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Abstract—The antenna pattern model plays a key role in
evaluating the performance benefits of directional antenna ar-
rays. In this letter, we propose a novel antenna pattern, named
multi-cosine antenna pattern, to approximate the actual antenna
pattern, and apply it to millimeter wave (mm-wave) networks.
To get deep insights on the role of directional antenna arrays in
mm-wave networks, we derive exact expressions for the success
probability of the typical receiver as well as a tight upper bound.
The results show that the proposed antenna pattern provides a
better tradeoff between the accuracy and the tractability in terms
of both antenna pattern and analysis than previous models.

Index Terms—Directional antenna arrays, antenna pattern ap-
proximation, mm-wave, success probability, stochastic geometry.

I. INTRODUCTION

Millimeter-wave (mm-wave) communications is considered
a promising enabling technology for future networks, where
directional transmissions with large-scale antenna arrays is
one of its key distinguishing features to cope with the huge
propagation losses. In mm-wave networks, since the desired
signal and the interference power are highly directional and
closely related to the angles of departure/arrival (AoDs/AoAs),
directional antenna arrays will dramatically affect the desired
signal and the interference power due to the various power
gains for different AoDs/AoAs. Therefore, it is necessary and
critical to adopt an accurate yet tractable antenna pattern model
when analyzing mm-wave networks.

To maintain analytical tractability, previous works on mm-
wave network analysis usually considered the uniform linear
array (ULA)1 and adopted a flat-top pattern, also named
sectorized antenna model, to approximate the actual antenna
pattern, see, e.g., [1] and references therein. While this model
leads to relatively simple analytical results, its binary quanti-
zation of the continuously varying antenna array gains causes
significant deviations from the actual performance [2]. To
generalize the flat-top pattern from the binary version to an
M -ary quantization, a multi-lobe approximation was proposed
in [3] as a fine-grained model, where the array gain and
the width of each lobe are obtained through minimizing the
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error function between the multi-lobe pattern and the actual
one. However, the main lobe gain of the multi-lobe pattern
is lower than the maximum array gain of the actual pattern,
thus underestimating the desired signal strength. Moreover, the
multi-lobe model cannot reflect the roll-off characteristic of
the actual antenna pattern, especially for large antenna arrays.
As a result, such inaccuracy of the multi-lobe approximation
would still lead to deviations on the network performance.

Very recently, two other approximate antenna patterns are
proposed in [2], named sinc and cosine antenna patterns. While
the sinc pattern provides a more accurate approximation than
the flat-top pattern, the analysis and its numerical evaluation
are more complicated with little insights. The cosine pattern,
with better analytical tractability than the sinc pattern, provides
a good approximation for the main lobe gains while neglecting
the side lobe ones. As the network density increases, the
aggregated interference from the side lobes becomes stronger
and stronger, thus leading to severe underestimation of the
interference and deviation on the network performance. Two
more antenna patterns (patch and horn) [4, Chap. 13-14] are
adopted in [5]. They permit a tractable analysis but make it
difficult to characterize the effect of the array size on the
performance since the array gain is just a function of the signal
direction.

In this letter, we propose a new approximate antenna pattern
for the ULA, named multi-cosine pattern, which strikes a
good balance between accuracy and tractability for mm-wave
networks. With this antenna pattern at hand, we give exact
expressions for the success probability as well as a tight upper
bound using tools from stochastic geometry.

II. SYSTEM MODEL

A. Multi-Cosine Antenna Pattern

Let φ = dt

ϱ cosϕ be the cosine direction corresponding to
the AoD ϕ of the transmit signal, termed the spatial AoD, with
dt and ϱ representing the antenna spacing and wavelength,
respectively. The actual antenna pattern of the ULA [2] is

Gact(φ) =
sin2(πNφ)

N sin2(πφ)
. (1)

dt is usually set to be half-wavelength to enhance the direc-
tionality of the beam and avoid grating lobes; φ is assumed
to be uniformly distributed in [−0.5, 0.5], and thus the spatial
AoD from an interferer to the typical receiver is also uniformly
distributed in [−0.5, 0.5], as proven in [2]. Due to the even
symmetry of φ, it suffices to focus on the non-negative interval
φ ≥ 0. The side lobe width is 1/N , and the maxima of side
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Fig. 1. Visualization of three different antenna patterns for N = 32.

lobes in the positive interval occur approximately when the
numerator of (1) attains its maximum value, i.e., φk = 2k+1

2N ,
k ∈ [K],K =

⌊
N
2

⌋
− 1.

