α
1

+ 1− p

b


(c)
= exp

(
−bγ

ξ0d
−α
1

)
E!
x1

∏
x∈Φ′

 p

1 + γd−α
x

d−α
1

+ 1− p

b


(d)
= exp

(
−bγ

ξ0d
−α
1

)
1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

1−

(
pd−α

1

d−α
1 + γ [y2 + l2]

−α
2
+ 1− p

)b

dy

)
drdθ ×

(
1

2πR

)nB−1

 ∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

1−
(

pd−α
1

d−α
1 + γ [y2 + l2]

−α
2
+

1− p

)b

dy

)
drdθ +

∫∫
D\DB(0,d1)

exp

(
− 2λ

∫ ∞

0

1−

(
pd−α

1

d−α
1 + γ [y2 + l2]

−α
2
+ 1− p

)b

dy

)
drdθ


nB−1

. (8)

Step (c) follows because the expectation is over Φ′. Step (d)
follows from the PGFL of the BLCP.

Then, the meta distribution of the SINR is calculated using
the Gil-Palaez theorem as [37]

FPs(z) =
1

2
+

1

π

∫ ∞

0

ℑ(e−ju log(z)Mju)

u
du,

where ℑ (·) denotes the imaginary part, and j2 = −1.
The capacity of a wireless network can be studied in terms

of the successful transmission density pλM1. Here M1 is the
1st moment of Ps(γ), essentially the transmission success
probability. We see that once we take the mean of Ps(γ),
the only source of randomness left in Ps(γ), i.e., spatial
randomness is removed, and we get the ps(γ). Therefore, when
we multiply M1 with λ, we get the total number of successful
transmissions, and when p is also multiplied, we get the aver-
age number of successful transmissions. This metric informs
us about the density of simultaneous successful transmissions,
offering insights into the network’s ability to handle multiple
connections efficiently. Furthermore, the mean local delay is
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(a) (b) (c)

Fig. 5. (a) Conditional PGFL of intersecting and non-intersecting lines (see (13)). Here r0 = 0, R = 50, λ = 0.1 and nB = 10,
(b) Success probability with respect to r0, and (c) E

[
d1
d2

]
with respect to r0.

the expected number of transmissions required for successful
transmission. It is obtained by setting b = −1 [37]. We see that
M−1 is the first negative moment of Ps(γ). The inverse mean
of Ps(γ) analyzes the expected number of transmissions to
get the first successful full transmission. The product of M−1

and 1/p, is called mean local delay, a crucial parameter in
latency-constrained networks.

Corollary 3. For α = 2, the mean local delay conditioned on
d1 is D(p) = 1

pM−1, where

M−1 = exp

(
γ

ξ0d
−α
1

)
× 1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
2λ

pγd21√
γd21(1− p) + l2

×arctan

(√
γd21(1− p) + l2

d21 − l2

))
drdθ

×
(

1

2πR

)nB−1

 ∫∫
DB(0,d1)

exp

(
2λ

pγd21√
γd21(1− p) + l2

×

arctan

(√
γd21(1− p) + l2

d21 − l2

))
drdθ+

∫∫
D\DB(0,d1)

exp

(
λ

pπγd21√
γd21(1− p) + l2

)
drdθ


nB−1

.

In the next section, we discuss how optimizing the channel
access probability p to minimizing the mean local delay is
non-trivial due to the impact of interference. In essence, we
will see how Theorem 5 facilitates a nuanced understanding
of transmission density and latency across different locations
within the network. As users move through urban landscapes
characterized by varying access point densities and interfer-
ence patterns, their latency experiences fluctuate.

V. NUMERICAL RESULTS AND DISCUSSION

In this section, we discuss some numerical results to high-
light the applications of the derived framework in analyzing
the wireless network. Unless otherwise stated, all results are
for R = 50, α = 2, ξ0 = 2.9858 · 10−8, and γ = 0.1.

A. On the Success Probability

First, let us observe some features of the weighted condi-
tional PGFLs for the function f(r) = 1

1+γ(d1/r)α
as derived in

(13)). From (14) note that these conditional PGFLs constitute
the overall functional G(r0, f(·)), i.e.,

G(r0, f(·)) = GI(r0, d1)

(
1

2πR

)nB−1(
AD(r0, d1) GI(r0, d1)+

(2πR−AD(r0, d1)) GNI(r0, d1)
)nB−1

.

