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Per-link Reliability and Rate Control:
Two Facets of the SIR Meta Distribution

Sanket S. Kalamkar, Member, IEEE, and Martin Haenggi, Fellow, IEEE

Abstract—The meta distribution (MD) of the signal-to-
interference ratio (SIR) provides fine-grained reliability per-
formance in wireless networks modeled by point processes. In
particular, for an ergodic point process, the SIR MD yields
the distribution of the per-link reliability for a target SIR.
Here we reveal that the SIR MD has a second important
application, which is rate control. Specifically, we calculate the
distribution of the SIR threshold (equivalently, the distribution
of the transmission rate) that guarantees each link a target
reliability and show its connection to the distribution of the
per-link reliability. This connection also permits an approximate
calculation of the SIR MD when only partial (local) information
about the underlying point process is available.

I. INTRODUCTION

When the wireless node locations are modeled by a
point process, the meta distribution (MD) of the signal-to-
interference ratio (SIR) provides refined network performance
by calculating the per-link reliability [1]. Specifically, for
a point process Φ of transmitters, the conditional success
probability (equivalently, the reliability) of a link is given by

Ps(t) , P(SIR > t | Φ), t ∈ R+, (1)

where t is the SIR threshold. In (1), averaging is done over
the fading and the channel access scheme. The SIR MD at the
typical link is obtained by averaging over the point process as

F̄Ps
(t, x) = F̄Ps(t)(x) , P(Ps(t) > x), x ∈ [0, 1], (2)

where x is the reliability threshold. In (2), depending on
the network model, we may need to use the reduced Palm
measure instead of the probability measure given that an active
transmitter is present at a prescribed location and the SIR
is calculated at its associated receiver. For an ergodic point
process model, the SIR MD can be interpreted as the fraction
of links or users that achieve a reliability at least x for a target
SIR t in each realization of Φ.

A simple way to guarantee each link a target reliability in
each realization of Φ is to control the (bandwidth-normalized)
transmission rate R, which depends on the SIR threshold
through the spectral efficiency as R = log(1 + t).

In rate control, for a random Φ, the SIR threshold for
which a link achieves the target reliability is random. Let
T denote this random SIR threshold at the typical user. The
complementary cumulative distribution function (ccdf) of T
for a target reliability of ν is denoted by

F̄T (ν)(t) , P(T (ν) > t). (3)

It determines the rate distribution via R = log(1 + T ).
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Related work: The SIR MD is calculated for the spectrum
sharing between the device-to-device (D2D) and cellular users
in [2] and for millimeter-wave D2D networks in [3]. The works
in [1]–[3] take an approach where each link is subjected to
the same SIR threshold and calculate the fraction of links that
satisfy a target reliability in each realization of Φ. Using the
tool of the SIR MD, [4] calculates the spatial outage capacity,
which is the maximum density of concurrently active links that
meet a target success probability. In [5], the approach of rate
control is used to achieve a high reliability given only the
knowledge of the nearest interferer’s location. In [6], given
the different levels of knowledge about the point process, the
success probability of a transmission is predicted. This paper
takes a dual approach to [1] (and similar to [5]) in that the
SIR threshold is adjusted to meet the target reliability.

Contributions: This paper reveals the two interpretations of
the SIR MD—the per-link reliability distribution and the rate
distribution. Specifically, it makes the following contributions:
• For a wireless network modeled by a stationary and

ergodic point process, we prove that calculating the SIR
MD as a function of the SIR threshold is equivalent to
calculating the SIR threshold distribution such that each
link is guaranteed a target reliability of ν (Thm. 1), i.e.,

F̄Ps(t)(ν) ≡ F̄T (ν)(t).

• For Poisson bipolar networks [7] with Rayleigh fading
and the standard path loss model, we show that the rate
control approach permits an approximation of the SIR
MD given the knowledge of the locations of only a few
nearest interferers (Thms. 2, 3, and 4).

• We also show that the rate distribution facilitates the
calculation of the throughput density.

