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Abstract—While meta distribution (MD) reconstruction meth-
ods based on moments play an important role in analyzing
wireless network performance, a critical gap exists in compre-
hending the impact and consequences of inaccurate moments
on MD reconstructions. The reliability and robustness of these
techniques remain unexplored. In this paper, we address this gap
by analyzing the sensitivity of commonly used MD reconstruction
methods to perturbations to moments and provide valuable
guidelines for the application of these methods. Furthermore, we
quantify the impact of inaccurate moments on MD reconstruc-
tions, examining the validity of perturbed moment sequences
and demonstrating the critical importance of moment accuracy.
Our investigation demonstrates the necessity for precise moment
computation. Succinctly put, moment quality is preferred over
moment quantity.

Index Terms—Sensitivity, meta distribution, Hausdorff mo-
ment problem, stochastic geometry

I. INTRODUCTION

A. Meta distributions and the truncated Hausdorff moment
problem

With the rapid proliferation of smart devices, there is an
increasing demand for wireless networks to support sophisti-
cated applications like augmented reality and interactive online
gaming. Users expect consistent performance and reliability.
However, despite manufacturers and service providers often
highlighting peak performance in their advertisements, the
actual user experience differs from both peak and average
performance. Instead, it is crucial to consider the performance
achievable by different percentiles of users, such as the 95-th,
50-th, or 5-th percentile. Recent evaluations of wireless net-
work performance, including those for 5G and WiFi standards
[1], [2], have focused on specifying the throughput levels that
95% of users should achieve. Theoretical approaches often
only analyze the distribution of the signal-to-interference ratio
(SIR), from which the data rate or the spectral efficiency can
be derived. This kind of distribution averages over all sources
of randomness, such as point process(es), fading, shadowing,
and channel access schemes, making it impossible to separate
the impact of individual random elements. As a result, it
fails to capture the performance at the individual link level.
The meta distribution (MD) of the SIR resolves this problem
by separating different sources of randomness via conditional
probabilities [3]–[7]. Typically an SIR MD is defined as the
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complementary cumulative distribution function (cdf) of the
conditional probability

Pt ≜ P(SIR > t | Φ), t ∈ R+,

where Φ is the point process, i.e., the SIR MD is given by

F̄ (x, t) ≜ P(Pt > x), x ∈ [0, 1], t ∈ R+.

While it allows for a much sharper performance characteri-
zation, it can in most cases only be calculated based on the
moments of the underlying conditional distribution [3]–[9].
The z-th moment of Pt is

mz(t) ≜
∫ 1

0

zxz−1F̄ (x, t) dx, z ∈ C. (1)

The problem of recovering a distribution from a limited
number of its moments is formulated as follows: given a finite-
length sequence (mk)

n
k=1, n ∈ N, find or approximate an F

that solves ∫ 1

0

xk dF (x) = mk, k = 0, 1, ..., n, (2)

where F is right-continuous and increasing with F (0−) = 0
and F (1) = 1, i.e., F is the cumulative distribution function
(cdf) of a random variable supported on [0, 1]. m0 = 1
is assumed fixed. Let Fn denote the family of F whose
first n moments match (mk)

n
k=1. This problem is called the

truncated Hausdorff moment problem [10]. In most cases,
when a solution exist to the truncated Hausdorff moment
problem, it is one of infinitely many [10], [11].

The truncated Hausdorff moment problem, i.e., using mo-
ments to reconstruct the distributions, has been an important
topic in the analysis of MDs [3], [8], [9], [12]. A key issue
that has not been considered is that the numerically obtained
values of the moments deviate from the exact ones, i.e., they
are perturbed. The causes for the perturbations are the use
of simplified models to approximate the actual moments (see,
e.g., [7]) and inaccurate evaluations of exact but complicated
expressions (see, e.g., [13]). The implications can be divided
into two categories: (1) The perturbations can invalidate the
moment sequences, i.e., turn them into sequences that cannot
be the moments of a distribution; (2) they can change the so-
lutions or approximations to the truncated Hausdorff moment
problem.

While perturbations affect the solutions/approximations to
the truncated Hausdorff moment problem in general, our focus
is on MDs that arise in wireless networks, specifically the SIR
MDs.
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B. A motivating example: the Chebyshev-Markov (CM) in-
equalities of order 2

Here we focus on the well-known Chebyshev-Markov (CM)
inequalities. These inequalities offer the tightest possible
bounds on the distributions whose first n moments match
a given sequence of length n [10], [14]. These bounds are
achieved by certain discrete distributions whose moments
match the given sequence. We aim to investigate how pertur-
bations in the moments change the tightest possible bounds.
Specifically, we would like to explore how the infima and
suprema of all possible solutions to the matching moment
sequence change when there is a small variation in the second
moment. We set n = 2 for ease of exposition.

Example 1 (n = 2). For n = 2, consider the case with
positive variance, i.e., m2 > m2

1. Let h denote m1−m2

1−m1
. It

is obvious that h < m2

m1
. The infima and suprema are

inf
F∈F2

F (x) =


0, 0 ≤ x ≤ h,

1− m1−m2

x −m1, h < x ≤ m2

m1
,

(x−m1)
2

m2−m2
1+(x−m1)2

, m2

m1
< x ≤ 1,

sup
F∈F2

F (x) =


m2−m2

1

m2−m2
1+(x−m1)2

, 0 ≤ x ≤ h,

1 + m1−m2

1−x −m1, h < x ≤ m2

m1
,

1, m2

m1
< x ≤ 1.

(3)

(4)

Consider two sequences m = (1,m1,m2) and m′ =
(1,m1,m

′
2) where m1 ∈ (0, 1) and m2,m

′
2 ∈ (m2

1,m1).
These conditions ensure that m and m′ are two valid moment
sequences. Let F2 and F ′

2 denote the families of cumulative
distribution functions (cdfs) whose first two moments match
m and m′, respectively. Assume ∆m2 = m′

2 − m2 > 0 so
that m1−m2

1−m1
>

m1−m′
2

1−m1
and m2

m1
<

m′
2

m1
. For x ∈ [m1−m2

1−m1
, m2

m1
],

inf
F∈F ′

2

F (x)− inf
F∈F2

F (x) = ∆m2/x (5)

and
sup
F∈F ′

2

F (x)− sup
F∈F2

F (x) = −∆m2/(1− x). (6)

Therefore, on the interval [m1−m2

1−m1
, m2

m1
], the difference in the

lower bounds and that in the upper bounds exhibit an odd
symmetry with respect to (wrt) the point (0.5, 0). Because of
the symmetry, in the following, we focus on the lower bounds
only. Notably, the disparity in the tightest lower bounds on the
interval [m1−m2

1−m1
, m2

m1
] is directly proportional to the difference

in m2 and inversely proportional to x. Consequently, as x
approaches 0, minor perturbations in m2 can lead to substantial
differences, potentially magnifying the lower bounds tenfold
or even hundredfold. Also, on the interval [m1−m′

2

1−m1
, m1−m2

1−m1
],

the difference increases as x increases, due to the fact that
one of the lower bounds stays zero. Therefore, the maximum
difference is achieved at x = m1−m2

1−m1
.

