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Efficient Calculation of Meta Distributions

and the Performance of User Percentiles
Martin Haenggi, Fellow, IEEE

Abstract—Meta distributions (MDs) are refined performance
metrics in wireless networks modeled using point processes.
While there is no known method to directly calculate MDs,
the moments of the underlying conditional distributions (given
the point process) can often be expressed in exact analytical
form. The problem of finding the MD given the moments has
several solutions, but the standard approaches are inefficient
and sensitive to the choices of a number of parameters. Here
we propose and explore the use of a method based on binomial
mixtures, which has several key advantages over other methods,
since it is based on a simple linear transform of the moments.

Index Terms—Wireless networks, stochastic geometry, point
process, meta distribution.

I. INTRODUCTION

Meta distributions. A meta distribution (MD) is the distribu-

tion of a conditional probability conditioned on the underlying

point process(es) Φ, i.e., the distribution of

Pt = P(X > t | Φ), (1)

where X is a metric of interest, such as the SIR, SINR, rate,

or energy. Hence Pt is averaged over all randomness in the

network except for the spatial locations of the transceivers

(fading, channel access, etc.). Upon averaging over the point

process, the MD of X at the typical link or user is the

cumulative distribution function (cdf)

F (x) = P(Pt ≤ x),

with the understanding that F is a function of t also. Depend-

ing on the network model, the probability measure needs to

be replaced by the Palm measure given that a transmitter or

receiver resides at a given location. For ergodic point processes

Φ, 1 − F (x) is the fraction of links or users that achieve

X > t with probability at least x in each realization of Φ.

Hence a key advantage of the MD over the commonly used

mean metric P(X > t) =
∫ 1

0 (1 − F (x))dx is that it reveals

the performance of user percentiles. For example, F−1(0.05)
gives the reliability x that 95% of the users achieve but 5%
do not, i.e., the reliability of the “5% user”.

The MD for the SIR was introduced in [1] and evaluated

for two basic Poisson network models. This refined SIR

analysis was extended to cellular networks with D2D underlay

in [2], to base station cooperation in [3], to power control

for up- and downlink in [4], and to non-orthogonal multiple

acesss (NOMA) in [5]. Further, [6] extended the SIR to the

SINR for mm-wave D2D networks and introduced the MD
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of the transmission rate, where X = W log2(1 + SINR) for

bandwidth W , and [7] explores the MD of the secrecy rate.

Lastly, [8] defined the energy MD for a wireless network with

energy harvesting capabilities.

Calculation of the meta distributions. Since there is no

known way to calculate the MD directly, a “detour” is needed

via the moments of Pt. With the moments in hand, the

calculation of the MD is an instance of the Hausdorff moment

problem since the support of Pt is bounded to [0, 1]. The

standard method to calculate the MD is to use the Gil-Pelaez

theorem [9], which requires the integration of the imaginary

part of e−it log xMit/t over t ∈ R
+ for each value of x and

t, where i2 = −1 and Mb = E(P b
t ). By its nature, the Gil-

Pelaez approach requires a careful selection of the range of the

numerical integration (depending on the rate of convergence

of the integrand) and its step size. Moreover, there is no simple

way to bound the error of the resulting approximation.

Another approach is to use only the first and second

moments and use the corresponding beta distribution as an

approximation. This method has proven surprisingly accurate

but has its limitations if the actual distribution falls outside

the class of beta distributions.

Very recently, the work [10] proposed to use Fourier-

Jacobi expansion to express the MD as an infinite sum of

shifted Jacobi polynomials. Truncations to a finite sum yield

approximations, such as the beta approximation above. The

method is promising but its convergence properties are unclear.

Notation. [n] , {1, 2, . . . , n}, [n]0 , {0}∪ [n]. N is the set

of (positive) natural numbers, and N0 = {0} ∪ N.

II. THE BINOMIAL MIXTURE METHOD

For a cdf F with bounded support [0, T ], let M be the

operator that yields the moments

Mn = (MF )n ,

∫ T

0

xndF (x), n ∈ N,

with M0 = 1. The Hausdorff moment problem is to retrieve

F from M = (Mn)n∈N, i.e., to find M−1. Here we focus on

T = 1, since the random variables of interest are conditional

probabilities. The map M−1 is unique since T is bounded.