II. DUALITY IN THE INTERPRETATION OF THE SIR MD
Theorem 1. For any stationary and ergodic point process Φ,
given a target reliability ν,

F̄Ps(t)(ν) ≡ F̄T (ν)(t). (4)

Proof: For a target reliability ν, the SIR MD as a function
of the SIR threshold t is

F̄Ps(t)(ν) = P(P(SIR > t | Φ) > ν)

(a)
= P((1− FSIR|Φ(t)) > ν)

(b)
= P(t < F−1

SIR|Φ(1− ν))

(c)
= P(T (ν) > t),

= F̄T (ν)(t),

where in step (a), FSIR|Φ(t) denotes the SIR cdf conditioned
on Φ. In step (b), F−1

SIR|Φ(1−ν) denotes the inverse conditional
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cdf of the SIR. Since FSIR|Φ(t) is continuous and strictly
increasing, F−1

SIR|Φ(1− ν) = u is the unique number such that
FSIR|Φ(u) = 1− ν. In step (c),

T (ν) , F−1
SIR|Φ(1− ν). (5)

Here T (ν) is random since Φ is random. Given Φ, we have
T (ν) = θ such that

θ = F−1
SIR|Φ(1− ν), (6)

which results in

ν = 1− FSIR|Φ(θ) = P(SIR > θ | Φ). (7)

From (5), (6), and (7), it follows that F̄T (ν)(t) is the ccdf of
the SIR threshold that achieves a reliability equal to ν.

Corollary 1. The distribution of the transmission rate R is

F̄R(r) ≡ F̄Ps(er−1)(ν). (8)
Proof: The rate distribution follows from R = log(1+T )

and Thm. 1.

Thm. 1 and Cor. 1 reveal two facets of the SIR MD:
1. For fixed SIR threshold t = θ, F̄Ps(θ, x) is the per-link

reliability distribution.
2. For fixed reliability threshold x = ν, F̄Ps

(t, ν) is the dis-
tribution of the conditional SIR threshold (equivalently,
rate distribution).

Intuitively, Thm. 1 can be explained as follows. For a given
SIR threshold t and target reliability ν, in a realization of
the network, let us assume that the typical link1 achieves a
reliability of x. If x > ν, the SIR threshold can be increased
until x = ν. Contrary, if x < ν, the SIR threshold needs to
be decreased such that x = ν. Hence the probability that the
typical link achieves a reliability of x > ν is the same as the
probability that the SIR threshold for which the typical link
achieves a reliability of exactly ν is greater than t.

III. THE CASE OF POISSON BIPOLAR NETWORKS

In this section, we study the rate control performance in
Poisson bipolar networks [7], which can be used to model
infrastructureless wireless networks such as ad hoc, D2D,
M2M, and V2V networks.

A. Network Model

The transmitter locations follow a homogeneous Poisson
point process (PPP) Φ of density λ. Each transmitter has an
associated receiver at a distance of R in a uniformly random
direction. Each transmitter transmits at unit power. We assume
Rayleigh fading with the channel power gain distributed as the
exponential random variable with mean 1. A transmission is
subject to the path loss as r−α, where r is the distance and
α > 2 is the path loss exponent. We focus on the interference-
limited case. We add a transmitter at the location (R, 0) and
its receiver at the origin o. The link between this transmitter-
receiver pair becomes the typical link under the expectation
over Φ.

1We add a link whose receiver is at the origin. Under the expectation over
Φ, this link becomes the typical link. In a realization of Φ, however, with
a slight abuse of terminology, we term this link the typical link even before
taking the expectation.
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(a) Deterministic SIR threshold
θ = 1,

Ps(θ) , P(SIR > θ|Φ)
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(b) Random SIR threshold T ,
ν = 0.9,

T = F−1
SIR|Φ(1− ν) = P−1

s (ν)

Fig. 1. A realization of the Poisson bipolar network for λ = 1/40, α = 4,
and R = 2. ‘×’ denotes a transmitter while a circle ‘◦’ denotes the associated
receiver. In (a), the number next to each link is a value of Ps (reliability) for
that link for a deterministic SIR threshold of θ = 1, while in (b), the number
next to each link is a value of the SIR threshold T for that link such that the
reliability is exactly ν.

B. Per-link Reliability and Rate Control

Fig. 1 visualizes Thm. 1 and reveals the rate-reliability
trade-off. Fig. 1(a) shows what reliabilities links in a realiza-
tion of the Poisson bipolar network achieve for a given SIR
threshold θ. For this realization, 3 out of 12 links achieve a
reliability greater than the target reliability of ν = 0.9. On
the other hand, for the same realization, Fig. 1(b) shows what
SIR threshold is set at each link to achieve exactly the target
reliability. For those links that achieve a reliability greater
than ν (see Fig. 1(a)), the SIR threshold can be set above
the deterministic SIR threshold of θ = 1 such that the links
achieve exactly the target reliability (see Fig. 1(b)). For the
links with smaller reliability than ν, the SIR threshold needs
to be lowered so that those links meet the target reliability.