Figure 1 shows an example of m1 = 0.5,m2 = 0.4894
and m′

2 = 0.4954. The difference in m2 is just 0.006 (corre-
sponding to a perturbation of 1.23%) while the difference in
the infima around x = 0.02 is 50 times bigger. This shows
that inaccuracies in the calculations of the moments can have
a drastic impact on the reconstructed MD.
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Fig. 1. The top plot shows the tightest possible bounds by the CM inequalities
for m = (1, 0.5,m2 = 0.4894) and m′ = (1, 0.5,m2 = 0.4954),
respectively. The bottom plot shows the difference in the bounds for m and
m′.

C. Related works and contributions

While MD reconstruction methods and their applications
have garnered considerable attention [3], [8], [9], [12], the
implications of inaccurate moments on MD reconstructions
have not been explored, leaving unanswered questions about
the reliability and robustness of MD reconstruction methods.
Our work fills this gap. Our contributions are summarized as
follows.

• Sensitivity analysis: We conduct a thorough analysis of
the sensitivity of commonly used MD reconstruction
methods and provide comprehensive guidelines for their
applications. Studying the sensitivity of these methods to
variations in the moments provides important insights to
researchers, facilitating more informed decision-making
in their choice and implementation of MD reconstruction
techniques.
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• Robustness metric: We introduce a single-letter robust-
ness metric that quantifies how susceptible a moment
sequence is to perturbations. With this metric, we can
assess the necessity for higher accuracy settings.

• Effect of inaccurate moments: We discuss the impact of
inaccurate moments on MD reconstructions. We inves-
tigate the validity of perturbed moment sequences and
examine their impact on the corresponding MDs and
show the importance of the accuracy of moments.

• Guidance for limited computational resources: We give
comprehensive guidance for effectively calculating and
utilizing moments in MD reconstructions. Our guidelines
offer practical strategies for optimizing computational
resources while ensuring robust and reliable MD recon-
structions. By addressing the challenges associated with
resource constraints, we help researchers make efficient
use of available resources in the MD reconstruction
process.

Notation. [n] ≜ {1, 2, ..., n} and [n]0 ≜ {0} ∪ [n]. N is the
set of positive integers. N0 is the set of non-negative integers.
R+ is the set of positive real numbers. C is the set of complex
numbers.

II. SOURCE OF PERTURBATIONS

Perturbations to moments arise from two sources: the use
of approximated moment expressions (see, e.g., [7]), and the
inaccurate numerical evaluations of complicated exact moment
expressions (see, e.g., [13]). Given the inherent uncertainty
of the accuracy of approximated moment expressions, our
discussion focuses on the scenarios where moment expres-
sions are precisely known. Inaccurate evaluations of precisely
known moment expressions often arise from the numerical
integration of complicated integral expressions, such as double
and triple integrals, in particular if the domain of integration
is unbounded. In this section, we first discuss some common
numerical integration techniques (when the domains of inte-
gration are finite and the integrands are bounded) for proper
integrals and the corresponding errors, then we explore the
error in a wireless network example, and lastly we examine the
errors resulting from truncation for improper integrals (when
the domain of integration is unbounded and the integrands are
bounded).

A. Numerical integration methods

Due to the complicated nature of some of the moment
expressions, numerical integration is necessary to approximate
the integrals through discrete methods. The accuracy of nu-
merical integration can be compromised by various factors.
In this subsection, we briefly review some commonly used
integration methods and their errors. For illustration purpose,
we consider the integral I(f) =

∫ b

a
f(x) dx, where f is a real

bounded function over the interval [a, b].
1) Midpoint rule: Under the composite midpoint rule,

we approximate I(f) by dividing the interval [a, b] into N
subintervals and employing the midpoint of each subinterval
to approximate the function f . The approximation is achieved
by evaluating f at the midpoints and then summing up these

values weighted by the width of each subinterval. Let H =
b−a
N denote the length of each subinterval. The corresponding

approximation Im,N (f) is given by

Im,N (f) = H

N−1∑
k=0

f(xk),

where xk = a+ (2k + 1)H/2 for k ∈ [N − 1]0. The error is
given by [15, Chapter 9.2.1]

I(f)− Im,N (f) =
b− a

24
H2f ′′(ξ)

provided that f ∈ C2([a, b]), i.e., the second derivative of f
exists and is continuous on [a, b], and where ξ ∈ (a, b).

2) Trapezoidal rule: Under the composite trapezoidal rule,
we approximate I(f) by dividing the interval [a, b] into N
subintervals and use the endpoints of each subinterval to
form a trapezoid. The approximation is then obtained by
summing up the areas of these trapezoids, each weighted by
the width of its corresponding subinterval. The corresponding
approximation It,N (f) is given by

It,N (f) =
H

2

N−1∑
k=0

(f(xk) + f(xk+1)) ,

where xk = a+ kH for k ∈ [N ]0. The error is given by [15,
Chapter 9.2.2]:

I(f)− It,N (f) = −b− a

12
H2f ′′(ξ),

provided that f ∈ C2([a, b]), i.e., the second derivative of f
exists and is continuous on [a, b], and where ξ ∈ (a, b).

