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Downlink Analysis for the Typical Cell
in Poisson Cellular Networks

Praful D. Mankar, Priyabrata Parida, Harpreet S. Dhillon, Martin Haenggi

Abstract—Owing to its unparalleled tractability, the Poisson
point process (PPP) has emerged as a popular model for the
analysis of cellular networks. Considering a stationary point
process of users, which is independent of the base station (BS)
point process, it is well known that the typical user does not lie
in the typical cell and thus it may not truly represent the typical
cell performance. Inspired by this observation, we present a
construction that allows a direct characterization of the downlink
performance of the typical cell. For this, we present an exact
downlink analysis for the 1-D case and a remarkably accurate
approximation for the 2-D case. Several useful insights about the
differences and similarities in the two viewpoints (typical user
vs. typical cell) are also provided.

Index Terms—Stochastic geometry, typical user, cellular net-
work, user point process, coverage probability.

I. INTRODUCTION

The previous decade has witnessed a significant growth in
research efforts related to the modeling and analysis of cellular
networks using stochastic geometry. A vast majority of these
works, e.g., [1], [2], rely on the homogeneous PPP model for
the BS locations. The user locations are then modeled as a
stationary point process that is assumed to be independent of
the BS process. Given the stationarity and independence of
the user point process, the concept of coverage of the typical
user and coverage of an arbitrary fixed location are identical.
As a result, one does not need to explicitly consider Palm
conditioning on the user point process and the analysis can just
focus on the origin as a location of the typical user. However,
it is well known that the origin falls in a Poisson-Voronoi
(PV) cell that is bigger on an average than the typical cell
[3], called the Crofton cell. Therefore, this approach does not
characterize the performance of the typical cell, which is the
main focus of this letter.

One way of characterizing the typical cell performance is
to consider a user distribution model that places a single user
distributed uniformly at random in each cell independently
of the other cells. This user process can be interpreted as
the locations of the users scheduled in a given resource
block. One can also argue that this point process is at least
as meaningful as the one discussed above because practical
cellular networks are dimensioned to ensure that the load of
each cell is almost the same. Similar to [4], we refer this
user process as Type I user process and the aforementioned
independent user process as Type II user process. Given that
the Crofton cell is statistically larger than the typical cell, it
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is easy to establish that both the desired signal power and the
interference power observed at the typical user of the Type
I process will (stochastically) dominate the corresponding
quantities observed by the typical user of the Type II process.
While the downlink analysis of the Type II user process is
well understood, this letter deals with the downlink coverage
analysis for the Type I user process.

Related Works: The downlink analysis of cellular networks
with the Type II user process involves using the contact
distribution of the PPP to characterize the link distance, and
using Slivnyak’s theorem to argue that conditioned on the link
distance, the point process of interferers remains a PPP [1].
While the idea of using the Type I user process is relatively
recent, there are two noteworthy works in this direction. First
and foremost is [4], which defined this user process and used
it for the uplink analysis. This idea was extended to the
downlink case in [5], where the meta distribution of signal-
to-interference ratio (SIR) is derived using an empirically
obtained link distance distribution (for the Type I process) and
approximating the point process of interferers as a homoge-
neous PPP beyond the link distance from the location of the
typical user. In [6], we derived the exact integral expression
and a closed-form approximation for the serving link distance
distribution for the Type I user process. Building on the
insights obtained from [5] and [6], we provide an accurate
downlink analysis for the Type I user process in this letter.

Contributions: The most important contribution of this letter
is to demonstrate that the well-accepted way of defining the
typical user by considering an independent and stationary point
process of users is not the only way of analyzing cellular
networks modeled as point processes. More importantly, this
construction does not result in the typical cell performance.
In order to highlight the finer differences between the two
viewpoints, we first present the exact analysis of the Type I
process for the 1-D case. Leveraging the qualitative insights
obtained from the 1-D case, we perform an approximate yet
accurate analysis for the Type I user process in a 2-D cellular
network. In particular, for the Type I process, we empirically
show that the point process of interfering BSs given a distance
Ro between user and serving BS exhibits a clustering effect
at distances slightly larger than Ro that is not captured by
a homogeneous PPP approximation (beyond Ro) as used in
[5]. Using this insight, we propose a dominant-interferer based
approach in order to accurately approximate the point process
of interferers. This approximation allows us to accurately
evaluate the interference received by the user conditioned on
the link distance, which subsequently provides a remarkably
tight approximation for the 2-D case.
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II. SYSTEM MODEL AND PRELIMINARIES

