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On the Location-Dependent SIR Gain
in Cellular Networks

Ke Feng, Martin Haenggi, Fellow, IEEE

Abstract—In wireless networks, the distances from a user to
its desired transmitters and undesired interferers play a critical
role in its channel quality. In this paper, we study this location-
dependence in a cellular network, where a user is always served
by its nearest base station. For any stationary and ergodic base
station process, we partition its associated Voronoi cells into the
cell centers and the cell boundaries. We show that in Poisson
networks, the top fraction x of users enjoy a signal-to-interference
ratio (SIR) gain of −5α log10 x dB relative to the typical user for
Rayleigh fading and the power-law path loss with the exponent
α. For the cell boundary users, we give both the exact and
asymptotic form of the SIR distribution. As such, this paper
permits the grouping of users and the analysis of different groups
of users.

Index Terms—Cellular networks, location-dependence, SIR
gain, Poisson networks, stochastic geometry.

I. INTRODUCTION

In the downlink orthogonal frequency-division multiplexing
(OFDM) systems, each base station (BS) serves users within
its cell while causing interference to users in other cells using
the same resource block. The distances between a user to its
transmitting/interfering BSs shape the link quality in the long
term [1]. In the literature, “the cell boundary users” typically
refers to users who are almost equally close to the serving
and nearest interfering BS and “the cell center users” refers to
those who are much closer to the serving BS than to interfering
ones. The former type is often the bottleneck of the network
while the latter type benefits from good locations. To optimize
resource allocation and improve the fairness, it is important to
distinguish these two types of users and study their gain/loss
relative to the typical user.

We define the region of a location u by how much closer u
is to its serving BS than to its nearest interfering BS following
[1], [2]. Let Φ ⊂ R2 be an ergodic and stationary BS point
process and xi(u) ∈ Φ be the i-th nearest BS to u. For γ ∈
[0, 1] and ρ , 1− γ we define

C1 , {u ∈ R2 : ‖u− x1(u)‖ ≤ ρ ‖u− x2(u)‖}
C2 , {u ∈ R2 : ρ ‖u− x2(u)‖ < ‖u− x1(u)‖}.

(1)

γ controls the area fraction of each region.
In the case when Φ is a homogeneous Poisson point process

(PPP) with intensity λ, the area fraction of each region equals
the probability that the origin falls into each region [2]:

P(o ∈ C1) = ρ2, P(o ∈ C2) = 1− ρ2. (2)
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(a) Poisson networks.
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(b) Triangular lattice networks.

Fig. 1. The area fraction of each region.

In the case when Φ is a lattice network, the calculation of the
area fractions is straightforward but the result is unwieldy. Fig.
1 shows the area fraction of each region in Poisson networks
and triangular networks as γ increases from 0 to 1.

II. POISSON NETWORKS

The success probability is defined as the probability of the
SIR exceeding a threshold θ

F̄ (θ) , P(SIR > θ). (3)

When BSs forms a PPP Φ ⊂ R2, the success probability of
the typical user is [3]

F̄PPP(θ) =
1

2F1(1,−δ; 1− δ;−θ)
(4)

with δ , 2/α. 2F1(a, b; c; z) is the Gauss hypergeometric
function.

Using the geometric partition, we can express the success
probability as

F̄PPP(θ) =

2∑
i=1

P(SIR > θ | o ∈ Ci)P(o ∈ Ci). (5)

In the next two subsections, we will study the success proba-
bility conditioned on the typical user being in the two regions.
ri = ‖xi(o)‖ denotes the distance of the i-th nearest BS to o.

A. The Cell Center Region

Theorem 1. The success probability conditioned on the typical
user lying in C1 is

P(SIR > θ | o ∈ C1) = F̄PPP(θρα)

=
1

2F1(1,−δ; 1− δ;−ραθ)
.

(6)
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Fig. 2. The SIR gain (in dB) as a function of the area fraction of C1, α = 4.

In particular, for α = 4, we have

P(SIR > θ | o ∈ C1) =
1

1 + ρ2
√
θ arctan (ρ2

√
θ)
. (7)

Proof.

P(SIR > θ | o ∈ C1) = P(S > θI | o ∈ C1)

= E
[ ∞∏
i=2

1

1 + θ( r1ri )α
| o ∈ C1

]
= E

[ ∞∏
i=2

1

1 + θρα( r1/ρri )α
| o ∈ C1

]
(a)
= E

[ ∞∏
i=2

1

1 + θρα( r1ri )α

]
= F̄PPP(θρα),

where (a) is due to the fact that the region C1 is equivalent to
{r1/r2 ≤ ρ} = {r1/ρ ≤ r2}. Put differently, the probability
law of r1/ρ, r2, ... conditioned on r1/r2 ≤ ρ is the same as
the law of r1, r2, ... without conditioning. This can be shown
by establishing that f r1

ρ
(x | r1r2 ≤ ρ) = fr1(x) in the following

derivation and using the independence property of the PPP:

P
(
r1 ≤ x |

r1
r2
≤ ρ
)

=
P(r1 ≤ x, r1/r2 ≤ ρ)

P
(
r1/r2 ≤ ρ

)
=

∫ x
0

∫∞
u
ρ

(2λπ)2uv exp (−λπv2)dvdu

ρ2

= 1− exp

(
− λπx

2

ρ2

)
,

(8)

and the pdf

fr1

(
x | r1

r2
≤ ρ
)

=
2λπx

ρ2
exp

(
− λπx

2

ρ2

)
. (9)

Now

f r1
ρ

(x | r1/r2 ≤ ρ) = 2πλx exp(−λπx2) = fr1(x).

