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On the SIR Meta Distribution for Poisson Networks
with Interference Cancellation
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Abstract—This letter presents a theoretical framework for the
analysis of the meta distribution of the SIR for Poisson networks
with interference cancellation (IC) enabled at the receivers, which
gives deep insight into the network performance on a link-wise
basis. A simple but insightful IC model named C-IC is studied
for which the exact b-th moment of the meta distribution and
its beta distribution approximation and some useful bounds are
validated. The conditions for the mean local delay to be finite are
also stated. The results show that IC improves the performance
not only in terms of the mean but also in terms of the variance
of the meta distribution.

Index Terms—Stochastic geometry, Poisson networks, meta
distribution, interference cancellation, mean local delay.

I. INTRODUCTION

In wireless networks, especially in densely deployed sce-
narios, one of the key problems is the strong interference
experienced at the receivers due to their proximity to the
interfering transmitters. Although the network densification
greatly enhances the received signal power, the almost equal
increase of the interference power limits the improvement
of the spectral efficiency. Many works have made tremen-
dous efforts and significant progress in tackling this problem.
Roughly speaking, these works can be classified into two
categories: one is interference avoidance/coordination, which
is interference management through sophisticated spectrum
allocation or smart user scheduling algorithms; the other is
interference cancellation (IC), which turns to advanced signal
processing techniques to cancel some dominant interference
signals [1]. From the perspective of spectrum utilization, the
former may not be as competitive as the latter, which allows
aggressive reuse of the spectrum.

The irregularity of the wireless network topology motivates
the application of stochastic geometry as a powerful mathe-
matical tool for network analysis. Several works have already
utilized stochastic geometry to study the effect of interference
cancellation in wireless networks [2]–[4]. However, these
works mainly focus on analyzing performance metrics that are
based on the standard success probability, which is obtained
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by averaging over all the links in a point process. This success
probability only quantifies the overall average performance of
the entire network, or it can be understood as the performance
of the typical receiver, which is an abstracted representative of
the receivers in the network obtained by averaging, but it does
not offer any information about how the performance of the
individual links is distributed. Such fine-grained information
is revealed by the meta distribution, which is proposed and
defined in [5] as the distribution of the conditional success
probability averaged over the fading given the point process.
It has been extended to cellular uplink [6], cellular underlaid
with D2D [7], and applied to determine the spatial outage
capacity [8]. In this letter we combine the meta distribution
concept with the IC technique in Poisson networks and present
a theoretical framework to allow deep insight into the network
performance on a link-wise basis.

II. SYSTEM MODEL

A. Network Model

We consider a Poisson bipolar network in which the trans-
mitters are distributed according to a homogeneous Poisson
point process (PPP) Φb of intensity λb. Each transmitter has
a dedicated receiver at distance R0 in a random orientation.
The signals transmitted from the transmitters to the receivers
are subject to the standard power law path loss with exponent
α > 2 and Rayleigh fading with unit mean in the power do-
main. The fading coefficients are independent across different
links. Each transmitter transmits with the same power and has
an infinitely backlogged queue such that all transmitters are
always in the “on” state. λb is assumed to be high enough so
that the network is interference-limited.

B. Interference Cancellation

Close Interference Cancellation (C-IC): This is a com-
monly used model in the existing literature, see, e.g., [2], [3].
A receiver has a cancellation region around itself, in which
it is capable of reducing the interference power by 1 − ϵ
(0 ≤ ϵ ≤ 1). The cancellation region is a disk with radius
Dc =

√
n

πλb
so that on average n interfering transmitters lie

in the cancellation region. For a receiver y with its transmitter
x, the set of (partially) cancelled interfering transmitters is
C = ΦI

∩
B(y,Dc), where ΦI is the set of all the potential

interfering transmitters to the receiver and B(y,Dc) is the disk
centered at the target receiver with radius Dc.

Such a simple but insightful IC model is based on the
following reason:
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• Most outages are caused by only a few—often just one—
strong interferers, which are usually close to the target
receivers.

• In practice the number of cancelled interferers of a
receiver can be time-varying due to the changes in
the propagation environment, hence it makes sense to
consider the averaged IC capability.

The residual interference power coefficient ϵ accounts for
the imperfect cancellation capability in reality. For instance,
the model in consideration can be realized in the form of
successive IC (SIC) with only the local CSI of some nearest
transmitters at the receiver, then ϵ is understood as a quantity
to measure the accuracy of the CSI.