3) Simpson’s rule: In contrast to both the composite mid-
point and trapezoidal rules, Simpson’s rule enhances the
accuracy by approximating I(f) via quadratic polynomials.
This is achieved by dividing the interval into N subintervals
and employing the endpoints along with the midpoints of each
subinterval to construct these quadratic approximations. The
composite Simpson’s rule then calculates the approximation
by summing up the areas under these parabolic segments,
each appropriately weighted by the width of its corresponding
subinterval. The corresponding approximation Is,N (f) is given
by

Is,N (f) =
H

6

(
f(x0) + 2

N−1∑
k=1

f(x2k)

+ 4

N−1∑
k=0

f(x2k+1) + f(x2N )

)
,

where xk = a + kH/2 for k ∈ [2N ]0. The error in the
composite Simpson’s rule is [15, Chapter 9.2.3]

I(f)− Is,N (f) = −b− a

180
(H/2)

4
f (4)(ξ),

provided that f ∈ C4([a, b]), i.e., the forth derivative of f
exists and is continuous on [a, b], and where ξ ∈ (a, b).
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B. An example of the trapezoidal rule

In this section, we use the moments from [13, Eq. 12] as
an example to explore the error from the trapezoidal rule as
the evaluation parameters (step size) changes.1 [13] considers a
downlink finite cellular network where a deterministic number
of transmitters N are deployed to serve the receivers. The
locations of the transmitters are modeled as a uniform binomial
point process in the disk b(o, rd). All the transmitters are
active independently with probability p and transmit with unit
power in each time slot. The receiver is served by the nearest
transmitter, and the other N −1 transmitters are considered as
interferers. [13] analyzes the signal-to-interference ratio for a
reference receiver within the disk at x0, with x0 = ∥x0∥ ∈
[0, rd]. The b-th moment of the conditional success probability
(with threshold θ) at x0 is given by

mb(θ) =

∫ wp

0

(∫ wp

r

(
p

1 + θ(r/u)α

+ 1− p

)b

fU (u)du

)N−1

fR(r)dr, (7)

where
wm = rd − x0, wp = rd + x0,

fU (u) =


fW1

(u)

1−FW1
(r) , 0 ≤ r ≤ wm; r ≤ u ≤ wp

fW2
(u)

1−FW1
(r) , 0 ≤ r ≤ wm;wm ≤ u ≤ wp

fW2
(u)

1−FW2
(r) , wm ≤ r ≤ wp; r ≤ u ≤ wp,

fW1
(w) =

2w

r2d
,

fW2(w) =
2w

πr2d
arccos

(
w2 + x20 − r2d

2x0w

)
fR(r) =

{
fR1

(r), 0 ≤ r ≤ wm

fR2
(r), wm ≤ r ≤ wp,

fR1(r) = NfW1(r)(1− FW1(r))
N−1,

fR2
(r) = NfW2

(r)(1− FW2
(r))N−1.

FW1(·) and FW2(·) are the cdfs corresponding to fW1(·) and
fW2(·).

We set p = 1/2, rd = 1, x0 = rd/2, θ = 1 and N = 2 and
evaluate (7) using the composite trapezoidal rule and partition
the integration ranges by Neval evenly distributed points within
the intervals (we assume FW1 and FW2 are accurate). Here we
adopt four evaluation parameters, Neval = 11, 101, 1001, and
2561. We denote the n-th moment under evaluation scheme
Neval as mn,Neval

. We assume mn,2561 is accurate enough
to serve as reference. We focus on the absolute deviation
(defined as |mn,Neval

− mn,2561|) and the relative deviation
(defined as (mn,Neval

− mn,2561)/mn,2561). From the left
plot of Figure 2, we observe that the absolute deviations
decrease as Neval increases. From the blue curve in the right
plot of Figure 2, we can observe that the computation time

1As we evaluate the integrands at evenly distributed points within the
defined intervals, the variations in the step sizes correspond to changes in
the number of equally spaced points in those intervals. In the following, we
will refer to the number of equally spaced points instead.
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Fig. 2. The absolute deviations versus the order of moments n under different
evaluation parameters (top) and computation time of 5 moments (blue) under
different evaluation parameters and computation time of different number of
moments (red) with Neval = 2561 (bottom).

increases drastically as Neval increases, and the computational
complexity is Θ(N2

eval). The red curve in the same plot
illustrates a linear increase in computation time with increasing
Neval, consistent with the fact that the moment order b does
not affect the computational complexity of integral evaluation.
Besides, by comparing the blue and red curves in the bottom
plot of Figure 2 and combining them with the top plot, we
are able to choose the suitable evaluation strategy based on
our resource limitations. For instance, with approximately 4
hours of computation time, we could opt to evaluate either 2
moments with Neval = 2561 or 5 moments with Neval ≈ 1700.
As outlined in Section V, we recommend the former approach.
From Table I, we can observe that for the same evaluation
scheme, the relative deviation to each moment is approxi-
mately the same.
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TABLE I
THE RELATIVE DEVIATIONS UNDER DIFFERENT EVALUATION

PARAMETERS.

Neval m1 m2 m3 m4 m5

11 −5.2% −4.91% −4.66% −4.46% −4.30%
101 −0.3% −0.28% −0.24% −0.21% −0.17%
1001 −0.01% −0.02% −0.01% −0.01% 0 (exact)

C. Numerical evaluation of improper integrals: truncation

Different from the integrals of a bounded domain of in-
tegration in Section II-A, we consider improper integrals in
this section. For ease of exposition, we consider integral
I(f) =

∫∞
0
f(x) dx, where f is a real bounded integrable

function over [0,∞).2

When evaluating an improper integral, there are two com-
mon methods: truncation and change of variable. These meth-
ods allow for the transformation of the improper integral into
a standard integral over a finite interval, facilitating the use of
numerical integration techniques suitable for such intervals. In
this part, we focus only on the error associated with truncation.

When evaluating moments (obtained from improper inte-
grals) from MDs, in most cases, the integrands are monotonic
decreasing and positive. Thus, the error of the truncation is
determined by the choice of integration limits, which can be
easily estimated based on the decay behavior of the integrand.
In general, the truncated integral is smaller than the exact one.

Next, we present an example of how the integration limit
affects the accuracy of moments. [9] considers the standard
downlink Poisson cellular model with base stations (BSs)
forming a Poisson point process Φ, nearest-base station asso-
ciation, power-law path loss with path loss exponent α and
Rayleigh fading. The signal-to-interference-plus-noise ratio
(SINR) is considered. The n-th moment of the conditional
success probability P(SINR > θ | Φ) is given by

mn(θ) = πλ

∫ ∞

0

exp{−(Anz +Bnz
α/2)} dz, (8)

where An = 2F1(n, 1; 1−2/α; θ/(1+ θ))πλ/(1+ θ)n, Bn =
nθσ2/p, λ is the intensity of the BS point process, 2F1 is the
Gauss hypergeometric function, σ2 is the noise power, and p
is the transmit power of the BSs.

Remark 1. If we consider the SIR instead of the SINR in
(8), i.e., the noise power σ2 = 0, then (8) is simplified to [3,
Theorem 2]

mn(θ) =
(1 + θ)n

2F1(n, 1; 1− 2/α; θ/(1 + θ))
. (9)

In the evaluation, [9] sets λ = 0.001 per m2, α = 5,
θ = 0dB, and σ2/p = −100 dB. The integration limits in
(8) are set to be 10, 100, 1000. As shown in Figure 3, the
truncation error decreases as n increases, but the truncation
error can still be significant if the integration limit is not large
enough. Additionally, the right plot of Figure 3 shows that the
calculated ones are smaller than the exact one.