Necessarily, the sequence of moments M of any distribution

on [0, 1] is completely monotonic, i.e.,

(−1)k(∆kM)n ≥ 0, (2)

where ∆k is the iterated difference operator, with (∆M)n =
(∆1M)n = Mn+1 − Mn. For example, (∆3M)3 = M6 −
3M5 + 3M4 −M3. (2) follows from

(−1)k(∆kM)n =

∫ 1

0

xn(1− x)kdF (x),
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Fig. 1. F5(x) (solid) and F10(x) (dashed) for a beta distribution with
parameters α = 5 and β = 2. The × denote the samples F5(k/6), k ∈ [6]0,
and the ◦ denote the samples F10(k/11), k ∈ [11]0.

where the right hand side is non-negative.

In [11], a piecewise approximation based on binomial

mixtures is proposed for F . It is defined as follows.

Definition 1 (Piecewise approximation) For any n ∈ N0,

define the approximate cdf Fn

Fn(x) ,

⌊nx⌋
∑

k=0

n
∑

j=k

(

n

j

)(

j

k

)

(−1)j−kMj, x ∈ (0, 1], (3)

and Fn(0) = 0, where ⌊u⌋ is the largest integer smaller than

or equal to u.

The key property of this approximation is that Fn(x) → F (x)
as n → ∞ for each x at which F is continuous [11], [12],

i.e., (3) converges to the map M−1.

III. NUMERICAL RECIPE

A. Sampling Fn

For the numerical calculation of (3), x ∈ [0, 1] needs to be

sampled at discrete values. We choose xk = k/(n + 1), for

k ∈ [n + 1]0, which is the densest uniform sampling such

that Fn(xk) 6= Fn(xj), i 6= j. Moreover, if F is the cdf of

a uniform random variable, the linear interpolation of Fn(xk)
gives the exact cdf for any n ∈ N0. Fig. 1 gives an example

of F5 and F10 for a beta distribution and shows the sampling

values.

B. Approximate Probability Density Function

Letting

hk ,

n
∑

j=k

(

n

j

)(

j

k

)

(−1)j−kMj , k ∈ [n]0, (4)

we have

Fn(xk) =

k−1
∑

m=0

hm, k ∈ [n+ 1]0,
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Fig. 2. f32(x) for a beta distribution with parameters α = 5 and β = 2.
The solid curve is the exact beta pdf.

and fn(xk) , (n+1)hk is an approximation of the probability

density function (pdf) since Fn(xk) can be interpreted as a

Riemann sum

1

n+ 1

k−1
∑

m=0

fn(xk),

which converges to F (xk) as n → ∞.

Fig. 2 shows an exact beta pdf and the approximation f32.

C. The Method as a Linear Transform

Eqn. (4) shows that hk, k ∈ [n]0, is just a linear combination

of the moments Mj , j ∈ [n]0. Accordingly, we can write

h = (hk)
n
k=0 as a linear transformation of m = (Mj)

n
j=0,

i.e.,

h = Am, (5)

where m and h are understood as column vectors and the

transform matrix A ∈ Z
(n+1)×(n+1) is, from (4), given by

Aij ,

(

n

j

)(

j

i

)

(−1)j−i
1(j ≥ i), i, j ∈ [n]0,

where 1 is the indicator function. For example, for n = 4,

A =













1 −4 6 −4 1
0 4 −12 12 −4
0 0 6 −12 6
0 0 0 4 −4
0 0 0 0 1













In addition to being (right) upper triangular, A is also symmet-

ric with respect to the antidiagonal. Hence only about n2/4
entries need to be calculated1.

The key benefit of the linear mapping (5) is that the

transform matrix needs to be calculated only once for the

desired level of accuracy n. This can be done “offline”, which

reduces the calculation of the approximate meta distribution

to a simple matrix-vector multiplication requiring (n2+3n)/2
multiplications (once the moments are known).

1The exact number if [(n+ 2)2 − 1(n odd)]/4.
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D. Choosing the Required Accuracy

The default accuracy of standard mathematical software

such as Matlab R© is insufficient to calculate Fn for n larger

than about 30. Here we give an estimate of the number of

decimal digits b that enable the calculation Fn with sufficient

precision, for arbitrary n.

The maximum of |A| occurs on the antidiagonal d =
(A0n, A1,n−1, . . . , An0). Indexing d from 0 to n, d⌈n/3⌋ is

the largest entry in absolute value, where ⌈u⌋ is rounding u
to the nearest integer. Stirling’s approximation yields

max |A| ∼
√
27

2π

3n

n
, n → ∞.

With
√
27/(2π) < 1 and log10(3) < 1/2, about n/2− log10 n

decimal digits are needed to calculate A.