III. THE META DISTRIBUTION WITH INTERFERENCE
CANCELLATION

Instead of the standard (mean) success probability ps(θ) ,
P!x(SIRy > θ) at the receiver y (with its transmitter x ∈ Φb),
where P!x denotes the reduced Palm measure [9, Chap. 8] of
Φb given x, we focus on the conditional success probability
Ps(θ) , P(SIRy > θ | Φb) given the transmitter process and
averaged over the fading. Ps is a random variable within [0, 1]
with the ccdf (defined as the meta distribution [5]) given by

F̄ (θ, t) , F̄Ps(t) = P!x(Ps(θ) > t), θ ∈ R+, t ∈ [0, 1],
(1)

The ergodicity of the PPP gives an alternative expression of
F̄ (θ, t), which is

F̄ (θ, t) = lim
r→∞

1

λbπr2

∑
ỹ∈Φb

∥ỹ∥<r

1(P(SIRy > θ | Φb) > t),

where ỹ is the transmitter of y and 1(·) is the indicator
function. This explicitly shows that F̄ (θ, t) is the fraction of
receivers that experience an SIR above θ with reliability at
least t.

Also, due to the stationarity, the (Palm) distribution [9,
Chap. 8] of Ps(θ) at any receiver is identical. Henceforth,
we focus on the receiver at the origin with its transmitter at
x, where ∥x∥ = R0.

Then the set of (partially) cancelled interfering transmitters
is C = ΦI

∩
B(o,Dc), where ΦI = Φb\{x}. For the C-IC

model, the SIR at the origin is given by

SIRo =
h0R

−α
0∑

x′∈ΦI

hx′R−α
x′ (1− (1− ϵ)1(x′ ∈ C))

, (2)

where h0 is the Rayleigh fading experienced by the intended
signal, hx′ and Rx′ = ∥x′∥ are the fading and distance of the
link from x′ ∈ ΦI to the origin, respectively.

Theorem 1 (Moments of Ps(θ) of C-IC) The b-th moment
Mb, b ∈ C, of the conditional success probability Ps(θ) for
Poisson networks with C-IC is given by

Mb = exp(−CϵδθδΓ(b+ δ)/Γ(b))

· exp(c 2F1(b,−δ; 1− δ;−θϵ(R0/Dc)
α))

· exp(−c 2F1(b,−δ; 1− δ;−θ(R0/Dc)
α)), (3)

where δ = 2/α, C = λbπR
2
0Γ(1 − δ), c = λbπD

2
c , and 2F1

is the Gaussian hypergeometric function.

Proof: For the C-IC model, the conditional success prob-
ability is

Ps(θ) = P (SIRo > θ| Φb)

= P
(
h0 > θRα

0

∑
x∈ΦI

hxR
−α
x g(x)

∣∣∣ Φb

)
= P

(
h0 > θRα

0

(∑
x∈C

ϵhxR
−α
x +

∑
x∈ΦI\C

hxR
−α
x

) ∣∣∣ Φb

)
=
∏
x∈C

1

1 + ϵθR−α
x

R−α
0

·
∏

x∈ΦI\C

1

1 + θR−α
x

R−α
0

. (4)

Mb follows as

Mb = E

(∏
x∈C

1(
1 + ϵθR−α

x

R−α
0

)b ·
∏

x∈ΦI\C

1(
1 + θR−α

x

R−α
0

)b
)

= E

(∏
x∈C

1(
1 + ϵθR−α

x

R−α
0

)b
)

· E

( ∏
x∈ΦI\C

1(
1 + θR−α

x

R−α
0

)b
)

= exp

(
−
∫ Dc

0

2πλb

(
1−

(
1 + ϵθRα

0 r
−α
)−b
)
rdr

)

· exp

(
−
∫ ∞

Dc

2πλb

(
1−

(
1 + θRα

0 r
−α
)−b
)
rdr

)
(5)

where the second equality is due to the fact that the two
disjoint subsets Φ

∩
B(o,Dc) and Φ \ B(o,Dc) form two

independent PPPs of the same intensity λb. The third equality
uses the probability generating functional (PGFL) of the PPP
[9, Chap. 4]. The integrals can be simplified to the Gaussian
hypergeometric function form in the same way as in [5].