2For integrands with singularities, i.e., f(x0) is undefined for some x0 ∈
[0,∞), a common approach is to exclude a small neighborhood around the
singularities and evaluate the limit as this neighborhood shrinks to zero.
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Fig. 3. The absolute deviations and relative deviations for different integration
limits.

The accuracy of moments, particularly those obtained from
double or triple integrals or infinite sums/integral range or
approximations, is a critical concern in the reconstruction of
distributions. As shown in the examples, the evaluation of
integrals significantly affect the accuracy of moments. Also
as shown in Section I-B, even minor variations—let alone
significant perturbations—can lead to substantial alterations
in the solutions to the truncated Hausdorff moment problem.
This motivates us to analyze the influence of the moment
inaccuracies on the reconstruction of meta distributions (MDs),
and, in turn, provide guidance on optimizing the utilization of
computational resources, i.e., calculating as many moments as
possible vs. calculating moments as accurate as possible. In
this paper, we mainly focus on the recommended reconstruc-
tion methods in [12], i.e., the beta approximation, the binomial
mixture (BM) method, the Fourier-Legendre (FL) method, and
the Chebyshev-Markov (CM) inequalities. In doing so, we
treat the MD as a family of univariate distributions, i.e., we
reconstruct the distribution of the conditional probability Pθ

from its corresponding moments for multiple θ.
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III. SENSITIVITY

A. Definition of sensitivity
To discuss the accuracy of a reconstruction method in

the presence of perturbations to the moments, here we give
the formal definition of the sensitivity of the moment-based
reconstruction of a distribution:

Definition 1 (Sensitivity). Given a cdf F based on a moment
sequence (mk)

N
k=1, the sensitivity of F at point x ∈ (0, 1) wrt

the n-th moment, where n ∈ [N ], is defined as

SF
mn

(x) ≜ lim
∆mn→0

∆F (x)/F (x)

∆mn/mn

=
dF

dmn
(x) · mn

F (x)
.

(10)

(11)

The sensitivity quantifies the change in the moment-based
reconstructed distribution function to a change in a specific
moment. A higher absolute sensitivity indicates that the re-
constructed distribution function is more susceptible to pertur-
bations in that particular moment. The smaller the sensitivity,
the better.

Next, we calculate the sensitivity of different reconstruction
methods and compare their sensitivity performance. Specifi-
cally, we focus on the beta approximation, the BM method,
and the FL method.

B. Sensitivity of the beta approximation
Beta approximations are the most commonly used approx-

imation in recovering MDs from moments [3], [4], [16]. The
pdf of a beta distribution is given by

fBeta(x, α, β) =
xα−1(1− x)β−1

B(α, β)
, (12)

where Beta(α, β) is the beta function.
For the beta approximation, we use the first and second

moments to match the two parameters α and β such that
α = m1(m1 − m2)/(m2 − m2

1) and β = (1 − m1)(m1 −
m2)/(m2 − m2

1). For simplicity, the corresponding cdf is
denoted by FBeta(x).

Lemma 1 (Sensitivity of the beta approximation wrt m1). The
sensitivity of FBeta at point x wrt m1 is given by

SFBeta
m1

(x) =

(
−m2

m2
1 − 2m1 +m2

(m2 −m2
1)

2(
FBeta(x) (log(x)− ψ(α) + ψ(α+ β))

− xα3F2(α, α, 1− β; 1 + α, 1 + α;x)

Beta(α, β)

)
+

(1 +m2)m
2
1 − 4m1m2 +m2

2 +m2

(m2 −m2
1)

2( (1− x)β3F2(β, β, 1− α; 1 + β, 1 + β; 1− x)

Beta(α, β)

−
∫ 1−x

0
tβ−1(1− t)α−1

Beta(α, β)

(log(1− x)− ψ(β) + ψ(α+ β))
)) m1

FBeta(x)
,

where ψ(x) is the digamma function.

C. Sensitivity of the BM method
A piecewise approximation of the cdf based on binomial

mixtures is proposed in [17]. For any positive integer n, the
approximation3 by the BM method is defined as follows.

Definition 2 (Approximation by the BM method).

FBM,n(x) ≜

{
g⌊nx⌋, x ∈ (0, 1],

0, x = 0,
(13)

where gl =
∑l

k=0

∑n
i=k

(
n
i

)(
i
k

)
(−1)i−kmi, l ∈ [n]0.

It is obvious that gn = 1. We can write g ≜ (gl)
n−1
l=0 as a

linear transform of m ≜ (ml)
n
l=1, i.e.,

g = 1+Bm, (14)

where m and g are column vectors, 1 is the 1-vector of size
n, and the transform matrix B ∈ Zn×n is given by Bkj , k ∈
[n− 1]0, j ∈ [n]

Bkj ≜

(
n

j

) k∑
i=0

(
j

i

)
(−1)j−i

1(j ≥ i),

= 1(j ≥ k + 1)

(
n

j

) k∑
i=0

(
j

i

)
(−1)j−i

1(j ≥ i).

(15)

(16)

Compared with [8], the absolute value of each element in
the proposed matrix B is less than or equal to its counterpart in
[8]. This reduction alleviates the accuracy (digit) requirements
for calculating the elements and the moments.

It is clear that B is an upper triangular matrix. Thus, the
perturbation to m1 only affects g0.

Lemma 2 (Sensitivity of the BM method wrt m1). The
sensitivity of FBM,n at point x wrt m1 is given by

SFBM,n
m1

(x) =


B01m1

g0

= −nm1

g0
, x < 1/n

0, x ≥ 1/n.

(17)

Lemma 3 (Sensitivity of the BM method wrt mk). The
sensitivity of FBM,n at point x wrt mk is given by

SFBM,n
mk

(x) =


B(i−1)kmk

gi−1
,

x ∈ [ i−1
n , i

n ), i ∈ [k]

0, x ≥ k/n.

(18)

Lemma 2 demonstrates the robustness of the BM method
to perturbations in m1 over a wide range, and this resilience
increases with the growth of n. However, due to the property
of the upper triangular matrix, as shown in Lemma 3, the sen-
sitivity of the BM method is higher for higher-order moments.
This emphasizes the significance of ensuring the accuracy in
the higher-order moments when applying the BM method.

Remark 2 (The sensitivity of B). The condition number of B
measures the relative error in g caused by the relative error
in m, i.e.,

∥∆g∥
∥g∥

≤ κ(B)
∥∆m∥
∥m∥

, (19)

3In this section, the term “approximation” is used when the outputs are not
always solutions to the THMP.
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where κ(B) is the condition number of B and ∥ · ∥ is the
Euclidean norm.