We assume that the locations of BSs form a homogeneous
PPP Ψ ≡ {x1, x2, . . . } of density λ on Rd for d ∈ {1, 2}. The
PV cell with the nucleus at x ∈ Ψ can be defined as

Vx = {y ∈ Rd : ‖y − x‖ ≤ ‖x′ − y‖, ∀x′ ∈ Ψ}. (1)

Since by Slivnyak’s theorem [7], conditioning on a point is
the same as adding a point to a PPP, we focus on the typical
cell of the point process Ψ ∪ {o} at o, which is given by

Vo = {y ∈ Rd : ‖y‖ ≤ ‖x− y‖, ∀x ∈ Ψ}. (2)

Henceforth, we consider Φ = Ψ ∪ {o}. Further, let Ṽo be the
cell of the PV tessellation of Ψ containing the origin, called
the Crofton cell. Without loss of generality, the typical user
from the Type II user process can be assumed to be located
at the origin (see [1]) which means it resides in the Crofton
cell Ṽo. Now, we define Type I user point process as

Ω , {U(Vx) : x ∈ Φ}, (3)

where U(A) is the point chosen uniformly at random from the
set A independently for different A. Note that the typical user
from the Type I user point process Ω represents a uniformly
random point in the typical cell.

By the above construction, the location of the typical user
in the typical cell becomes y ∼ U(Vo) and Ψ becomes the
point process of interfering BSs to the typical user at y ∈ Vo.
Let Ro denote the link distance, i.e., the distance from the
BS of Vo (i.e., the origin) to the user at y. We consider the
standard power law path loss model with exponent α > 2 for
signal propagation. Further, assuming independent Rayleigh
fading, we model the small-scale fading gains hx associated
with the typical user and the BS at x ∈ Φ as exponentially
distributed random variables with unit mean. We assume {hx}
are independent for all x ∈ Φ. Thus, SIR at the typical user
located at y ∈ Vo in an interference-limited system is

SIR =
hoR

−α
o∑

x∈Ψ

hx‖x− y‖−α
. (4)

Definition 1. The coverage probability is the probability that
the SIR at the typical user is greater than a threshold τ .

In the rest of this section, we briefly discuss the coverage
probability of the Type II process.

By definition, the link distance of the typical user of the
Type II user process is R̂o = ‖x‖ where x ∈ Ψ is the closest
point to the origin. The cumulative distribution function (CDF)
of R̂o (i.e., the contact distribution) is 1− exp(−λκdrd) [7],
where κd = 1 and κd = π for d = 1 and d = 2, respectively.
The coverage probability of the Type II process in the d-
dimensional Poisson cellular network is given by [1]

PdII(τ) , P[SIR > τ ] =

[
1 + τ

d
α

∫ ∞
τ− d

α

1

1 + u
α
d

du

]−1

. (5)

Note that [1] is focused on the case of d = 2 but the extension
to the general d-dimensional case is straightforward. PdII(τ)
can also be interpreted as the fraction of the covered area.

III. COVERAGE ANALYSIS OF TYPE I USER PROCESS

In this section, we present the exact and an approximate
(yet accurate) coverage analysis of the Type I user process for
d = 1 and d = 2.
A. Exact Coverage Analysis for d = 1

We begin our discussion with the distribution of the serving
link distance conditioned on the distances from the typical BS
at the origin to the neighboring BSs (one from each side). Let
R1 and R2 be the distances from the typical BS to these two
neighboring BSs. Since Φ is a Poisson process on R, R1 and
R2 are i.i.d. exponential with mean λ−1. The joint distribution
of R1 and R2 conditioned on R1 < R2 is

fR1,R2
(r1, r2) = 2λ2 exp(−λ(r1 + r2)), r2 ≥ r1 ≥ 0. (6)

The serving link distance distribution for the user at y ∼
U(Vo), where |y| = Ro, conditioned on R1 and R2 becomes

FRo(Ro ≤ r | R1, R2) =


4r

R1+R2
, if R1

2 ≥ r ≥ 0,
2r+R1

R1+R2
, if R2

2 ≥ r >
R1

2 ,

1, if r > R2

2 .

(7)

Now, we present the exact coverage probability of the Type I
process in the following theorem.