With the b-th moment, the meta distribution can be cal-
culated through the Gil-Pelaez theorem [10], which is based
on the purely imaginary moments Mjt, t ∈ R, j ,

√
−1. To

avoid the calculation of higher-order imaginary moments, we
propose the approximation of the meta distribution by the beta
distribution through matching the first and second moments,
as suggested in [5].

Corollary 1 (Beta approximation for the meta distribution)
Through matching the first and second moments, the meta
distribution of C-IC is approximated by the beta distribution
as,

F̄ (θ, t) ≈ 1− Ix

( βM1

1−M1
, β
)
, x ∈ [0, 1], (6)

where β = (M1−M2)(1−M1)
M2−M2

1
, M1 and M2 can be calculated

from (5), Ix(u, v) ,
∫ x
0

tu−1(1−t)b−1dt

B(u,v) is the regularized
incomplete beta function and B(u, v) is the beta function.

Next we focus on M−1, which is an important metric
named mean local delay that quantifies the mean number
of transmission attempts needed until the first success if the
transmitter is allowed to keep transmitting [11].
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Corollary 2 (Mean local delay of C-IC) In Poisson bipolar
networks with C-IC, the necessary and sufficient condition for
a receiver to have finite mean local delay is ϵ = 0 and Dc > 0.

Proof: Given R0 and θ, setting b = −1 in (3), it is
easy to see that the first factor is finite only if ϵ = 0.
Then by using 2F1(−1, b; c; z) ≡ 1 − bz

c , we get M−1 =
exp

(
λbπθR

α
0

δ
1−δD

2−α
c

)
. Since α > 2, for finite M−1, Dc

needs to be positive.
Remark 1: The finite mean local delay of C-IC is due to the

fact that perfect C-IC removes the possibility of the potential
interferers being arbitrarily close to the target receiver. This
indicates that the effect of perfect IC inside a disk is the same
as preventing any interferers to be present in the disk.

Next we derive some bounds to simplify the analysis of the
meta distribution of C-IC in the practical regime of the SIR.

Lemma 1 Letting θ′ = θ(R0/Dc)
α and z = θ′

1+θ′ , for b ∈ N
we have

Sb , 2F1(b,−δ; 1− δ;−θ′) =
∞∑

m=0

am(b)zm, (7)

with

am(b) =


m∑
i=0

(
b

b−i

) (−1)i(b)m−i

(1−δ)m−i
m ≤ b− 1,

(m−1)!(δ)b
(b−1)!(1−δ)m

m > b,
(8)

where
(
m
k

)
is the binomial coefficient and (q)m ≡ Γ(q+m)

Γ(q) is
the Pochhammer function (rising factorial).

Proof:

2F1(b,−δ; 1− δ;−θ′)
(a)
=

2F1(b, 1; 1− δ; θ′/(1 + θ′))

(1 + θ′)b
,

(b)
= (1− z)b

∞∑
m=0

(b)m
(1− δ)m

zm, (9)

where (a) uses Euler’s transformation and (b) uses the series
form of the Gaussian hypergeometric function 2F1. By further
expanding (9) in z for b ∈ N, we get the coefficient given by
(8).

Since 0 < z < 1 and for all m > b, m ∈ N, am(b) >
0, am+1(b) = am(b) m

m+(1−δ) < am(b), Lemma 1 offers a
convenient way to get useful bounds for Mb by truncating the
series of z.

Proposition 1 (Bounds of Mb for C-IC) For the C-IC mod-
el under perfect IC (i.e., ϵ = 0), upper and lower bounds of
Mb are given by

Mb < M̂
(m)
b = exp

(
c(1− Š

(m)
b )

)
, (10)

Mb > M̌
(m)
b = exp

(
c(1− Ŝ

(m)
b )

)
. (11)

where the superscript m refers to truncating the series in (7)
up to zm, i.e.,

Š
(m)
b = 1 + a1(b)z + ...+ am(b)zm, (12)

Ŝ
(m)
b = 1+ a1(b)z+ ...+ am(b)zm + am+1(b) ·

zm+1

1− z
. (13)

Proof: Follows from Lemma 1 and the fact that
∞∑
k=1

am+k(b)z
m+k < am+1(b)z

m+1
∞∑

n=0
zn.