C. Distribution of the SIR Threshold

Theorem 2. The random SIR threshold T that guarantees a
target reliability of ν = 1− ε is the solution of∏

y∈Φ

1

1 + TRα‖y‖−α
= 1− ε. (9)

Proof: The conditional success probability is given by

Ps(t) = P(SIR > t | Φ)

= P

(
hR−α∑

y∈Φ

hy‖y‖−α
> t | Φ

)

(a)
= E

(
exp

(
− tRα

∑
y∈Φ

hy‖y‖−α
)
| Φ

)
(b)
=
∏
y∈Φ

1

1 + tRα‖y‖−α
, (10)

where step (a) follows from averaging over the channel power
gain h of the desired link and step (b) follows from averaging
over the channel power gains hy of the interfering links.

Conditioned on Φ, T = t is the SIR threshold such that∏
y∈Φ

1
1+tRα‖y‖−α = 1 − ε. For a random Φ, T is a random

variable.
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Remark 1. Although in most cases, it is impossible to express
T in an exact closed-form, it can be computed numerically
with ease. Thanks to Thm. 1, the distribution of T can be
exactly calculated from an already known exact expression of
F̄Ps(t)(ν) obtained via the Gil-Pelaez inversion [1]. It can also
be efficiently calculated by the binomial mixtures method [8].

We now discuss some cases of practical importance where
we can express T in a quasi-closed-form and calculate its
distribution. For this purpose, we use the following lemma.

Lemma 1. The relation between the geometric mean and the
arithmetic mean gives rise to(

k∏
n=1

1 + TRαR−αn

)1/k

≤ 1

k

k∑
n=1

(1 + TRαR−αn ). (11)

In Lemma 1, the interference only from k nearest interferers
is considered, where Rn is the nth interferer’s distance from
the typical receiver (i.e., R1 ≤ R2 ≤ . . . ≤ Rk).

1) Ultrareliable regime (ε → 0): The ultrareliable regime
corresponds to the regime where the target outage probability
goes to 0, i.e., ε→ 0. For this regime, the following theorem
calculates the distribution of T .

Theorem 3. For ε→ 0,

F̄T (t) ∼ 1− F̄I
(
εR−α

t

)
, (12)

where

I ,
∞∑
n=1

R−αn (13)

denotes the interference without fading.

Proof: See the appendix.
For α = 4, F̄I(·) is available in a quasi-closed-form [9,

Chapter 5], which results in

F̄T (t) ∼ erfc

(√
t

ε

π3/2λR2

2

)
, ε→ 0, (14)

where erfc(·) denotes the complementary error function.

Remark 2. In (14), the ratio of t (rate) and ε (reliability)
highlights the rate-reliability trade-off.

2) Availability of partial (local) information about Φ:
In this case the knowledge of the locations of only a few
nearest interferers is available. For this, the following theorem
provides an approximate expression of the SIR threshold T .

Theorem 4. For any ε ∈ (0, 1) and any k ∈ N,

T ≥
kR−α

((
1

1−ε

)1/k

− 1

)
∑k
n=1R

−α
n

. (15)

Proof: The proof follows directly from (9) and (11).
For k →∞, the bound in (15) provides an approximation as

T ≈ lim
k→∞

k

((
1

1−ε

)1/k

− 1

)
R−α∑k

n=1R
−α
n

=
log( 1

1−ε )R−α

I
, (16)
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Fig. 2. Accuracy of the bound given by (15) for different values of densities.
The ‘Exact (Gil-Pelaez)’ curve corresponds to the distribution of T calculated
using Thm. 1 and the exact expression of F̄Ps(t)(ν) obtained by the Gil-
Pelaez inversion, as stated in Remark 1. The curves corresponding to the local
information of Φ, i.e., k = 1 (nearest interferer) and k = 3 (three nearest
interferers) denote the empirical distributions of T obtained by treating the
bound in (15) as an approximation. α = 4 and R = 1/2.

where I is given by (13). An approximate distribution of T in
a quasi-closed-form follows as

F̄T (t) ≈ erfc

(√
t

log( 1
1−ε )

π3/2λR2

2

)
. (17)

Remark 3. By Thm. 1, for a target reliability ν, (17) can be
used to approximate F̄Ps(t)(ν) as a function of t.