Moreover, since pS is proportional to G(r0, f(·)) for a given
d1, it is important to study the trends in the weighted condi-
tional PGFLs with d1. For lower values of d1, DB(0, d1) is
smaller than D\DB(0, d1). Accordingly, Fig. 5a shows that
(2πR − AD(0, d1))GNI(0, d1) has a value 2πR = 314.15
at d1 = 0 and decreases with d1 until it becomes zero
exactly at d1 = 50. This is because all lines intersect the
disk at d1 = R. On the contrary, AD(0, d1)GI(0, d1) has a
value 0 at d1 = 0 and increases till d1 = 50, as the area
corresponding to intersecting lines increases. Beyond d1 = 50,
AD(0, d1)GI(0, d1) decreases precisely due to the increasing
distance of the serving AP from the receiver.

In Fig. 5b, we plot the success probability with respect to r0
for different values of λ and nB. We observe that the success
probability first increases slightly with r0, reaches a maximum,
and starts decreasing. To delve deeper into this phenomenon,
we plot the expected value of the ratio of the distance from the
nearest BLCP point to the distance of the second nearest BLCP
point with respect to r0. In systems where the nearest interferer
contributes most of the interference power, this parameter is
a good indicator of the success probability. From Fig. 5c, we
note that the value of E

[
d1

d2

]
decreases with r0 at first, reaches

its minimum value near r0 = R and increases beyond that.
This indicates that as we move away from the city center,
both the serving AP and the interferers become statistically
distant from the test point, the relative increase in d1 is higher
as compared to the relative increase in d2 with r0. In case
the streets follow a BLCP, such an insight for urban networks
cannot be obtained with PLCP models (also shown in Fig. 5c).

B. Optimal Network Parameters

In Fig. 6a and Fig. 6b-6c, we plot the success probability
with respect to λ and nB respectively for different values of
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(a) (b) (c)

Fig. 6. (a) Success probability with respect to the density of APs. (b) and (c) Success probability with respect to nB.

r0. Fig. 6a shows that as λ increases, the success probability
decreases due to the increase in interference. Irrespective of the
location of the test point after a certain λ value, more streets
provide a higher success probability than fewer streets. For
value of λ < 0.05, nB = 10 provide better success probability
than nB = 20 and vice-versa for λ > 0.05. Likewise in Fig 6b
we see that for λ = 0.2, success probability increases as nB

increases, while for λ = 0.01, success probability decreases
as nB increases. This shows that with a high number of
APs, complemented with larger nB provides better coverage
as compared to smaller nB. Eventually, success probability
saturates as nB increases because the nearest transmitter and
nearest interferer are nearly at the same distance to the
test point. Based on the test device’s location, an optimal
deployment density of the APs may exist for which pS(γ)
is maximum for parameters such as nB, transmit power, etc.

In Fig. 6c, we plot the success probability with respect to nB

but for higher values of λ. We observe that nB maximizes the
success probability for some values of r0 and λ. For example,
when r0 = {0, 50} (i.e., at the center and city edge), and
λ = {0.1, 0.2}, the success probability first increases and
then decreases. At the same time, when the test point is at
the outskirts, i.e., r0 = 100, the success probability keeps
increasing. This suggests that increasing the number of lines
may increase or decrease the probability of success depending
on the test device’s location and deployment density.

C. Comparison with non-homogeneous Cox models
In Fig. 7, we plot the success probability for r0 for three

new Cox process models and homogeneous PLCP. Recall
that due to the non-homogeneous nature of the BLCP, a
fair comparison must be drawn with respect to other non-
homogeneous models. In light of this, we introduce three addi-
tional, non-homogeneous models. First, we introduce the E1-
PLCP model, which is constructed by thinning PLCP points
based on their distance from the origin using an exponential
decay function, f(x) = exp (−δx), where x represents the
point’s distance from the origin and δ is the decay factor.
The modified E1-PLCP has more points around a certain
radius, and the average number of points decreases as we
move out. Likewise, E2-PLCP models the intensity of the
line process using an exponential-based intensity function,
λ(r) = exp (−δr), where r is the perpendicular distance of a
PLCP line from the origin. Consequently, the average number
of lines generated decreases as one moves away from the city

center. In E-BLCP, an additional layer of randomness is added
to the BLCP model by generating non-homogeneous PPPs on
each line with intensity function λ(x) = exp (−δx), where
x denotes the distance of a BLCP point from the generating
point of its respective line. This results in a more realistic
distribution of points concentrated around the city center,
enhancing the realism of the original BLCP model.

