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Abstract—We consider the number of users associating with
each base station in a cellular network. Extending and unifying
the characterizations for certain settings available in the liter-
ature, we derive a result that is asymptotic in the strength of
the shadowing, yet otherwise universally valid: it holds for every
network geometry and shadowing distribution. We then illustrate
how this result provides excellent representations in various
classes of networks and with realistic shadowing strengths,
evidencing broad applicability.
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I. MOTIVATION

The analysis of cellular networks via Poisson point process
(PPP) modeling of the base station (BS) locations is a welcome
complement, and sometimes even an outright alternative, to
the Monte-Carlo simulations that had long dominated system-
level performance evaluations [1]–[3]. Such analysis, seem-
ingly fitting only for ad hoc networks, happens to be highly
relevant to cellular networks by virtue of the following result:
regardless of the BS locations, provided only that they are
agnostic to the radio propagation, the distribution of powers
received at any user converges (asymptotically in the strength
of the shadowing) to what would be received from a PPP field
of BSs [4]–[6]. This convergence, moreover, is very evident
for practical strengths of the shadowing. In hexagonal lattice
networks, for instance, PPP-based analyses are highly repre-
sentative for shadowing standard deviations on the order of 10
dB [6]–[8], well in line with the typical values encountered in
macrocellular deployments.

An issue that arises in the analysis of cellular networks is
the modeling of the number of users associating with each
BS. While hidden if each BS is assumed to communicate
with a single user per signaling resource, this issue becomes
material once that assumption is removed, say in the face of
multiantenna BSs capable of implementing multiuser multiple-
input multiple-output transmission [9]. Even in a lattice net-
work whose cells are of equal size, the shadowing and the
stochastic nature of the user locations would induce disparities
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in the number of users associating with different BSs, and such
disparities are bound to increase in irregular networks.

This letter addresses the stochastic modeling of the number
of users per BS. An approximate characterization available in
the literature is discussed, and a new asymptotic characteriza-
tion is provided and tested.

II. MODELING FEATURES

Our focus is on cellular networks where users associate with
the BS from which they enjoy the strongest large-scale channel
gain. Let us next describe the essential modeling features of
the networks to which the considerations in the sequel apply.

A. Geometries

In terms of the positions of BSs and users, virtually ev-
ery cellular scenario of relevance is encompassed. The BS
locations may conform to any stationary and ergodic point
process Φb ⊂ R2 of density λb, or any realization thereof, say
a lattice network. This implies that the density of BSs within
any region converges to λb > 0 as this region’s area grows [6].
Meanwhile, the user positions Φu ⊂ R2 may belong to any
independent point process of density λu that is also stationary
and ergodic.

Without loss of generality, a specific BS is set at the origin.
In the random case, we condition on a BS to be located at the
origin; under expectation over Φb, this becomes the typical
BS. In the deterministic case, we pick an arbitrary BS and
translate the coordinate system so that this BS is located at
the origin. In both cases, we label this BS at the origin as the
0th BS. Denoting by K the number of users associating with
such 0th BS, our purpose is to inspect the distribution of K
under expectations over Φu and Φb.

B. Large-scale Gains

The large-scale channel gains include path loss with expo-
nent η > 2 and shadowing that is IID across links. Particularly,
between the `th BS and the kth user served by the 0th BS,
the large-scale gain is

G`,(k) =
Lref

rη`,(k)

χ`,(k) ` ∈ N0, k ∈ {0, . . . ,K − 1}, (1)

with Lref the path loss intercept at a unit distance, r`,(k)

the link distance, and χ`,(k) the shadowing coefficient having
standard deviation σdB. The shadowing can be arbitrarily
distributed, with the only mild restriction that E

[
χ2/η

]
< ∞

to guarantee the asymptotic behavior advanced in Section I.
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III. DISTRIBUTION OF K

A. Shadowless Networks

Suppose that there is no shadowing (σdB = 0), such that the
users ing with a BS are strictly the ones positioned within its
Voronoi cell. Given the area of the Voronoi cell, K is a random
variable with mean λu times that area [10]. From Φu and the
distribution of the cell area, one can then determine how K is
distributed. For instance, if Φu is PPP and the BSs conform
to a regular lattice, then K is Poisson-distributed with mean
K̄ = λu/λb [10]. In turn, if both Φu and Φb are PPPs, then the
probability mass function (PMF) of K is tightly approximated
by [11], [12]

fK(k) ≈ Γ(k + c)

Γ(k + 1) Γ(c)

K̄k cc

(c + K̄)k+c
k ∈ N0 (2)

where c = 3.575 and K̄ = λu/λb is again the mean.
The characterization in (2) is appropriate to represent de-

ployments where the BS locations are truly irregular and
shadowing is minimal. However, as developed next, care must
be exercised in other situations. In particular, (2) turns out to be
inadequate for situations where the PPP model for Φb intends
to abstract the impact of shadowing on the propagation rather
than the irregularity of the actual BS locations themselves.