Since the cosine pattern matches the main lobe well, it
is intuitive to model the side lobes with multiple scaled
and shifted cosine patterns. Thus, we propose a multi-cosine
antenna pattern to approximate the actual antenna pattern.

Definition 1. (Multi-cosine antenna pattern) The multi-
cosine antenna pattern is given by

G(φ) =

G0 cos
2
(
πN
2 φ
)

if |φ| ≤ 1
N

Gk cos
2
(
πN(|φ|−φk)

)
if k

N < |φ| ≤ k+1
N

0 otherwise,
(2)

where Gk = Gact(φk) for k > 0 and G0 = N .

Fig. 1 compares the multi-cosine, the multi-lobe as well
as the actual antenna patterns. It turns out that the multi-
cosine pattern matches the actual one extremely well and
is more accurate than the multi-lobe one since it captures
the roll-off characteristics of both the main and the side
lobes. Moreover, as N increases, the array gains will vary
dramatically with different AoDs. In the multi-lobe pattern,
however, it is difficult to accurately track such variations
because there is no explicit relationship between the array gain
and the array size, and increasing the number of lobes will
significantly increase the difficulty in solving the nonlinear
problem to obtain its parameters.

B. Network Model

To illustrate the desirable properties of the antenna model,
we consider a mm-wave communication network, where the
transmitters are distributed according to a homogeneous Pois-
son point process (PPP) Φ̂ with density λ and each one has a
dedicated receiver at distance r0 in a random orientation2. We
consider a receiver at the origin that attempts to receive from
an additional transmitter located at (r0, 0). Due to Slivnyak’s

2This is a Poisson bipolar model [6, Def. 5.8], which is usually used to
model device-to-device and ad hoc networks.

theorem [6, Thm. 8.10], this receiver becomes the typical
receiver under expectation over the PPP. We assume that
each receiver has a single antenna and its corresponding
transmitter is equipped with a ULA composed of N elements.
All transmitters operate at a constant power µ and apply
analog beamforming with the assumption of perfect beam
alignment. The ALOHA channel access scheme is adopted,
i.e., in each time slot, transmitters in Φ̂ independently transmit
with probability q.

C. Blockage and Propagation Model

The generalized LOS ball model [7] is used to capture
the blockage effect in mm-wave communication. Specifically,
the LOS probability of the channel between two nodes with
separation d is

PLOS(d) = pL1d<R, (3)

where 1 is the indicator function, R is the maximum length
of a LOS channel, and the LOS fraction constant pL ∈ [0, 1]
is the LOS probability if the distance d is less than R. The
blockage effect induces different path loss exponents, denoted
as αL and αN, for LOS and NLOS channels, respectively. We
denote by ℓ(x) the random path loss function associated with
the interfering transmitter location x ∈ Φ̂, given by

ℓ(x) =

{
(max{d0, |x|})−αL w.p. PLOS(|x|)
(max{d0, |x|})−αN w.p. 1− PLOS(|x|),

(4)

where all ℓ(x)x∈Φ̂ are independent.
We assume that the desired link between the transmitter-

receiver pair is in the LOS condition with deterministic path
loss r−αL

0 . In fact, if the receiver was associated with a NLOS
transmitter, the link would quite likely be in outage due to the
severe propagation loss and high noise power at mm-wave
bands as well as the fact that the interferers can be arbitrarily
close to the receiver. In addition to the distance-dependent
path loss, we assume independent Nakagami fading, which is
suitable in the LOS-dependent mm-wave scenarios. Different
Nakagami fading parameters ML and MN are assumed for
LOS and NLOS paths, where both are positive integers.
The power fading coefficient between node x ∈ Φ̂ and the
origin is denoted by hx, which follows a gamma distribution
Gamma(M, 1

M ) with M ∈ {ML, MN}, and all hx are
mutually independent and also independent of Φ̂.