Fig. 7 shows that for BLCP and E-BLCP, the success
probability initially rises with r0, peaks, and then decreases.
BLCP behavior is detailed in the previous subsection, where
the expected distance between the nearest AP and the nearest
interferer falls and eventually increases. The point of minimum
value of E

[
d1

d2

]
is the same as the value where success

probability is maximum. In E-BLCP, the non-homogeneous
intensity function leads to a higher success probability than
BLCP but has the same behavior. The higher success prob-
ability can be attributed to the reduced number of average
BLCP points within and outside the city circle. As the average
number of E-BLCP points decreases exponentially, the success
probability rate decreases when the test point’s location is
smaller than that of BLCP. In the case of homogeneous PLCP,
the probability of success is constant at all locations. Now,
coming to the remaining two non-homogeneous PLCP models,
the probability of success keeps decreasing with r0. The
continuous decrease of E1-PLCP and E2-PLCP is because the
average number of cox points in both processes is decreasing
with respect to the origin. In the case of BLCP, the average
number of points first remains constant up to the city circum-
ference and then decreases. Let’s consider a test point around
the city edge; in the case of BLCP, towards the city center,
the average number of interferers is constant, and towards the
city outskirts, the average number of interferes is decreasing.
The test point at this location has the optimum distance to the
nearest AP and the nearest interferer. From the perspective of
this location, as we move inside the city, the distance to the
nearest interferer increases, and as we move out, the distance
to the nearest AP and nearest interferer increases at such a rate
that the probability of success decreases. This spatial behavior
of cox points cannot be seen in E1-PLCP and E2-PLCP; thus,
success probability decreases as r0 increases.

D. Results on Moments of Conditional Success Probability
and Meta Distribution

Fig. 8a shows the mean local delay for a test node at
the origin. As the transmit probability increases, initially,



12

Fig. 7. Comparison of success probability with respect
r0 for BLCP, PLCP, E1-PLCP, E2-PLCP, and E-BLCP.

the local delay decreases since the transmitter accesses the
channel more frequently. However, as the transmit probability
increases, a higher density of interfering APs results in the
deterioration of the coverage and an increase in the delay.
Thus, an optimal transmit probability exists for minimizing the
delay, which is non-trivial to derive due to the two contending
phenomena - increasing p i) increases the frequency with
which the service to the test device is attempted, thereby
reducing the delay and ii) increases the interference which
reduces the transmission success and increases the delay. Such
nuances of the wireless network are kept for future study.

Fig. 8b shows the successful transmission density, pλM1,
which is the number of successful transmissions per unit area.
This acts as an indicator of the network capacity. Here we
have assumed R = 50, nB = 10, and γ = −10 dB. We
see that pλM1 increases as p increases, specifying that more
transmission leads to better transmission density. As we move
closer to the city edge, i.e., r0 = 50, successful transmission
density increases slightly compared to r0 = 0 due to reduced
interference. However, at a further distance from the city
center, the successful transmission density decreases due to
the increasing distance from the serving AP. This is consistent
with the results of Fig. 5b where we see that as r0 increases,
coverage first increases and then decreases. Such network
characteristics as a function of r0 cannot be obtained using
classical models such as PLP and PLCP.

The optimal transmit probability for minimizing the mean
local delay is plotted in Fig. 8c for different locations of the
test node, R, λ, and nB. We observe that as r0 increases, p∗

increases first and then decreases. We see that the maximum
value of p∗ occurs near the edge of the domain of the BLP.
As r0 increases further, the distance to the nearest transmitter
and the other interfering nodes increases. Consequently, the
transmit probability is reduced to limit the device outage.
Interestingly, for r0 ≤ 30, p∗ for nB = 10 is higher as
compared to nB = 20 since the lines are densely packed
around the city center. On the contrary, for r0 ≥ 30, nB = 20
needs a higher p values than the case with nB = 10.