B. Impact of Shadowing

With shadowing, users need not associate with the BS in
whose Voronoi cell they are located, and hence the premise
underpinning the foregoing subsection ceases to hold. Users
may now associate with more distant BSs, increasingly so as
σdB grows large, and characterizing the exact distribution of
K in broad generality appears unwieldy.

To bypass this obstacle, we proceed to establish the distri-
bution of K for σdB → ∞ and then test the validity of the
result for values of interest for σdB.

Lemma 1. For σdB → ∞, the distribution of K becomes
Poisson with mean K̄ = λu/λb, i.e.,

fK(k) =
K̄k e−K̄

k!
k ∈ N0. (3)

Proof. Consider a region of finite area A on R2 having Aλb
BSs and Aλu users placed arbitrarily. As σdB → ∞, the
number of users associated with each BS becomes binomially
distributed,

K ∼ B
(
Aλu,

1

Aλb

)
, (4)

because in the limit each user has equal probability, 1
Aλb

, to
associate with any of the Aλb BSs. Letting A → ∞ while
keeping λu/λb constant, the binomial distribution converges
to the Poisson distribution with mean λu/λb [10]. �

We hasten to emphasize that the foregoing result, while
asymptotic, is general in terms of the network geometry: it
holds for arbitrary placements of BSs and users because, as the
shadowing strengthens without bound, it comes to dominate
over the path loss and, ultimately, all BSs become equally
likely to be the one that a user associates with.

IV. APPLICABILITY

Next, we examine the applicability of Lemma 1 to relevant
classes of settings with σdB having values of practical interest.
In every case, the user locations Φu conform to a homogeneous
PPP and the shadowing is log-normal. In the histograms ob-
tained through Monte-Carlo, the number of network snapshots
is set to ensure a 95% confidence interval of ±0.07% (absolute
value) in the corresponding CDFs.

A. Deterministic Lattice Networks

Let the BSs be located on a lattice, in which case, as
indicated earlier, K is Poisson-distributed in the absence of
shadowing (σdB = 0). Since each user associates with one and
only one BS, the number of users-BS associations needs to be
conserved regardless of σdB. Also, the cells are of equal size.
Intuitively then, by sheer symmetry, the distribution of K must
remain unchanged for σdB > 0 because the probability that the
0th BS loses the association of some number of users due to
unfavorable shadowing necessarily equals the probability of
gaining the same number of users from other cells due to
favorable shadowing.

Indeed, for every σdB, the users that stay with the 0th BS
form an independent thinning of the users associating with
that BS for σdB = 0, so their number is always Poisson.
Similarly, the users newly associating with the 0th BS form an
independent thinning of the other users and thus that number is
also Poisson. The sum of two independent Poisson quantities is
itself Poisson, and the mean must stay constant by symmetry.

For this setting, therefore, the applicability of Lemma 1
extends to every value of σdB. No matter the shadow fading,
K is Poisson-distributed.

B. Deterministic Double-Lattice Networks

Consider now the network defined by

Φb = Z2 ∪ (2Z)2 + (1/2, 1/2) (5)

and depicted in the inset of Fig. 2. Amounting to a superpo-
sition of two lattices, this network features two distinct cell
sizes with an area ratio of 7/4. While, without shadowing,
each cell size maps to a distinct Poisson distribution for K,
for σdB → ∞ all cells must abide by a common Poisson
distribution as per Lemma 1.

Example 1. For η = 4 and K̄ = 10, with the PPP of users
realized over the network described by (5), histograms of K
for the two cell sizes and different values of σdB are plotted
in Fig. 1. Also shown is a Poisson PMF with mean K̄, which
is the limiting distribution for both cell sizes.

Example 1 illustrates the rapid transition to the result spelled
by Lemma 1, and thus the broad scope of validity thereof. This
observation is bolstered by Fig. 2, where the convergence is
demonstrated in terms of the variance of K. For σdB = 0 dB,
such variance equals 10.94 and 6.25, respectively for large
and small cells, with the ratio of these values equaling that of
the areas, 7/4. But, already for σdB = 10–14 dB, the variance
has closely approached the limiting value of 10 for both cell
sizes.