For the moment vector m, it depends how quickly the

moments go to zero. The two extreme cases are the uniform

distribution, where Mn = 1/(n+1), and the (degenerate) step

function, where Mn = νn, where ν < 1 is the constant value

of the random variable. This exponential decay of the moments

is not of practical interest, as a comparison of M2
1 and M2

would immediately reveal that the distribution is degenerate.

This leaves two qualitatively different cases of interest.

1) Case 1: Superpolynomial decay: In this case,

− logMn/ logn → ∞ but there exists c > 0 and 0 < δ < 1
such that

Mn ≤ 10−cnδ

, ∀n ≥ 0.

As a result,

b = n/2 + cnδ − log10 n

decimal digits are sufficient.

2) Case 2: Polynomial decay: In this case, there exists s ≥
1 such that

Mn ≤ (n+ 1)−s, ∀n ≥ 0,

and

b = n/2 + (s− 1) log10 n

decimal digits suffice.

The parameters c, δ, or s can be estimated by inspection of

the moment sequence. As a simple rule of thumb, b = n/2+16
is a sensible choice. Assuming c = 1 and δ = 1/2 in the

superpolynomial case, this is sufficient for n up to 350. In the

polynomial case, s = 6 can be accommodated up to n = 1000,

which may be considered the practical limit of this approach.

IV. ACCURACY OF THE METHOD

A detailed study of the convergence properties of Fn to F
is provided in [12, Theorem 2]. Letting f(x) = F ′(x) =
dF (x)/dx be the exact pdf and f ′(x) its derivative, the

theorem asserts that as n → ∞,

‖Fn − F‖ ≤ 1

n+ 1

(

‖f‖+ ‖f ′‖
2

)

+ o(n−1), (6)

where ‖f‖ = supx∈[0,1] |f(x)|. So if f ′ is bounded, conver-

gence is uniform, and the maximum error decreases with 1/n.

Fig. 4 shows how the maximum error decreases with n in

the case of a beta distribution for α = 5, β = 2, for which
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Fig. 3. Absolute error |Fn(xk) − F (xk)| for n = 20, 50, 100, 200 for a
beta distribution with parameters α = 5 and β = 2.
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Fig. 4. The solid line shows the maximum error maxk∈[n] |Fn(xk)−F (xk)|
as a function of n for a beta distribution with parameters α = 5 and β = 2.
The dashed line shows 0.7n−1.

‖f‖ + ‖f ′‖/2 = 10911/625 ≈ 17.5. The pre-constant 0.7 in

the reference curve in the figure is about 25 times smaller than

that, indicating that the bound is conservative in some cases.

The figure also shows that the 1/n scaling of the maximum

error starts at modest n already.

For the beta distribution with α < 1 or β < 1, the 1/n
scaling does not hold since ‖f ′‖ is not bounded.

V. RATE-RELIABILITY TRADE-OFF FOR USER

PERCENTILES

As an application, we explore the rate-reliability trade-offs

for users that are in a certain percentile of all users. In this

case, the underlying random variable X in (1) is the SIR,

and t is the SIR threshold required for successful reception,

henceforth denoted by θ. We are interested in the pairs (θ, x)
for which Fn(x) = p, where p is the user percentile. For

example, setting p = 0.05, choosing θ > 0 and solving for x
yields the (θ, x) pairs the 5% user achieves.

We use the standard downlink Poisson cellular model

with nearest-base station association, power-law path loss and

Rayleigh fading, for which the moments of the conditional

success probability are given in [1] as

Mn = ( 2F1(n,−δ; 1− δ,−θ)−1,
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Fig. 5. Pairs (θ, 1−x) (left plot) and (θ, x) (right plot) for which Fn(x) =
0.1 for n ∈ {25, 50, 100, 200}.

where 2F1 is the Gauss hypergeometric function and 2/δ is

the path loss exponent. Fig. 5 explores the effect of n on the

trade-off between θ and x for the 10% user. As can be seen, for

θ ∈ [−10, 0] dB, n = 25 is sufficiently accurate. For θ < −10
dB, the reliability x increases with n, indicating that all curves

are (increasingly tight) lower bounds, while for θ > 10 dB, the

reliability decreases with n, i.e., the curves are upper bounds.

In Fig. 6, the (θ, x) pairs for the 5%, 10%, 20%, and 50%

user percentiles are shown, and Fig. 7 presents the spectral

efficiency-reliability trade-off (log2(1 + θ), x) for the same

percentiles, both for n = 400. These figures involve the

evaluation of more than 16,000 values of the MD (n = 400
times 41 values of θ), which takes less than 30 seconds with

Matlab R© on a standard desktop computer (not including the

time to calculate the transform matrix A, which is done only

once, and the moments for each value of θ).