The meta distribution of the success probability is plotted
in Fig. 8d with respect to the reliability threshold β, for R =
50 and r0 = 0. We observe that for an SINR threshold of
γ = −20 dB, most users are under coverage with a reliability
of 70% (or probability 0.7). On the contrary, for a service
characterized by γ = 0 dB, with a 90% guarantee, it can be

claimed that none of the users will be under coverage. For γ =
−10 dB, we see that there is a near-linear relationship between
the reliability and the number of users under coverage.

VI. CONCLUSIONS AND FUTURE WORK

We have characterized the binomial line Cox process
(BLCP), which takes into account the non-homogeneity of
lines in an Euclidean plane. Although several line processes
are studied in the literature, none of the existing models
consider the non-homogeneity of the lines. This is a drawback
of the existing models since practical problems, e.g., wireless
network planning or transport infrastructure planning, need
to deal with non-homogeneous streets in a city. We derive
the line length radial density and intersection density, which
help us visualize varying street densities. We also derive the
distribution to the distance of the nearest intersection, the
probability generating functional of the BLCP, and used it
to analyze the transmission success probability in a wireless
network. Then, we have provided extensive numerical results
to derive system design insights for such network deployments.
Furthermore, we have characterized the meta distribution of
the SINR in order to gain a fine-grained view of the network.
We envisage that the statistical model developed in this paper
will be employed to study practical problems involving urban
street planning. The shortest path length, E1-BLCP, and non-
homogeneous PLCP are interesting research directions that
will be taken up in future work.

REFERENCES

[1] M. T. Shah, “Codes for BLP and BLCP: Statistical characterization and
applications in wireless network analysis.” Github, https://github.com/
mt19146/blcp, 2023.

[2] M. T. Shah, G. Ghatak, S. Sanyal, and M. Haenggi, “Analyzing wireless
networks using binomial line cox processes,” in 2023 21st International
Symposium on Modeling and Optimization in Mobile, Ad Hoc, and
Wireless Networks (WiOpt), pp. 1–8, IEEE, 2023.

[3] B. Ripley, “The foundations of stochastic geometry,” The Annals of
Probability, vol. 4, no. 6, pp. 995–998, 1976.

[4] F. Baccelli et al., “Stochastic geometry and architecture of communica-
tion networks,” Telecommunication Systems, vol. 7, no. 1, pp. 209–227,
1997.

[5] H. S. Dhillon and V. V. Chetlur, “Poisson line Cox process: Foundations
and applications to vehicular networks,” Synthesis Lectures on Learning,
Networks, and Algorithms, vol. 1, no. 1, pp. 1–149, 2020.

[6] G. Mansfield, “Using Streetlights to Boost 5G Deployments in
Cities,” https://about.att.com/innovationblog/2022/streetlights-to-boost-
5g-deployments.html, February 25, 2022.

[7] “NYC allows 5G equipment on streetlamps,”
https://www.fiercewireless.com/5g/nyc-allows-5g-equipment-
streetlamps, 2020.

[8] C. Gloaguen, F. Fleischer, H. Schmidt, and V. Schmidt, “Fitting of
stochastic telecommunication network models via distance measures and
monte–carlo tests,” Telecommunication Systems, vol. 31, pp. 353–377,
2006.

[9] F. Morlot, “A population model based on a Poisson line tessellation,”
in 2012 10th International Symposium on Modeling and Optimization
in Mobile, Ad Hoc and Wireless Networks (WiOpt), pp. 337–342, 2012.

[10] W. S. Kendall, “From random lines to metric spaces,” The Annals of
Probability, vol. 45, no. 1, pp. 469–517, 2017.

[11] J. Kahn, “Improper Poisson line process as SIRSN in any dimension,”
The Annals of Probability, vol. 44, no. 4, pp. 2694–2725, 2016.