Theorem 1. The coverage probability of the Type I process
in a 1-D Poisson cellular network is

P1I(τ) =

∫ ∞
0

∫ r2

0

P [SIR > τ | r1, r2] fR1,R2
(r1, r2)dr1dr2, (8)

where fR1,R2(r1, r2) is given by (6),

P [SIR > τ | r1, r2] =

∫ r1
2

0

LI(τrα | r1 − r, r2 + r)
2

r1 + r2
dr

+

∫ r2
2

0

LI(τrα | r1 + r, r2 − r)
2

r1 + r2
dr, (9)

and LI(s | u, v) =
exp

(
−λ
∫∞
u

sdr
rα+s − λ

∫∞
v

sdr
rα+s

)
(1 + su−α)(1 + sv−α)

. (10)

Proof: Let xl and xr be the neighboring interfering BSs to
the typical user at y ∈ Vo in Ψ1 and Ψ2, respectively, where
Ψ1 = Ψ ∩ R− and Ψ2 = Ψ ∩ R+. Let R̃1 = |xl − y| and
R̃2 = |xr−y|. Thus, the aggregate interference can be written
as I = I1 + I2 where I1 = hxlR̃

−α
1 +

∑
x∈Ψ1\{xl} hx|x −

y|−α and I2 = hxr R̃
−α
2 +

∑
x∈Ψ2\{xr} hx|x−y|

−α. Now, the
Laplace transform (LT) of I1 conditioned on R̃1 is

LI1(s | R̃1) = E

e−shxl R̃−α
1

∏
x∈Ψ1\{xl}

e−shx|x−y|
−α
| R̃1


(a)
= Eh[eshR̃

−α
1 ]E

 ∏
x∈Ψ1\{xl}

Eh[e−sh|x−y|
−α

] | R̃1


(b)
=

1

1 + sR̃−α1

exp

(
−λ
∫ ∞
R̃1

sdr

rα + s

)
,

where (a) follows from the independence of the fading gains
and (b) follows from the LT of an exponential r.v. and
the probability generating functional (PGFL) of the PPP [7].
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Similarly, we obtained LT of I2 condition on R̃2. The LT of
aggregate interference for R̃1 = u and R̃2 = v is given by
(10). For given R1 and R2, the coverage probability becomes

P [SIR > τ | R1, R2] = ERo
[
LI(τrα | R̃1, R̃2) | R1, R2

]
.

Finally, by deconditioning the above equation over the joint
distribution of R1 and R2 given in (6), we obtain (8).

From the above analysis, it is evident that the exact analysis
of the Type I process requires conditioning on the locations of
all the neighboring BSs around Vo. While this was manageable
in 1-D, it becomes significantly more complicated for d > 1,
which prevents an exact analysis. In the next subsection, we
present a new approximation that leads to a tight characteri-
zation of the Type I user performance for d = 2.

B. Approximate Coverage Analysis for d = 2

The coverage analysis requires the joint distribution of the
distances ‖x−y‖, x ∈ Ψ, and the link distance Ro = ‖y‖ of
the typical user at y ∼ U(Vo). Thus, we first discuss the
distribution of Ro and then approximate the point process
of interferers Ψ conditioned on Ro. Finally, using these
distributions, we present the approximate coverage analysis.

1) Approximation of the link distance distribution: In [6],
we derived an exact expression for the distribution of Ro which
involves multiple integrals. Therein, we also derived a closed-
form expression to approximate the CDF of Ro which is

FRo(r) ≈ 1− exp
(
−πρoλr2

)
, for r ≥ 0, (11)

where ρo = 9
7 is the correction factor (CF), which corresponds

to the ratio of the mean volumes of Ṽo and Vo.
2) Approximation of the point process of interferers Ψ:

To understand the statistics of the point process of interferers
observed by the typical user at y ∈ Vo, we analyze the pair
correlation function (pcf) of Ψ = Φ \ {o} with reference to
y ∈ Vo which is [7]

g(r | Ro) =
1

2πr

dK(r | Ro)
dr

, for r > Ro,

where Ro = ‖y‖, K(r | Ro) = E[Ψ(By(r)) | Ro] is Ripley’s
K function given Ro and By(r) is the disk of radius r centered
at y. Fig. 1 (Left) shows the simulated user-interfering BS
pcf conditioned on Ro. From the figure, it is easy to interpret
that the point process of interferers exhibits a clustering effect
at distances slightly larger than Ro and complete spatial
randomness for r � Ro. The exact characterization of such
point process is complex because of the correlation in the
points (in Ψ) that form the boundaries of Vo (as seen by
the typical user at y ∈ Vo). Therefore, in order to accurately
evaluate the interference received by the typical user, we need
to carefully approximate the point process of interferers as
seen by the typical user.