Remark 1 Theorem 1 shows the SIR gain (in dB) condi-
tioned on the typical user being in C1 is

G1 = −10 log10 ρ
α. (10)

(10) is remarkably simple and directly shows that the top
fraction x = ρ2 of users enjoy an SIR gain of −5α log10 x
dB relative to the typical user. Here, the “top” users are those
with the highest distance ratio of the nearest interferer and the
serving BS. Fig. 2 shows the SIR gain G1 as a function of the
area fraction of users in C1. For instance, there are 31.5% of
the users that enjoy an average gain of 10 dB over the typical
user, and 10% achieve a gain of 20 dB.

Remark 2 It is interesting to compare this result with the
success probability of a BS silencing scheme that mutes all
the BSs within r1/ρ for the typical user. We have

P(SIR > θ)

=

∫ ∞
0

2πλx exp
(
− πλx2 −

∫ ∞
x
ρ

(
1− 1

1 + θ(xt )α
)
2πλtdt

)
dx

=
1

1− ρ−2 + ρ−2 2F1(1,−δ; 1− δ;−ραθ)
.

(11)

It is easy to show that (11) is smaller than (6) for any θ > 0
and ρ ∈ [0, 1]. This is expected since muting the interfering
BSs in r1/ρ does not affect the ratio of r1/ri for ri > r1/ρ.

Corollary 1. The gain of the typical user being in C1 is the
same as the gain when all interferers are 1/ρ times more
distant

r′i = ri/ρ, i > 1, (12)

or, equivalently, the interference power is ρα times smaller,
i.e., I ′ = Iρα.

Proof. Trivial.

Theorem 1 leads to the evaluation of the conditional success
probability, denoted by Ps(θ), and the SIR meta distribution
[4] conditioned on the typical user being in C1.

Corollary 2. The b-th moment of the conditional success
probability conditioned on the typical user lying in C1 is

E[Ps(θ)
b | o ∈ C1] =

1

2F1(b,−δ; 1− δ;−ραθ)
, b ∈ C.

(13)
and the SIR meta distribution conditioned on the typical user
lying in C1 satisfies

P(Ps(θ) > x | o ∈ C1) = P(Ps(ρ
αθ) > x), x ∈ [0, 1].

(14)

Proof.

E[Ps(θ)
b | o ∈ C1] = E

[ ∞∏
i=2

1

(1 + θ(r1/ri)α)b
| Φ, o ∈ C1

]
= E

[ ∞∏
i=2

1

(1 + ραθ(r1/ri)α)b
| Φ
]

=
1

2F1(b,−δ; 1− δ;−ραθ)
.

Since this holds for any b ∈ C, it holds for the SIR meta
distribution [5].

Remark 3 (14) shows that for the same target reliability
and percentile, the typical user in C1 achieves an SIR that is
ρ−α times higher than that of the typical user.
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(a) γ = 0.2.
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(b) γ = 0.6.

Fig. 3. The conditional success probability for the two regions, α = 4. The
curves for C1 (red circle) correspond to the curve for the typical user (black)
shifted by 3.876 dB and 15.92 dB, respectively.

B. The Cell Boundary Region

Corollary 3. The success probability conditioned on the
typical user being in C2 is

P(SIR > θ | o ∈ C2) =
F̄PPP(θ)− ρ2F̄PPP(θρα)

1− ρ2
(15)

Proof. Combining (5), P(o ∈ C2) = 1 − ρ2 and the result in
Theorem 1, we obtain Corollary 3.

From (15) we notice that the horizontal gain within C2 is not
constant but depends on θ. Fig. 3 shows the success probability
in the two regions plotted using (6) and (15). The success
probability of the typical user is the weighted average of them.

Taking the limit ρ −→ 1 of (15) we obtain the success
probability for the typical edge user, i.e., the typical user that
lies on the edges of the Voronoi cells,

P(SIR > θ | x1(o) = x2(o))

=
1

2F1(1,−δ; 1− δ;−θ)
− θ

1− δ
2F1(2, 1− δ; 2− δ;−θ)
2F1(1,−δ; 1− δ;−θ)2

=
1

(1 + θ) 2F1(1,−δ; 1− δ;−θ)2

=
F̄PPP(θ)2

1 + θ
.

In contrast, for the typical vertex user [6], i.e., the user lying
on the vertex of the Voronoi cells,

P(SIR > θ | x1(o) = x2(o) = x3(o)) =
F̄PPP(θ)2

(1 + θ)2
.