[12] J. P. Jeyaraj and M. Haenggi, “Cox models for vehicular networks:
SIR performance and equivalence,” IEEE Transactions on Wireless
Communications, vol. 20, no. 1, pp. 171–185, 2020.

[13] M. J. Farooq et al., “A stochastic geometry model for multi-hop
highway vehicular communication,” IEEE Transactions on Wireless
Communications, vol. 15, no. 3, pp. 2276–2291, 2015.



13

(a) (b) (c) (d)

Fig. 8. (a) Mean local delay with respect to the transmit probability for different values of R and λ. Here, r0 = 0. (b) Successful
transmission density. (c) Optimal transmit probability for minimizing the mean local delay. (d) SINR meta distribution.

[14] N. Chenavier and R. Hemsley, “Extremes for the inradius in the Poisson
line tessellation,” Advances in Applied Probability, vol. 48, no. 2,
pp. 544–573, 2016.

[15] Q. Cui, N. Wang, and M. Haenggi, “Vehicle distributions in large and
small cities: Spatial models and applications,” IEEE Transactions on
Vehicular Technology, vol. 67, no. 11, pp. 10176–10189, 2018.

[16] G. Ghatak, A. De Domenico, and M. Coupechoux, “Small cell deploy-
ment along roads: Coverage analysis and slice-aware rat selection,” IEEE
Transactions on Communications, vol. 67, no. 8, pp. 5875–5891, 2019.

[17] C.-S. Choi and F. Baccelli, “An analytical framework for coverage in
cellular networks leveraging vehicles,” IEEE Transactions on Commu-
nications, vol. 66, no. 10, pp. 4950–4964, 2018.

[18] C.-S. Choi and F. Baccelli, “Poisson cox point processes for vehicular
networks,” IEEE Transactions on Vehicular Technology, vol. 67, no. 10,
pp. 10160–10165, 2018.

[19] C.-S. Choi and F. Baccelli, “A stochastic geometry model for spatially
correlated blockage in vehicular networks,” IEEE Internet of Things
Journal, vol. 9, no. 20, pp. 19881–19889, 2022.

[20] C.-S. Choi, “User association in a heterogeneous vehicular network
with roadside units and vehicle relays,” IEEE Wireless Communications
Letters, vol. 11, no. 11, pp. 2345–2349, 2022.

[21] C.-S. Choi and F. Baccelli, “Los coverage area in vehicular networks
with cox-distributed roadside units and relays,” IEEE Transactions on
Vehicular Technology, 2023.

[22] V. V. Chetlur and H. S. Dhillon, “Coverage analysis of a vehicular
network modeled as cox process driven by poisson line process,” IEEE
Transactions on Wireless Communications, vol. 17, no. 7, pp. 4401–
4416, 2018.

[23] V. V. Chetlur and H. S. Dhillon, “Coverage and rate analysis of
downlink cellular vehicle-to-everything (C-V2X) communication,” IEEE
Transactions on Wireless Communications, vol. 19, no. 3, pp. 1738–
1753, 2019.

[24] V. V. Chetlur and H. S. Dhillon, “On the load distribution of vehicular
users modeled by a Poisson line Cox process,” IEEE Wireless Commu-
nications Letters, vol. 9, no. 12, pp. 2121–2125, 2020.

[25] V. V. Chetlur, H. S. Dhillon, and C. P. Dettmann, “Shortest path distance
in manhattan poisson line cox process,” Journal of Statistical Physics,
vol. 181, pp. 2109–2130, 2020.

[26] K. Pandey, K. R. Perumalla, A. K. Gupta, and H. S. Dhillon, “Funda-
mentals of vehicular communication networks with vehicle platoons,”
IEEE Transactions on Wireless Communications, 2023.

[27] J. P. Jeyaraj, M. Haenggi, A. H. Sakr, and H. Lu, “The transdimensional
poisson process for vehicular network analysis,” IEEE Transactions on
Wireless Communications, vol. 20, no. 12, pp. 8023–8038, 2021.

[28] T. Courtat, C. Gloaguen, and S. Douady, “Mathematics and morphogen-
esis of cities: A geometrical approach,” Phys. Rev. E, vol. 83, p. 036106,
Mar 2011.