3

Poisson PMF

large cell
small cell

Simulation
= 0}

Poisson PMF

large cell
small cell

Simulation
= 10}

Poisson PMF

large cell
small cell

Simulation
= 14}

Fig. 1: In solid, histograms of K in a double-lattice network with η = 4 and σdB = 0, 10 and 14 dB (in shaded and in clear for the small and large cells,
respectively); users are PPP distributed with K̄ = 10. In dashed, a Poisson PMF with mean K̄.
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Fig. 2: In solid, variance of K as a function of σdB in a double-lattice network
with η = 4; users are PPP distributed with K̄ = 10. In dashed, variance of
a Poisson PMF with mean K̄.

C. PPP Networks

Suppose now that the BS locations conform themselves
to a PPP, specifically Φb = Φ ∪ {o} where Φ ⊂ R2 is a
homogeneous PPP and o denotes the origin [13]. Then, by
Slivnyak’s theorem, the central BS becomes the typical BS
under expectation over Φb. In the example that follows, BSs
(1000 of them on average) are randomly placed around the
central one and the number of users associating with that
central one is counted over Monte-Carlo snapshots.

Example 2. For η = 4 and K̄ = 10, with the PPP of users
realized over a PPP network of BSs, Fig. 3 contrasts the his-
togram of K for different values of σdB against (2) and against
a Poisson PMF with mean K̄, corresponding respectively to
the distribution of K for σdB = 0 and σdB →∞.

Example 2 again illustrates how the distribution of K

evolves with σdB. For σdB = 0, it is very well approximated
by (2), but, as the shadowing intensifies, it quickly morphs
into a Poisson distribution as per Lemma 1. For σdB = 10 dB,
and decidedly for σdB = 14 dB, the Poisson distribution is
already an excellent match.

A complementary perspective on the evolution from (2) to
the Poisson distribution within Example 2 is provided in Fig. 4,
which depicts the variance of K as a function of σdB. The
convergence of that variance to the variance of the Poisson
PMF is almost complete for σdB = 10–14 dB. Notice the
slight crossover in the vicinity of σdB = 0 dB, which serves
as a measure of the (high) accuracy of (2) in this limit.

Altogether then, as in the lattice and double-lattice cases,
Lemma 1 is seen to apply to practical values of σdB also in
PPP networks. Moreover, all these network types are extreme
cases. For randomly perturbed lattices, which have been shown
to tightly fit empirical data from cellular operators [14], this
conclusion is reinforced even further.

V. DISCUSSION

Recapitulating, we can conclude the following in terms of
how to stochastically model the number of users associating
with each BS in a cellular network.
• For highly irregular networks subject to minimal shad-

owing, say certain indoor microcellular systems, the
distribution in (2) represents an appropriate and precise
approximation.

• For arbitrary networks subject to moderate or strong
shadowing, say macrocellular systems, the Poisson dis-
tribution is the pertinent model. In the special case that
the network conforms to a lattice, this is the case even if
the shadowing is weak or nonexistent.

Since, as the shadowing intensifies, the number of users
per BS in any network progressively behaves as in networks
with equal-size cells (where it is always Poisson-distributed),
we can further affirm that the shadowing acts as an equalizer
of the effective cell areas. This phenomenon, whereby the
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Fig. 3: In solid, histograms of K in a PPP network with η = 4 and σdB = 0, 10 and 14 dB; users are PPP distributed with K̄ = 10. In dotted, the PMF in
(2). In dashed, a Poisson PMF with mean K̄.
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Fig. 4: In solid, variance of K as a function of σdB in a PPP network with
η = 4; users are PPP distributed with K̄ = 10. In dotted, variance of the
PMF in (2). In dashed, variance of a Poisson PMF with mean K̄.

number of users per BS reduces its variance and becomes more
predictable, is beneficial in terms of resource provisioning. In
this respect, shadowing turns out to be operationally beneficial.

We hasten to recall that all the foregoing observations
rely on the premise that the BS locations are agnostic to
the radio propagation, dominated by deployment opportunities
and restrictions associated with terrain, permits, infrastructure,
power supply, and backhaul. At the other extreme in terms
of planning we would have networks whose BS locations
are optimized for coverage and service, with none of those
restrictions. Such networks are best modeled by regular lattices
with no shadowing [15], and again the number of users per
BS would then be Poisson-distributed.

The broad suitability of a model as simple as the Poisson
distribution is a welcome finding, especially if a further layer
of modeling is to be overlaid so as to incorporate admission

control and user selection. Such further modeling, beyond the
scope of this letter, is an interesting follow-up problem.
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