D. SINR Analysis

For the typical receiver, the interferers outside the LOS
ball are NLOS and thus can be ignored due to the severe
path loss over the large distance (at least R). As a result,
we merely focus on the analysis of a finite network region,
and the relevant transmitters, denoted as Φ, correspond to the
PPP in a disk of radius R centered at the origin. Due to the
incorporation of the blockages, the LOS transmitters with LOS
propagation to the typical receiver form a PPP ΦL with density
pLλ, while ΦN with density pNλ is the transmitter set with
NLOS propagation, where pL+pN = 1 such that Φ = ΦL∪ΦN.
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Without loss of generality, the noise power is set to one, and
the SINR at the typical receiver is

SINR , µNhx0r
−αL
0

1 + I
. (5)

where I =
∑

x∈Φ µG(φx)hxℓ(x)B(x) is the interference,
G(φx) follows from (2), and B(x) is a Bernoulli variable
with parameter q to indicate whether x transmits.

III. ANALYSIS OF SUCCESS PROBABILITY

The success probability P (θ) = P(SINR ≥ θ) is the
complementary cumulative distribution function of the SINR.

A. Exact Expression

Our first result is to compare the multi-cosine and actual
patterns in terms of the total radiated power.

Lemma 1. For all values of the network parameters, the
success probability with the multi-cosine pattern (2) is a lower
bound of the success probability with the actual pattern (1).

Proof: For n ∈ N, partition the interference at the receiver
into the contributions Ii, i ∈ [n], each coming from a sector
of angle 2π/n. Since the interferers form a PPP and their
antennas are uniformly randomly oriented, the Ii are i.i.d.
Hence the total interference is a weighted sum of i.i.d random
variables, where each weighting factor corresponds to the
antenna gain in that direction. Letting n → ∞, the sum of
the weighting factors becomes the integral over the antenna
gain. From (1) and (2), we have∫ 0.5

−0.5

G(φ)dφ = 1 +
K∑

k=1

Gk

N
>

∫ 0.5

−0.5

Gact(φ)dφ = 1. (6)

Thus the interference of the multi-cosine pattern stochastically
dominates that of the actual antenna pattern, which leads to a
reduction in the success probability.

Theorem 1. Letting ϵ =
MLr

αL
0

µN , the success probability of
the typical active receiver, denoted by P (θ), is given by

P (θ) =

ML−1∑
m=0

(−u)m

m!
L(m)(u)|u=θϵ, (7)

where L(u) = exp(η(u)), the superscript ‘(m)’ stands for the
m-th derivative of L(u), and

η(u) = −u−
∑

s∈{L, N}

psλq
2

N

(
(K +1)πR2−

∞∑
z=0

As(z)u
z

)
, (8)

where

As(z) =
√
π

(
Ms+z−1

z

)(
− µ

Ms

)z Γ(z+1/2)

z!

×zαsd
2−zαs
0 − 2R2−zαs

zαs − 2

K∑
k=0

Gz
k. (9)

L(m)(u) is given recursively by

L(m)(u) =
m−1∑
n=0

(
m−1

n

)
η(m−n)(u)L(n)(u), (10)
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Fig. 2. The link success probabilities for different antenna patterns with ML =
4, MN = 2, αL = 2.5, αN = 4, q = 0.5, d0 = 1, r0 = 2, µ = 100,
pL = 0.2 and R = 200.

where the n-th derivative of η(u) follows

η(n)(u) = 1n=1+
∑

s∈{L, N}

2psλq

N

∞∑
z=n

Γ(z+1)As(z)u
z−n

Γ(z − n+ 1)
. (11)

Proof: See Appendix A.

B. Upper Bound on Success Probability

Although the Laplace transform of the aggregate interfer-
ence can be easily evaluated by numerical integration, the
corresponding n-th derivative needs tedious and extensive
computations. Thus, we next derive a bound that is much easier
to evaluate.

Theorem 2. Let β = [Γ(1 +ML)]
−1/ML and

P̂ (θ) =

ML∑
m=1

(
ML

m

)
(−1)m+1L(u)

∣∣
u=mθβϵ

. (12)

For a Poisson bipolar mm-wave network, the success proba-
bility P (θ) is upper bounded by P̂ (θ).