[29] G. Ghatak, “Binomial line processes: Distance distributions,” IEEE
Transactions on Vehicular Technology, vol. 71, no. 2, pp. 2176–2180,
2022.

[30] R. Schneider and W. Weil, Stochastic and integral geometry, vol. 1.
Springer, 2008.

[31] M. Haenggi, Stochastic geometry for wireless networks. Cambridge
University Press, 2012.

[32] M. Haenggi et al., “Stochastic geometry and random graphs for the
analysis and design of wireless networks,” IEEE Journal on Selected
Areas in Communications, vol. 27, no. 7, pp. 1029–1046, 2009.

[33] M. Haenggi, “Meta distributions - Part 1: Definition and examples,”
IEEE Communications Letters, vol. 25, no. 7, pp. 2089–2093, 2021.

[34] M. Haenggi, “Meta distributions - Part 2: Properties and interpretations,”
IEEE Communications Letters, vol. 25, no. 7, pp. 2094–2098, 2021.

[35] N. Abramson, “The aloha system: Another alternative for computer com-
munications,” in Proceedings of the November 17-19, 1970, Fall Joint
Computer Conference, AFIPS ’70 (Fall), pp. 281 – 285, Association for
Computing Machinery, 1970.

[36] X. Wang and M. Haenggi, “Fast hausdorff moment transforms for
meta distributions in wireless networks,” IEEE Transactions on Wireless
Communications, 2023.

[37] M. Haenggi, “The meta distribution of the SIR in Poisson bipolar and
cellular networks,” IEEE Transactions on Wireless Communications,
vol. 15, no. 4, pp. 2577–2589, 2016.

APPENDIX A
PROOF OF THEOREM 1

Proof. Let S = B ((0, r0), t). We have

R(S) = E
[
KL̄1

]
= L̄1E [K] =L̄1nB

(
AD(r0, t)

2πR

)
, (9)

where K is the number of lines intersecting disk B ((0, r0), t)
and is binomial distributed. L̄1 is the expected length of the
chord formed by a single line in the disk S. For B ((0, r0), t),
L̄1 is evaluated as L̄1 = 1

AD(r0,t)

∫∫
AD

2
√
(t2 − l2) drdθ, where

AD(r0, t) is obtained from (1). Next, we consider concentric
circles centered at the origin having radii l = {w, 2w, . . . }.
In the i−th annulus of width w, the average length of line
segments given by (9) to the area of the annulus gives the line
length density ρi(w) as

ρi(w) =



nB

2R ; for (i+ 1)w ≤ R,

nB

πw2(2i+1)

((√
(i+ 1)2w2 −R2+

arcsin
(

R
(i+1)w

)
× (i+1)2w2

R

)
−
(√

i2w2 −R2 + arcsin
(

R
iw

)
× i2w2

R

))
;

for (i+ 1)w > R.

(10)

Leveraging this, we can characterize the line length radial
density of the BLP as a limiting function of the density
in annuli. Precisely, the theorem statement is obtained by
substituting iw = r and taking the limit w → 0 in (10).

APPENDIX B
PROOF OF THEOREM 2

Let S = B ((0, 0), t), and consider a BLP line L0 gen-
erated at the point (0, r0) where 0 ≤ r0 ≤ min{t, R}.
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First, we determine the domain band D× corresponding to
the intersection on L0 i.e., all such (θi, ri) for which lines
Li ∈ L will intersect line L0 within S. For a given θ,
the range of r where if a line is generated intersects (0, r0)

within S is, max
{
−R,

(
r0 cos θ −

√
t2 − r20 sin θ

)}
≤ ri ≤

min
{
R,
(
r0 cos θ +

√
t2 − r20 sin θ

)}
. For t > R, the do-

main band gets clipped to R (upper) and −R (lower) limits;
thus, the area of the domain band for these two cases is,

Case 1: t ≤ R. Here S ⊂ B((0, 0), R). Consequently, there
is no clipping in the values of r, and the area of D× is averaged
for r0, uniformly distributed between 0 and t.

Case 2: t > R. Here B((0, 0), R) ⊂ S. Accordingly,
the values of r are limited to R and −R. The values
of θ for which r are clipped are obtained by solving for
θ in the equations r0 cos θ −

√
t2 − r20 sin θ = −R and

r0 cos θ +
√
t2 − r20 sin θ = R, respectively.