Fig. 2 shows that the empirical distribution of T obtained
using the bound given by (15) is quite tight for small values
of the SIR threshold t. In fact, it is not necessary to have the
entire information about the point process Φ, i.e., the locations
of all interferers, to obtain a good approximation of F̄T (t).

D. Throughput Density

The distribution of T allows us to calculate the throughput
density [5], which is defined as

S , λE(log(1 + T )Ps(T )). (18)

This throughput density metric takes into account all the
links, which includes unreliable links for which Ps < 1 − ε.
The second throughput metric, termed the reliable throughput
density, considers only reliable links and is given by

Srel , λE(log(1 + T )1(Ps(T ) ≥ 1− ε)), (19)

where 1(·) denotes the indicator function.
1) Rate control approach: Since each link achieves the

target reliability, we have Ps(T ) = 1 − ε and 1(Ps(T ) ≥
1− ε) = 1. It follows that

S = λ(1− ε)E(log(1 + T )) (20)

and

Srel = λE(log(1 + T )) =
S

1− ε
. (21)
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Fig. 3. Throughput densities against the deterministic SIR threshold θ. λ = 1,
α = 4, R = 1/2, and ε = 0.01.

For α = 4, using (17), we can calculate E(log(1+T )), which
gives rise to

E(log(1 + T )) ≈ 1√
π

∫ ∞
0

u−1/2e−u log
(

1 +
u

C

)
du

= −2C 2F2([1, 1], [3/2, 2], C) + πCerfi(
√
C)

− (γ + 2 log(2) + log(C)), (22)

where C = − 1
log(1−ε)

π3λ2R4

4 , 2F2([·, ·], [·, ·], ·) is a hyperge-
ometric function, erfi(·) is the imaginary error function, and
γ = 0.57721 is Euler’s constant.

2) Deterministic SIR threshold approach: The throughput
densities are calculated by replacing the random T in (18) and
(19) by the deterministic SIR threshold θ. It follows that

S = λ log(1 + θ)ps(θ) (23)

and

Srel = λ log(1 + θ)FPs
(θ, 1− ε), (24)

where ps(θ) , E(Ps(θ)) is the standard success probability
and FPs

(θ, 1− ε) = E(1(Ps(θ) ≥ 1− ε)) is the SIR MD. For
the network model considered in this paper, from [1], we have
ps(θ) = exp(−λπR2θ2/αΓ(1+2/α)Γ(1−2/α)). FPs

(θ, 1−ε)
can be calculated using the Gil-Pelaez inversion [1].

Fig. 3 shows that when only reliable links are considered
to calculate the throughput density, the rate control approach
outperforms the deterministic SIR threshold (i.e., without rate
control) approach since all links are reliable in the former
and only a fraction of links are reliable in the latter. When
unreliable links are also considered, the trade-off between the
rate and the reliability causes the rate control approach to
perform better at low and high SIR thresholds. For the rest
of the SIR threshold values, the rate control leads to smaller
rates in an effort to make all links reliable and performs worse
than the deterministic SIR threshold approach. The throughput
densities for the rate control approach remain the same as they
depend only on the average rate and the transmitter density.

IV. CONCLUSIONS

For any wireless network modeled by a stationary and
ergodic point process, we revealed that rate control is a facet
of the SIR MD and showed its connection to the per-link
reliability—another facet of the SIR MD. This connection
permits the calculation of the rate distribution and highlights
the rate-reliability trade-off. Since the rate control guarantees
each link an arbitrary target reliability, it facilitates ultrareli-
able communication.

APPENDIX

PROOF OF THM. 3

The bound in (11) becomes exact as ε → 0 because the
term TRα‖y‖−α in (9) (hence the term TRαR−αn in (11))
approaches 0 and hence the geometric mean approaches the
arithmetic mean. Consequently, from (9) and (11), we have

lim
k→∞

1

k

k∑
n=1

(1 + TRαR−αn ) ∼ 1

1− ε
, ε→ 0, (25)

which yields the exact expression of T in the ultrareliable
regime (i.e., as ε→ 0) as

T ∼ εR−α

lim
k→∞

∑k
n=1R

−α
n

, ε→ 0. (26)

The exact distribution of T follows as

F̄T (t) = P(T > t)

∼ 1− P
(
I >

εR−α

t

)
, ε→ 0,

= 1− F̄I
(
εR−α

t

)
.
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