For n = 5, κ(B) = 53.8. As shown in Remark 2, the
sensitivity of g wrt m is large even though that wrt the first-
order moment is small.

D. Sensitivity of the FL method

For any n ∈ N, the approximation obtained by the n-th
partial sum of the FL expansion of the cdf F is

FFL,n(x) ≜
n∑

l=0

clRl(x), x ∈ [0, 1], (20)

where

Rl(x) =

l∑
j=0

(
l

j

)(
l

l − j

)
(x− 1)l−jxj (21)

is the shifted Legendre polynomial and

cl = (2l + 1)

l∑
k=0

(1−ml−k+1)(
(−1)k

l − k + 1

l−k∑
j=0

(
l

j

)(
l

l − j

)(
l − j

k

))
. (22)

According to [18], we can write c = (cl)
n
l=0 as a linear

transformation of m̂ = (mk)
n+1
k=1 , i.e.,

c = Â(1− m̂), (23)

where c and m̂ are understood as column vectors, 1 is the
1-vector of size (n + 1), and the transform matrix Â ∈
Z(n+1)×(n+1) is given by Âlk, k, l ∈ [n]0

Âlk ≜
(−1)(l−k)(2l + 1)

k + 1
k∑

j=0

(
l

j

)(
l

l − j

)(
l − j

l − k

)
1(k ≤ l). (24)

Since Â is a lower triangular matrix, the perturbation to m1

affects all the elements in c.

Lemma 4 (Sensitivity of the FL method wrt m1). The
sensitivity of FFL,n at point x wrt m1 is given by

SFFL,n
m1

(x) =
−m1

∑n
l=0 Âl0Rl(x)

FFL,n(x)
, (25)

where Âl0 = (−1)l(2l + 1) and Rl(x) are given in (24) and
(21), respectively.

Lemma 5 (Sensitivity of the FL method wrt mk). The
sensitivity of FFL,n at point x wrt mk is given by

SFFL,n
mk

(x) =
−mk

∑n
l=k−1 Âl(k−1)Rl(x)

FFL,n(x)
, (26)

where Âl(k−1) and Rl(x) are given in (24) and (21), respec-
tively.

Even though Lemma 4 shows that the sensitivity of FFL,n

at point x wrt m1 is affected by multiple factors, such as
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Fig. 4. The average, median, and maximum of the absolute sensitivity of
each method at different x wrt m1 for 1000 uniformly randomly generated
moments of length 5 [18]. The green curves for x ≥ 1/5 are not shown
because they are zeros.

the value of Âl0 and the value of the orthogonal polynomials
Rl(x), the value of ∥Âl0∥ = 2l + 1 is not large compared
to the other elements, i.e., ∥Âl(k−1)∥ in Lemma 5 for k > 1.
Besides, due to the property of the lower triangular matrix, the
sensitivity of the FL method is more significantly influenced
by lower-order moments. This underscores the significance
of ensuring the accuracy in the lower-order moments when
applying the FL method.

Remark 3 (The sensitivity of Â). The condition number of Â
measures the relative error in c caused by the relative error
in m̂, i.e.,

∥∆c∥
∥c∥

≤ κ(Â)
∥∆m̂∥
∥m̂∥

, (27)

where κ(Â) is the condition number of Â.

For n = 5, κ(Â) = 1102. As shown in Remark 3, the
sensitivity of c wrt m̂ is very large, indicating that the accuracy
requirement of the FL method is often very high.

Figure 4 shows the absolute sensitivity of each method
at different x. The absolute sensitivity of each method is
generally larger than 1 and can go up to 100 or even more
at small x. This highlights the importance of the accuracy
of moments when evaluating the reconstructed functions at
small x. The BM method achieves zero sensitivity at x ≥ 1/5,
which is consistent with the results in Lemma 2. The absolute
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Fig. 5. The reconstructed MDs for accurate and inaccurate moments from
(7) with Neval = 2561 and 1001, respectively, the corresponding absolute
difference of the MDs, and the approximate absolute sensitivity wrt m1.

sensitivity of the FL method near x = 1 is the smallest among
the three and is generally less than 1.

E. Two examples of the sensitivity of the BM and FL method

To further illustrate the implications of inaccurate moments
on MD reconstructions, we explore the two types of moment
sequences from Section II-B and Section II-C.

The accurate and perturbed moment sequences for Sec-
tion II.B are (0.9152, 0.8438, 0.7830, 0.7310, 0.6862) and
(0.9151, 0.8436, 0.7829, 0.7309, 0.6862), respectively. For
Section II.C, the sequences are (0.6632, 0.5233, 0.4458,
0.3960, 0.3608) and (0.6574, 0.5220, 0.4454, 0.3958, 0.3607).
For simplicity, we refer to these as Case 1 (Section II-B) and
Case 2 (Sec. II-C) moments.

First, we verify the validity of the perturbed moment
sequences, which will be discussed in more detail later in
Section IV-A. Using the method mentioned in Section IV-A,
we verify that the perturbed moment sequence for Case 1 is
invalid, while the sequence for Case 2 is valid. Consequently,
as discussed at the end of Section IV-A, the reconstructions
may not preserve the properties of cdfs, such as monotonicity
and boundedness within [0, 1].

Figure 5 and Figure 6 display the reconstructed MDs, the
absolute differences, and the approximate absolute sensitivity
with respect to m1 for both examples.

As shown in both Figure 5 and Figure 6, the “raw” recon-
structions from the accurate moments using the FL method are
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Fig. 6. The reconstructed MDs for accurate and inaccurate moments from (8)
with integration limit equal to ∞ and 1000, respectively, the corresponding
absolute difference of the MDs, and the approximate absolute sensitivity wrt
m1.

not monotonic, which is consistent with the fact that the FL
method is essentially functional approximation and does not
guarantee monotonicity. Thus, as discussed in [12], we need
to apply the tweaking mapping [12, Definition. 2] to obtain a
sensible reconstruction. Additionally, the reconstruction from
the perturbed moments of Case 1 of the BM method is not
bounded in [0, 1] and is not monotonic because the perturbed
moment sequence is invalid.