Thus, within these limits of θ, the area of the domain band
for a line to intersect the line L0 within S is

AD×(t) =


πt, if t ≤ R,
2
R

(
t2 arcsin

(
R
t

)
+ 2R2 arccos

(
R
t

)
−

√
t2 −R2

)
if t > R.

Accordingly, the probability that a line intersects a single
line within S is obtained as P×(t) =

AD× (t)

2πmin{t,R} . Now, let us
assume that k lines are generated in S. Each of these intersects
L0 with probability P×(t). As a result, the average number
of intersections on L0 within S from the k lines is

N ′=

k∑
j=0

j

(
k

j

)
(P×(t | t ≤ R))

j
(1− P×(t | t ≤ R)

k−j
=

k

2
.

Finally, in order to determine the average number of intersec-
tions on all the lines within S, we take the expectation over
the number of lines generated within S. This is evaluated as

N1 =

nB−1∑
k=0

(
nB

k + 1

)
︸ ︷︷ ︸

T1

(
t

R

)k+1(
1− t

R

)nB−k−1

︸ ︷︷ ︸
T2

×

k

2︸︷︷︸
T3

× (k + 1)︸ ︷︷ ︸
T4

× 1

2︸︷︷︸
T5

=
nB(nB − 1)

4

(
t

R

)2

.

(11)

where T1 corresponds to choosing k out of nB lines, T2 refers
to the probability that exactly k lines are generated in S, T3 is
the average number of intersections on a single line given that
k lines are generated in S, T4 is due to the fact that including
L0 there are k + 1 lines in S, and finally, T5 is to avoid the
double counting of the intersections. Similarly, for t > R

N2 =

nB−1∑
k1=0

k1P×(t | t > R) =
nB(nB − 1)

2πR2
×(

t2 arcsin

(
R

t

)
+ 2R2 arccos

(
R

t

)
−R

√
t2 −R2

)
.

(12)

Next, we consider concentric circles centered at the origin
having radii l = {w, 2w, . . . }. In the i−th annulus of width
w, the average number of intersections given by (11) and (12)
to the area of the annulus gives the intersection density as

ρ×,i(w) =



1
πw2(2i+1)

(
nB(nB−1)

4 ×
(

(w(i+1))2

R2 − (wi)2

R2

))
;

for (i+ 1)w ≤ R,

nB(nB−1)
2π2R2w2(2i+1)

(
(i+ 1)2w2 arcsin

(
R

(i+1)w

)
+

2R2 arccos
(

R
(i+1)w

)
−R

√
(i+ 1)2w2 −R2

−i2w2 arcsin
(

R
iw

)
− 2R2 arccos

(
R
iw

)
+

R
√
i2w2 −R2

)
; for (i+ 1)w > R.

The final result of the intersection radial density can be
obtained by substituting iw = r and taking the limit w → 0.

APPENDIX C
PROOF OF THEOREM 3

Proof. Let f(r) be a positive, measurable, monotonic, and
bounded function for the first part of the proof. Here, we will
find the PGFL of the restricted point process Φ′∩B((0, 0), t).
The theorem follows from the monotone convergence theorem
with t → ∞. Note that the distance of a BLP line Li

corresponding to the generating point (r, θ) in D from (0, r0)
in R2 is l = |r0 cos θ−r|. A point located at a distance y from
the perpendicular projection of (0, r0) to Li, has a distance√
y2 + l2 from (0, r0). The length of the chord is 2

√
t2 − l2

when t ≥ |r0 cos θ − r|.