Proposition 2 (Approximation of the variance for C-IC)
For the C-IC model under perfect IC (i.e., ϵ = 0), the
variance V = M2 − M2

1 of the meta distribution can be
approximated by

Ṽ = c
δ

2− δ
z2 +

2(cδ − cδ2 − 3c2δ2 + c2δ3)

(1− δ)(2− δ)(3− δ)
z3, (14)

and for z → 0, we have V ∼ Ṽ , where “∼” indicates
V (z)/Ṽ (z) → 1 as z → 0.

Proof: This can be easily obtained through the Maclaurin
expansion of V = M2 −M2

1 in z and omitting the terms of z
with order higher than 3.

We can also obtain useful bounds (or approximation) for
the variance by directly applying the bounds in Prop. 2 to M1

and M2, as will be shown in Section IV.

Corollary 3 (Asymptotic property of Mb) For the C-IC
model, as ϵ → 0,

Mb ∼ e−cF (θ′)(1− Cbϵ
δθδ + (ϵcbδz)/(1− δ)), (15)

where F (θ′) = 2F1(b,−δ; 1 − δ;−θ′) − 1, Cb = CΓ(b +
δ)/Γ(b) and c = λbπD

2
c .

Proof: When ϵ → 0, the first exponential term in (3) can
be expanded by e−x = 1−x+ x2

2 +o(x2). The second and third
exponentials give e−c( 2F1(b,−δ;1−δ;−θ′)− 2F1(b,−δ;1−δ;−θ′ϵ),
which can be expanded on ϵ and yield e−cF (θ′)(1 +
(ϵcbδθ′)/(1 − δ) + O(ϵ2)). Taking the product and omitting
the higher-order terms yields the final result.

Remark 2: For the above asymptotic expression, if δ is 1/2
or smaller, the term in ϵ2δ should be included, which yields

Mb ∼ e−cF (θ′)
(
1− Cbθ

δϵδ +
C2

b

2
θ2δϵ2δ +

cbzδ

1− δ
ϵ
)
. (16)

IV. NUMERICAL RESULTS

This section provides a numerical evaluation of the analyt-
ical results for the meta distribution of the C-IC model. For
the beta approximation, Monte Carlo simulation results are
used for validation. The basic parameters are set as λb = 1,
R0 = 0.5, α = 4 and ϵ = 0 unless otherwise stated. The radius
of the guard region is set to Dc =

√
n
π with n denoting the

average number of cancelled interferers.
Fig. 1 shows the mean and variance of the meta distribution,

from which we can see that applying interference cancellation
has two-fold benefits to the network in the sense that it not only
improves the mean success probabilty of each transmission
link but also decreases the performance disparity among
different links. As the IC capability enhances, the peak of
the variance keeps decreasing and moving towards higher SIR
thresholds.

From Fig. 1 we can also infer that the marginal gain gets
smaller with the interference cancellation region enlarging. For
instance, the gain of M1 at θ = 0 dB from n = 0 to n = 1 is
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Fig. 6. M1 and asymptotic bounds for C-IC with
Dc = 0.5.

over 100% (from 0.29 to 0.59), while the gain drops to 25%
from n = 1 to n = 2, and further drops to 11% from n = 2
to n = 3. This confirms the intuition that usually cancelling
only a few nearest interferers is enough.

Fig. 2 confirms the accuracy of the beta approximation
for the meta distribution of the C-IC model and provide
more fine-grained information about how the link-wise success
probability is distributed across the network.

Fig. 3 and Fig. 4 show the bounds for M1 and M2 of C-
IC model through Prop. 1. We can see that for the practical
regime of θ, the second-order approximated upper bound is
already very accurate, and the lower bounds (m = 3 in (11))
are also very accurate.

Fig. 5 shows the bounds of the variance for C-IC through
the application of (10), (11) (with order 3) and (14). For most
practical operating regime of θ, the approximations given by
the lower bound of M1, M2 and Prop. 2 are very accurate.

Fig. 6 shows the asymptotics for C-IC as ϵ → 0. It shows
that the accuracy improves with smaller θ.

V. CONCLUSIONS

This letter studied the meta distribution for Poisson bipolar
networks with the capability of interference cancellation. The
C-IC model was analyzed by deriving the exact b-th moment of
the meta distribution, and the beta distribution approximation
was confirmed to be accurate via simulation. The mean local
delay for the C-IC model was also studied and the analysis
showed that to keep the mean local delay finite, perfect IC
is required (ϵ = 0). Useful bounds for Mb and closed-form

approximation for the variance were also provided, which
offered a quick way to get insights into the meta distribution
for the practical regime of the SIR threshold.
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