Figure 5 and Figure 6 show that the impact on the recon-
struction from the BM method is minimal (0) when x > 0.8.
This consistency with Lemma 3 indicates that the region of
x > 0.8 is only affected by m5, which is accurate in the
perturbed sequences for both cases. This insight is beneficial
for computing the 5-th percentile, suggesting that ensuring
the accuracy of certain high-order moments might suffice.
Furthermore, the absolute differences in the MDs are often ten
to a hundred times larger than the differences in the moments,
underscoring the critical importance of moment accuracy in
reconstructing MDs. The approximate absolute sensitivity of
Case 1, usually greater than 100, also aligns with this finding,
although it differs slightly from the results in Lemma 2 and
Lemma 3 due to changes in multiple moments. Another reason
why the approximate absolute sensitivity is so large in Case 1,
compared with Case 2, is that the a significant portion of the
reconstructions in Case 1 are close to zero and the perturbed
sequence is invalid, which amplifies the impact of perturbed
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moments.

IV. EFFECT OF PERTURBATIONS

In Section III, we discussed the sensitivity of the recon-
struction methods to the perturbations in moments, which
are methods that result in approximations to the truncated
Hausdorff moment problem. In this section, we will discuss
the effect of perturbations to the solutions to the truncated
Hausdorff moment problem, i.e., the existence of solutions
and the tightest possible bounds to the solutions.

A. Validity of moment sequences

The existence of solutions to the truncated Hausdorff mo-
ment problem given a sequence is determined by the non-
negativeness of the Hankel determinants of the sequence [11,
Theorem. 10.1&10.2]. Here, sequences for which solutions
exist are referred to as valid moment sequences, while se-
quences for which solutions do not exist are referred to as
invalid moment sequences. In this section, we explore whether
random perturbations lead to invalid moment sequences and
underscore the significance of accurate moment evaluations.

Consider the case of random perturbations. Denote the
initial valid moment sequence as (mi)

n
i=1. The perturbed

sequence is modeled as

m′
i = mi (1 + Vi) , i ∈ [n], (28)

where Vi, i ∈ [n], are i.i.d. random variables.
We use the Hankel determinants [11], [18] to verify whether

a sequence is a valid moment sequence. Figure 7 shows two
examples of the fraction of the invalid moment sequences
subject to uniformly random perturbations. The two initial
valid moment sequences are

mn =

(
2−2i

(
2i

i

))
i∈[n]

, (29)

which is understood as the center sequence4 because it is at
the center of the moment space of length n [19], and m′

n =(
2−i
)
i∈[n]

, which is understood as a boundary sequence5

because it is on the boundary of the moment space of length
n [19]. As the perturbation range expands or as we consider
higher orders of moments, the fraction consistently rises in
both cases. This observation highlights the sensitivity of the
sequence to both the perturbation range and the sequence
length. Remarkably, for the center sequence (29), even when
the perturbation range is limited to just 1%, approximately
80% of perturbed sequences of length n = 5 become invalid
after perturbations. In the case of the geometric sequence(
2−i
)
i∈[n]

, the percentage rises to 90% for sequences of
length 3, highlighting a heightened accuracy requirement for
geometric sequences (boundary sequences).

4In (29), each mi, i ∈ [n], is obtained as the middle point of the valid
range of the i-th moment determined by the previous (i−1) moments, starting
from m0 = 1. Also, as n → ∞, this sequence corresponds to the arcsine
distribution with probability density function f(x) = 1/(π

√
x(1− x)).

5In m′
n =

(
2−i

)
i∈[n]

, m2 = 1/4 is at the boundary of the valid range
of m2 determined by the previous moments m0 = 1 and m1 = 1/2, and
the remaining higher-order moments are uniquely determined. Thus, m′

n is
on the boundary of the moment space of length n [19].
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Fig. 7. The fraction of randomly perturbed sequences that are not moment
sequences for the center sequence (29) and

(
2−i

)
i∈[n]

versus the highest
order n based on 10000 realizations. The perturbations Vi, i ∈ [n], are i.i.d.
uniform on [−v, v], where v = 0.0032, 0.0056, 0.0100, 0.0178, and 0.0316,
corresponding to the variances in the legends. Besides, in another setting, Vi,
i ∈ [n], are i.i.d. zero-mean normal random variables with variances shown
in the figure.

Intuitively, sequences near the center of the moment space
are more robust compared to sequences near the boundary
of the moment space. This can be explained by considering
the valid range of the n-th moment given the previous n− 1
moments. For simplicity, let us consider the case of n = 2.
The center sequence is (m1,m2) = (1/2, 3/8), and one
of the boundary sequences is (m1,m2) = (1/2, 1/4). For
m1 = 1/2, the valid range of m2 is [m2

1,m1] = [1/4, 1/2].
The point 3/8 from the center sequence is the middle point
of this range, indicating the perturbations (in values, not in
percentage) in m2 within [−1/8, 1/8] will not invalidate the
moment sequence of length 2. In contrast, the point 1/4 is
at the boundary of this range, indicating that any negative
perturbations invalidate the moment sequences. As for the
uniform and normal distribution considered in Figure 7, this
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corresponds to a fraction of 0.5, which is consistent with the
right plot of Figure 7 at n = 2.

When the methods (BM, FL, and CM) are applied to
invalid moment sequences, the results do not preserve the
properties of cdfs, such as monotonicity and boundedness to
[0, 1] (see, e.g., Figures 8 to 10). These findings show the
importance of prioritizing high-accuracy moment evaluations
over an exhaustive assessment of a larger number of moments
and the importance of determining the type of the sequences,
especially those from discrete distributions which are on the
boundary of the moment space.

B. The changes in the tightest possible bounds
If the validity of moment sequences is preserved after

perturbations, we are interested in how the tightest possible
bounds of the solutions to the truncated Hausdorff moment
problem change due to the perturbations.

1) Perturbations in individual moments: In this section,
we consider the changes in the tightest possible bounds with
respect to perturbations in one moment, i.e., we consider the
effect of perturbations in mn for moment sequences is of
length n for n = 1, 2, and 3. We also provide the correspond-
ing sensitivity of the infima and suprema, respectively. The
selection of mn is based on the achievable lower and upper
bounds of mn determined by the previous n−1 moments, i.e.,

m−
n ≜ min

λ∈Λ
{mn(λ), s.t. mi(λ) = mi, i ∈ [n−1]},

m+
n ≜ max

λ∈Λ
{mn(λ), s.t. mi(λ) = mi, i ∈ [n−1]},

(30)

(31)

where Λ is the set of probability measures on [0, 1] and
mk(λ) ≜

∫ 1

0
xk dλ. Specifically, we choose mn = m−

n ,
mn = (m−

n +m+
n )/2, and mn = m+

n .
Figures 8 to 10 show the changes in the infima and suprema

for different mn under perturbations, respectively. Due to the
characteristics of the provided sequences, certain perturbations
lead to invalid moment sequences, resulting in corresponding
bounds that exhibit non-monotonic behavior or exceed the
range [0, 1], as discussed at the end of Section IV-A.