G1(r0, r, θ) = lim
t→∞

exp

(
−2λ

∫ √
t2−l2

0

1−f
(√

y2 + l2
)
dy

)
(a)
= exp

(
−2λ

∫ ∞

0

1− f
(√

y2 + l2
)
dy

)
,

where step (a) is due to the monotone convergence theorem. In
Φ′, each line can either (a) intersect with B((0, 0), d1) or (b)
does not intersect with B((0, 0), d1), where d1 is the distance
from the origin to the nearest point of Φ − (0, r0). For a
particular r0 and d1, a line is intersecting if |r0 cos θ−r| ≥ d1
and non-intersecting otherwise. Thus, we can write the con-
ditional PGFL of the intersecting and non-intersecting lines
after averaging over (r, θ) ∈ D as

GI(r0, d1) =
1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

1−

f
(√

y2 + l2
)
dy

)
drdθ,

GNI(r0, d1) =
1

(2πR−AD(r0, d1))

∫∫
D\DB(0,d1)

exp

(
− 2λ

∫ ∞

0

1− f
(√

y2 + l2
)
dy

)
drdθ.

(13)
Next, note that the line containing the nearest point (at a
distance d1) of the BLCP intersects the disk B((0, 0), d1)
almost surely. Whereas the other nB−1 lines may or may not
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intersect the disk depending on their generating point. Thus,
the PGFL for Φ− (0, r0) is evaluated as

G(r0, f(·))
(a)
= GI(r0, d1)︸ ︷︷ ︸

T1

nB−1∑
n=0

(
nB − 1

n

)
[(

AD(r0, d1)

2πR
×GI(r0, d1)

)n

︸ ︷︷ ︸
T2

×
((

1− AD(r0, d1)

2πR

)
×GNI(r0, d1)

)nB−n−1

︸ ︷︷ ︸
T3

]

(b)
= GI(r0, d1)

(
1

2πR

)nB−1 (
AD(r0, d1) GI(r0, d1)+

(2πR−AD(r0, d1)) GNI(r0, d1)
)nB−1

. (14)

In step (a), the term T1 corresponds to the line containing the
nearest point (recall the Palm perspective discussed in sub-
section II-E). The term T2 corresponds to the probability that
a set of n lines intersect the disk and the conditional PGFL
given that the lines intersect the disk. The term T3 corresponds
to the probability that a set of nB−n−1 lines do not intersect
the disk and the conditional PGFL, given that the lines do not
intersect the disk. The statement of the theorem follows from
the above.

APPENDIX D
PROOF OF THEOREM 4

Proof. The success probability can be evaluated as

pS(γ) = P[ξ(r0) > γ] = P

[
ξ0d1

−αh1

1 + ξ0
∑

x∈Φ′ dx
−αhx

> γ

]
(a)
= E

[
exp

(
−γξ0

∑
x∈Φ′ dx

−αhx − γ

ξ0d
−α
1

)]
= Ed1

[
exp

(
−γ

ξ0d
−α
1

)
E!
x1,hx

[
exp

(−γ
∑

x∈Φ′ d−α
x hx

d−α
1

)]]
. (15)

In step (a), we use the CCDF of h1. Here, E!
x1

refers to the
expectation taken with respect to the Palm probability of the
shifted and reduced point process, i.e., conditioned on the point
of Φ−(0, r0) being located at x1 and then removing it. The 1st
term, exp

(
−γ

ξ0d
−α
1

)
, considers noise impact depending solely

on d1 and N0, while the second term, E!
x1,hx

[·], addresses
interference impact and can be simplified further

E!
x1,hx

[
exp

(−γ
∑

x∈Φ′ d−α
x hx

d−α
1

)]
= E!

x1

[ ∏
x∈Φ′

[
Ehx exp

(
−γd−α

x hx

d−α
1

)]]

= E!
x1

∏
x∈Φ′

1

1 + γd−α
x

d−α
1

 = G

r0,
1

1 + γr−α

d−α
1



=
1

AD(r0, d1)

∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2(

γ
[
y2 + l2

]−α
2

d−α
1 + γ [y2 + l2]

−α
2

)
dy

)
drdθ ×

(
1

2πR

)nB−1

 ∫∫
DB(0,d1)

exp

(
− 2λ

∫ ∞

√
d2
1−l2

(
γ
[
y2 + l2

]−α
2

d−α
1 + γ [y2 + l2]

−α
2

)
dy

)

drdθ +

∫∫
D\DB(0,d1)

exp

(
− 2λ

∫ ∞

0

(
γ
[
y2 + l2

]−α
2

d−α
1 + γ [y2 + l2]

−α
2

)
dy

)
drdθ


nB−1

.

Employing the above in (15) completes the proof.