Interestingly, the curves in Fig. 6 for the different percentiles

run parallel asymptotically for both θ → 0 and θ → ∞.

Moreover, the gap is approximately the same on both sides.

Between the 5% and the 50% users, it is about 10 dB. This

asymptotic gap can be used to quantify the fairness between

users.

VI. CONCLUSIONS

The binary mixture method is very efficient for the nu-

merical computation of meta distributions, because it is a

simple linear transform of the moment sequence. Only a

single parameter needs to be chosen, namely the number of

points n to be calculated. The approximated cdf Fn converges

uniformly to the exact F at a rate of 1/n, and the required

number of decimal digits is about n/2.

REFERENCES

[1] M. Haenggi, “The Meta Distribution of the SIR in Poisson Bipolar and
Cellular Networks,” IEEE Transactions on Wireless Communications,
vol. 15, pp. 2577–2589, Apr. 2016.

[2] M. Salehi, A. Mohammadi, and M. Haenggi, “Analysis of D2D Under-
laid Cellular Networks: SIR Meta Distribution and Mean Local Delay,”
IEEE Transactions on Communications, vol. 65, pp. 2904–2916, July
2017.

[3] Q. Cui, X. Yu, Y. Wang, and M. Haenggi, “The SIR Meta Distribution
in Poisson Cellular Networks with Base Station Cooperation,” IEEE
Transactions on Communications, vol. 66, pp. 1234–1249, Mar. 2018.

[4] Y. Wang, M. Haenggi, and Z. Tan, “The Meta Distribution of the
SIR for Cellular Networks with Power Control,” IEEE Transactions on

Communications, vol. 66, pp. 1745–1757, Apr. 2018.
[5] M. Salehi, H. Tabassum, and E. Hossain, “Meta Distribution of the

SIR in Large-Scale Uplink and Downlink NOMA Networks.” ArXiv,
https://arxiv.org/abs/1804.02710, Apr. 2018.

-25 -20 -15 -10 -5 0 5 10 15
 [dB]

10-2

10-1

100

1-
x

5%
10%
20%
50%

-25 -20 -15 -10 -5 0 5 10 15
 [dB]

10-3

10-2

10-1

100

x

5%
10%
20%
50%

Fig. 6. Pairs (θ, 1−x) (top plot) and (θ, x) (bottom plot) for which Fn(x) =
0.05, 0.1, 0.2, 0.5 for n = 400.

0 1 2 3 4 5
Spectral efficiency [bits/s/Hz]

0

0.2

0.4

0.6

0.8

1

x

5%
10%
20%
50%

Fig. 7. Rate-reliability trade-off (linear scales) for user percentiles.

[6] N. Deng and M. Haenggi, “A Fine-Grained Analysis of Millimeter-Wave
Device-to-Device Networks,” IEEE Transactions on Communications,
vol. 65, pp. 4940–4954, Nov. 2017.

[7] J. Tang, G. Chen, and J. P. Coon, “The Meta Distribution of the
Secrecy Rate in the Presence of Randomly Located Eavesdroppers,”
IEEE Wireless Communications Letters, 2018. To appear.

[8] N. Deng, M. Haenggi, and Y. Sun, “The Energy and Rate Meta
Distributions in Wirelessly Powered D2D Networks,” IEEE Journal on

Selected Areas in Communications on Communications, 2018. Submit-
ted. Available at https://www3.nd.edu/∼mhaenggi/pubs/jsac18b.pdf.

[9] J. Gil-Pelaez, “Note on the Inversion Theorem,” Biometrika, vol. 38,
pp. 481–482, Dec. 1951.

[10] S. Guruacharya and E. Hossain, “Approximation of Meta Distribution
and Its Moments for Poisson Cellular Networks.” ArXiv, https://arxiv.
org/abs/1804.06881, Apr. 2018.

[11] R. M. Mnatsakanov and F. H. Ruymgaart, “Some properties of moment-
empirical CDF’s with application to some inverse estimation problems,”
Mathematical Methods of Statistics, vol. 12, no. 4, pp. 478–495, 2003.

[12] R. M. Mnatsakanov, “Hausdorff moment problem: Reconstruction of
distributions,” Statistics and Probability Letters, vol. 78, pp. 1612–1618,
2008.