We can observe that the sensitivity at the boundary, where
mn = m−

n and mn = m+
n , generally exceeds that at the

middle point, where mn = (m−
n +m+

n )/2. Also, the changes
in the infima and suprema are more significant at the boundary.
To quantify this relationship between sensitivity and proximity
to the boundary, we propose the following robustness metric.

Definition 3 (Robustness metric). For a given sequence mn =
(mk)k∈[n], the robustness metric is defined as

RM(mn) = min
k∈[n]

min

(
|mk −m−

k |
|m+

k −m−
k |
,
|mk −m+

k |
|m+

k −m−
k |

)
, (32)

where m−
k and m+

k are given in (30) and (31), respectively.

It is obvious that RM(mn) ∈ [0, 0.5].

Lemma 6 (Distribution of the robustness metric). For uni-
formly distributed random moment sequences of length n, the
cdf FRM(mn) of RM(mn) is given by

FRM(mn)(x) = 1−
∏
k∈[n]

(1− 2FBeta(x, k, k)) , (33)
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Fig. 8. The infima and suprema at n = 1 and corresponding sensitivity at
different x. The perturbed m′

1 = m1(1 + 0.01) for m1 > 0, and m′
1 =

m1 + 0.01 for m1 = 0. The sensitivity is shown at points where F (x) > 0
and m1 > 0. For m1 = 0, the plot is left blank. The average of the sensitivity
is calculated based on the shown points.

where FBeta(x, k, k) is the corresponding cdf of the beta
distribution whose pdf is given in (12).

Proof. By [19, Theorem 1.3], for uniformly distributed ran-
dom moment sequences of length n, the canonical coordinates
pk, k ∈ [n], defined as

pk =
mk −m−

k

m+
k −m−

k

(34)

are independently distributed with the same beta distribution
Beta(n− k+1, n− k+1). With pk, the robustness metric of
mn can be expressed as

RM(mn) = min
k∈[n]

min(pk, 1− pk). (35)

Therefore, by the independence of pk, k ∈ [n], and the
property of the minimum function in the robustness metric,

F̄RM(mn)(x)

=
∏
k∈[n]

(pk ≥ x, 1− pk ≥ x)

=
∏
k∈[n]

(1− 2FBeta(x, n− k + 1, n− k + 1))

=
∏
k∈[n]

(1− 2FBeta(x, k, k)) .

(36)

(37)

(38)
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Fig. 9. The infima and suprema at n = 2 for different m2 (given m1 = 1/2)
and corresponding sensitivity at different x. The perturbed m′

2 = m2(1 +
0.01). The sensitivity is shown at points where F (x) > 0. The average of
the sensitivity is calculated based on the shown points.

As shown in Lemma 6 and Figure 11, the robustness metric
is concentrated more around 0 compared to 0.5, and the longer
the sequence is, the more skewed it is towards 0. Intuitively,
for the robustness metric to approach 0.5, all moments must
cluster tightly near the center. Conversely, for the metric to
approach 0, only one moment needs to approach the boundary,
which is a much less stringent condition. Also, as shown in
Figure 11, about 10% of the uniformly distributed moment
sequences have a robustness metric smaller than 0.05. The
situation is even worse for the actual moment sequences. As
shown in Figure 12, about 40% of the sequences have the
robustness metrics smaller than 0.05.

Figure 13 and Figure 14 show the sensitivity of the beta
approximation and the BM and FL method for randomly
generated sequences with different values of the robustness
metric. Comparing the two, we observe that the median of the
sensitivity of the beta approximation stays almost the same,
while the mean and maximum value of the sensitivity of the
beta approximation are significantly higher for sequences with
robustness metrics smaller than 0.05, suggesting the presence
of outliers when the sequence is near the boundary. However,
whether the sequence is close to the boundary or not has little
impact on the sensitivity of the BM and FL method. Also,
from Figure 4 and Figure 14, we observe that the sensitivity of
the methods for sequences with robustness metrics larger than
0.45 is of the same magnitude as the sensitivity of the methods
for uniformly randomly generated moment sequences.

The closer RM(mn) is to zero, the more “dangerous” we
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Fig. 10. The infima and suprema at n = 3 for different m3 (given
(m1,m2) = (1/2, 3/8)) and corresponding sensitivity at different x. The
perturbed m′

3 = m3(1 + 0.01). The sensitivity is shown at points where
F (x) > 0. The average of the sensitivity is calculated based on the shown
points.
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Fig. 11. The cdf (left) and pdf (right) of the robustness metric for uniformly
randomly generated moment sequences of length 5, 10, and 20.

consider the sequence to be. For example, RM(mn) ≤ 0.05
can be a red flag. The robustness metric serves as an indicator
of how careful we need to be when calculating moments and
how sensitive the reconstructed function could be.

2) Perturbations across all moments: Here, we assume the
perturbations, i.e., (m′

i − mi)/mi, are the same for each



12

Fig. 12. The cumulative and density histogram of the robustness metric for
500 randomly generated moment sequences of length 5 given in (8), where
λ ∼ Unif(5 × 10−5, 10−3), α ∼ Unif(2, 4), θ ∼ Unif(0.1, 40), and
σ2/p ∼ Unif(10−14, 10−10).
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Fig. 13. The average, median, and maximum of the absolute sensitivity of
each method at different x wrt m1 for 1000 randomly generated moments
of length 5 with RM(m5) ≤ 0.05. The green curves for x ≥ 1/5 are not
shown because they are zeros.

i ∈ [n].6 As discussed in Section II-A and Section II-C, it
is evident that the perturbations are less likely to be indepen-
dent across each moment, which justifies the assumption of

6As shown in Section IV-A, if the perturbations are not the same for each
element, it is very likely that the perturbed sequence of length 5 does not
form a valid moment sequence, even if the perturbations are very small, e.g.,
less than 2.5%. Conversely, if the perturbations are uniform and negative, it
can be easily shown that the downsized version of a solution to the original
moment sequence is a solution to the perturbed sequence, i.e., a pdf rf(x)+
(1− r)δ(x) corresponds to the moment sequence rm, r ∈ (0, 1), if a pdf f
corresponds to m.
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Fig. 14. The average, median, and maximum of the absolute sensitivity of
each method at different x wrt m1 for 1000 randomly generated moments
of length 5 with RM(m5) ≥ 0.45. The green curves for x ≥ 1/5 are not
shown because they are zeros.