Proof: It is known from [8] that

Γ̃(M,x) ≤ 1− [1− exp(−βx)]M , (13)

where β = [Γ(1+M)]−1/M , Γ̃(M,x) = Γ(M,x)/Γ(M), and
an upper bound on P (θ) is then given as

P̂ (θ) = 1− E
[(

1− exp
(
− θβϵ(1 + I)

))ML
]

=

ML∑
m=1

(
ML

m

)
(−1)m+1E

[
exp

(
−mθβϵ(1 + I)

)]
=

ML∑
m=1

(
ML

m

)
(−1)m+1L(u)

∣∣
u=mθβϵ

. (14)

where β = [Γ(1 +ML)]
−1/ML . By substituting (8) into (14),

we obtain the upper bound for the link success probability.
Fig. 2 compares three antenna patterns in terms of the suc-

cess probability. It is observed that the proposed multi-cosine
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antenna pattern is much more accurate than the multi-lobe
one and, in agreement with Lemma 1, leads to a lower bound.
Both the exact results and the upper bounds approximate the
success probability with the actual antenna pattern extremely
well while the multi-lobe antenna pattern underestimates the
success probability by 3-5 dB (horizontal gap) and causes
increasingly large deviations with the increase of N . We
also observe that the exact result becomes more accurate in
the high-SINR regime while the upper bound yields a better
approximation in the low-SINR regime.

IV. CONCLUSIONS

We proposed an accurate yet tractable approximation to the
actual antenna pattern in mm-wave networks, named multi-
cosine pattern, based on the cosine function with multiple
shifted and scaled operations. Based on this antenna model, we
derived exact expressions for the success probability as well
as its upper bound for mm-wave ad hoc networks. The results
demonstrate that the proposed multi-cosine antenna pattern
provides extremely close approximations in terms of both the
antenna pattern and the success probability.

APPENDIX A
PROOF OF THEOREM 1

Proof: P (θ) is given by

P (θ) = E

[
Γ̃

(
ML, θϵ(1 + I)

)]

=

ML−1∑
m=0

E

[
e−θϵ(1+I) (θϵ(1 + I))m

m!

]

=

ML−1∑
m=0

(−u)m

m!
L(m)(u)|u=θϵ, (15)

where Γ̃(x, y) = Γ(x, y)/Γ(x) is the normalized incomplete
gamma function, L(u) = E[e−u(I+1)] is the Laplace transform
of the interference and noise, and the superscript (m) stands
for the m-th derivative of L(u). Since the interference is from
both LOS and NLOS interferers, we have

L(u) = e−u
∏

s∈{L, N}

EIse
−uIs = e−u

∏
s∈{L, N}

LIs(u), (16)

where LIs(u) follows as

LIs(u)

= E

[ ∏
x∈Φs

(
q(

1 + uµG(φx)ℓs(x)/Ms

)Ms
+ 1− q

)]

= EΦs

[ ∏
x∈Φs

( K∑
k=1

k+1
N∫

k
N

2qdφ(
1+ uµGkcos2(πN(φ−θk))ℓs(x)

Ms

)Ms

+

1
N∫

− 1
N

qdφ(
1+ uµN cos2(πNφ/2)ℓs(x)

Ms

)Ms
+1− 2q(K+1)

N

)]

=exp

(
− 2psλq

N

K∑
k=0

(
πR2−

R∫
0

π
2∫

0

4rdydr(
1+uµGkcos2(y)ℓs(r)

Ms

)Ms︸ ︷︷ ︸
X

))
.(17)

Using the general binomial theorem, we have

X =4
∞∑
z=0

(
Ms+z−1

z

)(
− uµGk

Ms

)z π
2∫

0

cos2z(y)dy

R∫
0

ℓzs(r)rdr

=
√
π

∞∑
z=0

uz

(
Ms+n−1

z

)(
−µGk

Ms

)z Γ(z+1/2)

z!

×zαsd
2−zαs
0 − 2R2−zαs

zαs − 2
. (18)

Letting

As(z) =
√
π

(
Ms+z−1

z

)(
− µ

Ms

)z Γ(z+1/2)

z!

×zαsd
2−zαs
0 − 2R2−zαs

zαs − 2

K∑
k=0

Gz
k, (19)

η(u) = −u−
∑

s∈{L, N}

psλq
2

N

(
(K +1)πR2−

∞∑
z=0

As(z)u
z

)
, (20)

we have L(u) = exp(η(u)). Since L(1)(u) = η(1)(u)L(u),
L(m)(u) can be calculated recursively according to the formula
of Leibniz, given by

L(m)(u) =
dm−1L(1)(u)

du
=

m−1∑
n=0

(
m−1

n

)
η(m−n)(u)L(n)(u),

where the n-th derivative of η(u) follows as

η(n)(u)=1(n=1)+
∑

s∈{L, N}

2psλq

N

∞∑
z=n

Γ(z+1)As(z)u
z−n

Γ(z − n+ 1)
. (21)
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