There is an extra factor 1 + θ in the denominator due to the
third equidistant BS.

We now calculate the asymptotic SIR gain (the SIR gain
as θ → 0) of the users in C2. Denote by G2 the asymptotic
SIR gain of the users in C2 relative to the typical user. Note
that G2 ≤ 1. We can write the asymptotic form of the success
probability of the users in C2 as [7]

P(SIR > θ | o ∈ C2) ∼ F̄PPP(θ/G2), θ → 0, (16)

where

G2 =
MISRPPP

MISRC2
=

1− ρ2

1− ρα+2
. (17)
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Fig. 4. The asymptotic SIR gain conditioned on the typical user being in the
two regions, α = 4.

(17) follows from the the mean interference-to-signal ratio
(MISR) of the typical user MISRPPP = 2/(α− 2), and the
MISR conditioned on the typical user being in C2 as

MISRC2 = E
[ ∞∑
i=2

(
r1
ri

)α
| o ∈ C2

]
= E

[(
r1
r2

)α
| o ∈ C2

](
1 + E

[ ∞∑
i=3

(
r2
ri

)α ])
=

2(1− ρα+2)

(α+ 2)(1− ρ2)

(
1 +

4

α− 2

)
=

2(1− ρα+2)

(α− 2)(1− ρ2)
.

Fig. 4 shows the asymptotic SIR gain of the two types of
users as a function of γ.

Alternatively, we can express the asymptotic success prob-
ability using the success probability of the typical edge
user and the typical vertex user as baselines. Denote by
G2,e, G2,v the asymptotic gains compared to the typi-
cal edge user and the typical vertex user. By combin-
ing the typical edge user MISRe = (α+ 2)/(α− 2),
and the typical vertex user MISRv = 2α/(α− 2) [7],
we have G2,e = (α+ 2)(1− ρ2)/(2(1− ρα+2)), G2,v =
α(1− ρ2)/(1− ρα+2) and

P(SIR > θ | o ∈ C2) ∼ F̄PPP(θ/G2)

∼ F̄PPP(θ/G2,e)
2

1 + θ/G2,e

∼ F̄PPP(θ/G2,v)2

(1 + θ/G2,v)2
, θ → 0.

(18)

C. Spectral Efficiency
We determine the spectral efficiency in units of nats/s/Hz

in an interference-limited scenario assuming rate adaption.
Letting Ri = E

[
ln(1 + SIR) | o ∈ Ci

]
, i = 1, 2, we have

R = E ln(1 + SIR) = R1P(o ∈ C1) +R2P(o ∈ C2). (19)

Corollary 4. The spectral efficiencies conditioned on the
typical user being in C1 and C2 are

R1 =

∫ ∞
0

1

2F1(1,−δ; 1− δ;−ρα(et − 1))
dt, (20)
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Fig. 5. The spectral efficiency conditioned on the typical user being in the
two regions in comparison with that of the typical user R = 2.163 bits/s/Hz
(the black line), α = 4.

and
R2 =

1

1− ρ2
(
R− ρ2R1

)
. (21)

Proof.

R1 = E
[

log(1 + SIR) | o ∈ C1
]

=

∫ ∞
0

P(log(1 + SIR) > t | o ∈ C1)dt

=

∫ ∞
0

P(SIR > et − 1 | o ∈ C1)dt

=

∫ ∞
0

1

2F1(1,−δ; 1− δ;−ρα(et − 1))
dt.

(22)

The second part is trivial.

Fig. 5 shows the spectral efficiency conditioned on the
typical user being in each region in bits/s/Hz. For instance,
when α = 4 and γ = 0.4, R1 ≈ 4.2 bits/s/Hz, so 36% of the
users achieve almost double of R as a result of good locations.
In contrast, the other 64% achieve only R2 ≈ 0.995 bits/s/Hz,
which is less than half of R as a result of bad locations. R1

approaches infinity as γ → 1 due to the singularity of the
power-law path loss function.

III. LATTICE NETWORKS

In this section, we study the success probability and the
asymptotic SIR gain of the cell center region defined in (1) in
triangular lattice networks. Fig. 6 shows the simulated result
of the success probability in C1 with different γ. Fig. 7 shows
the asymptotic SIR gain G1 in Poisson networks and triangular
lattice networks. The former is plotted using (10), and the
latter using simulation results evaluated at ps(θ) = 0.95 with
the success probability of the typical user in triangular lattices
as the baseline. The latter is smaller since a user is more likely
to have other nearby interfering BSs when fixing the distance
ratio between the nearest two BSs.

IV. CONCLUSIONS

This paper compares the SIR distribution and the related
performance metrics for the cell center users and the cell
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Fig. 6. The success probability in C1 in triangular lattice networks for γ =
0, 0.1, ..., 0.9.
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Fig. 7. The asymptotic SIR gain in Poisson networks and lattice networks.

boundary users in cellular networks. We show a surprisingly
simple relationship between the SIR performance of the cell
center users and the typical user in Poisson networks. The
idea of grouping users and analyzing the corresponding per-
formance applies to general networks.
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