correlation. For ease of exposition, the perturbed sequence is
modeled as

m′
i = mi(1 + V ), i ∈ [n], (39)

where V ∈ [−0.05, 0.05] is a uniform random variable.7

Figure 15 gives an example how the infima and
suprema from the CM inequalities change due to the
perturbations to each element in the moment sequence
(1/2, 3/8, 5/16, 35/128, 63/256), which is exactly the center
sequence in (29) at n = 5. From Figure 15, we observe
that the infima and suprema after negative perturbations are
greater than the initial ones while the infima and suprema after
positive perturbations are smaller than the initial ones. This ob-
servation for the negative perturbations can be easily explained
from Footnote 6 and the fact that F (x) ≤ rF (x) + (1 − r)
for all 0 ≤ r ≤ 1. For the positive perturbations, it cannot be
easily proved, but we can illustrate it by Example 2. Suppose
the initial moment sequence is (m1) and the perturbed one is
(rm1), 1 < r ≤ 1/m1. For (m1), the infima are 1 − m1/x
within x ∈ (m1, 1], while for (rm1), the infima are 1−rm1/x
within x ∈ (rm1, 1]. Since r > 1, m1 < rm1 and
1 − rm1/x < 1 − m1/x. Combined with the fact that the
infima stay 0 within x ∈ [0,m1] and x ∈ [0, rm1], it is clear

7For the purpose of exploring the effect of perturbations on the achievable
bounds, it would be justified to model them as distributions with bounded
support.
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Fig. 15. The infima and suprema from the CM inequalities for 2000
moment sequences (m1,m2, ..,m5) given an initial moment sequence
(1/2, 3/8, 5/16, 35/128, 63/256) with a random perturbation to each el-
ement no larger than ±5%. The perturbation to each element are the same.
The infima and suprema for positive perturbations are in magenta and green,
respectively. The infima and suprema for negative perturbations are in yellow
and cyan, respectively. The infima and suprema obtained at the perturbation
limit (±5%) are marked by ∗. The infima and suprema from the CM
inequalities for the moment sequence (1/2, 3/8, 5/16, 35/128, 63/256) are
given in △ and ▽, respectively.

that the infima after positive perturbations are smaller than
the initial ones. Simulations in Figure 15 also shows that the
greatest upper bound is achieved when the perturbation is at
the negative limit, which is −5% in this case. This follows
from the fact that rF (x) + (1 − r) ≤ r′F (x) + (1 − r′) for
0 ≤ r′ < r < 1.

Example 2 (n = 1). For n = 1, the infima and suprema are

inf
F∈F1

F (x) =

{
0, 0 ≤ x ≤ m1,

1− m1

x , m1 < x ≤ 1,

sup
F∈F1

F (x) =

{
1−m1

1−x , 0 ≤ x ≤ m1,

1, m1 < x ≤ 1.

(40)

(41)

The infima are equivalent to Markov’s inequality.

We may also use Example 2 and Example 1 to explain why
the suprema are less sensitive to perturbations when x is very
close to 1 and why the infima are less sensitive to perturbations
when x is close to 0. Consider Example 1 with n = 2. Let
the perturbed moments to be (km1, km2). The range (m2

m1
, 1]

does not change under the perturbed moments for both the
infima and suprema. In this range, the suprema are always 1.
Similarly, on the interval [0, m1−m2

1−m1
], the infima are always 0,

but the range changes as k changes.

From Figure 15, we can also observe that symmetric per-
turbations do not result in symmetric changes in the bounds.

V. RECIPE FOR MOMENT COMPUTATION AND
RECONSTRUCTION METHOD SELECTION

In this section, we present the procedure of calculating
moments and the suggested method based on the known
information of the moment sequences.

For a given moment expression, we initially compute the
first two moments with a predetermined level of accuracy.8

Subsequently, we use the Hankel determinants to assess the
validity of the moment sequence, calculate the robustness
metric of the current moment sequence, and make necessary
adjustments. Specifically, if the moment sequence is valid, we
proceed to calculate the robustness metric. If the robustness
metric is greater than 0.05, we continue to calculate the
next moment using the current accuracy setting; otherwise,
we set a flag or perform additional checks or corrections to
ensure the sequence’s proximity to the boundary is due to
the underlying distribution and not inaccurate evaluation. If
the moment sequence is found to be invalid, we escalate the
accuracy setting and recalculate the current moments. This
iterative process continues until the resource limit is reached.
For a pseudo code of this procedure, refer to Algorithm 1.

Algorithm 1 Algorithm for calculating a moment sequence
for the MD reconstruction
Input: The moment expression mn = M(n), the predeter-

mined level of accuracy, and resource limit.
Output: The calculated sequence (mk)

n
k=1.

1: Calculate m1 and m2 based on the predetermined level of
accuracy and set n = 2.

2: while resource limit is not reached do
3: Check the validity of the calculated sequence (mk)

n
k=1

using the non-negativeness of the Hankel determinants
[18].

4: if the sequence (mk)
n
k=1 is a valid moment sequence

then
5: Calculate the robustness metric RM(mn).
6: if RM(mn) > 0.05 then
7: Calculate mn+1 based on the current accuracy

setting and set n = n+ 1.
8: else
9: Set a flag or perform additional checks or cor-

rections to ensure the sequence’s proximity to the
boundary is due to the underlying distribution and
not inaccurate evaluation.

10: end if
11: else
12: Increase the accuracy setting and recalculate

(mk)
n
k=1 based on the current accuracy setting.

13: end if
14: end while

Next, based on the nature of the evaluation method and
moment expressions, only two moments are available, the
beta approximation is preferred. Otherwise, if the lower-order

8Here we assume the computational resources suffice to calculate two
moments under the predetermined level of accuracy. Otherwise, we decrease
the predetermined level of accuracy to satisfy the computational resource limit.
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moments are known to be accurate, we recommend using the
FL method, and if the accuracy of moments are unknown,
we suggest using the BM method. Note that when the beta
approximation is chosen and the robustness metric is smaller
than 0.05, it is suggested to perform additional checks or
corrections to ensure the sequence’s proximity to the boundary
is due to the underlying distribution and not due to inaccurate
evaluation.

VI. CONCLUSION

Numerically computed moments deviate from the exact
ones. This paper addresses a critical issue encountered during
the reconstruction of MDs from moments, where the calculated
moments are subject to perturbations. We explore the common
sources of perturbations in the evaluation of moments, analyze
the sensitivity of reconstruction methods to perturbations, and
discuss their impact on MD reconstructions. Additionally, we
provide guidelines for effectively computing and utilizing mo-
ments in MD reconstructions. They underscore the importance
of prioritizing the accuracy of moments over the quantity of
calculated moments during the computation process.
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