A natural candidate for the approximation is homogeneous
PPP of density λ outside of By(Ro) [5]. Henceforth, we refer
to this approximation as App1. App1 ignores the clustering
effect (see Fig. 1 (Left)) and thus underestimates the interfer-
ence. Therefore, in order to capture the effect of clustering to
some degree, we explicitly consider the interference from the
dominant interferer at distance R1 = arg minx∈Ψ ‖x−y‖ and

approximate the point process of interferers with homogeneous
PPP of density λ outside By(R1). We call this approximation
App2. Now, the crucial part is to obtain the distribution of
R1. Given the complexity of the analysis of r.v. Ro [6], it
is reasonable to deduce that the exact characterization of the
distribution of R1 is equally, if not more, challenging. Thus,
we obtain an approximate distribution of R1 as follows.

The CDF of Ro, given in (11), is the same as the contact
distribution of PPP with density ρoλ. Therefore, using this
and the argument of clustering discussed above, the CDF of Ri
(distance to i-th closed point in Ψ from the user at y ∈ Vo)
can be approximated by inserting an appropriate CF ρi to the
CDF of (i+ 1)-th closest point to the origin in the PPP. From
g(r | Ro) ↓ 1 as r → ∞, we have ρi → 1 as i → ∞.
While ρ1 = 1.31 gives the best fit for the empirical CDF of
R1, we approximate ρ1 by ρo for simplicity. Now, the CDF of
R1 conditioned on Ro can be approximated as [8]

FR1
(v | Ro) = 1−exp

(
−πλρo(v2 −R2

o)
)

for v ≥ Ro, (12)

and thus the approximated marginal CDF of R1 becomes

FR1
(v) = 1− (πλρov

2 + 1) exp
(
−πλρov2

)
for v ≥ 0. (13)

Fig. 1 (Middle) shows the accuracy of the approximated CDFs
of Ro and R1 given in (11) and (13). Fig. 1(left) shows that
App2 provides a slightly pessimistic estimate of pcf because
of which it will slightly underestimate the interference power.

3) Coverage Probability: Now, we derive the coverage
probability of the Type I process using the distribution of
link distance Ro, given in (11), and the approximated point
process of interferers App2, discussed in Subsection III-B2, in
the following theorem.
Theorem 2. The coverage probability of the Type I process
in a 2-D Poisson cellular network can be approximated as

P2I(τ) = ρ2
oτ
−δ
∫ τδ

0

(β̃(t) + ρo)
−2

1 + t
1
δ

dt, (14)

where β̃(t) = t
∫∞
t−1

1

1+u
1
δ

du and δ = 2
α .

Proof: Let x̃ be the dominant interfering BS such that
‖x̃ − y‖ = R1. We write the interference received by the
user with link distance Ro as I(Ro) = hx̃R

−α
1 +I(Ψ̃) where

Ψ̃ = Ψ \ {x̃} and I(Ψ̃) =
∑

x∈Ψ̃ hx‖x − y‖−α. Thus, the
coverage probability conditioned on Ro and R1 becomes

P2I(τ | Ro, R1) = P [ho > τRαo I(Ro)]

= Lhx̃
(τ(Ro/R1)α)LI(Ψ̃) (τRαo | R1) . (15)

Now, the LT of I(Ψ̃) at τRαo for given R1 can be obtained as

LI(Ψ̃)(τR
α
o | R1)

(a)
= EΨ̃

∏
x∈Ψ̃

1

1 + τRαo ‖x− y‖−α

(b)
= exp

(
−λ
∫
R2\By(R1)

1

1 + τ−1R−αo ‖x− y‖α
dx

)
(c)
= exp

(
−2πλR2

oτ
δ

∫ ∞
τ−δ(R1/Ro)2

1

1 + u
1
δ

du

)
, (16)

where (a) follows due to the independence of the power fading
gains and the LT of an exponential r.v., (b) follows using the
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Figure 1. Left: The pcf of the point process of interferers observed by a user, from the Type I process, having link distance Ro ∈ {0.3, 0.6}. Middle:
Distributions of distances to the serving and dominant interfering BSs from the typical user of the Type I for λ = 1. Right: CDF of desired signal and
interference powers received by the typical users of the Type I and II processes for λ = 10−5 and P = 30 dBm.

App2 and the PGFL of the PPP [7], and (c) follows through
the substitution of x − y = z and then using Cartesian-to-
polar coordinate conversion. Now, substituting (16) along with
Lhx̃

(τ(Ro/R1)α) = 1
1+τ(Ro/R1)α in (15) and futher taking

expectation over R1 and Ro yields the coverage probability
as P2I(τ) =

(2πλρo)
2
∫ ∞

0

∫ ∞
r

exp
(
−πλr2β(τ, r, v)− πλρov2

)
1 + τ(r/v)α

vdvrdr,

where β(τ, r, v) = τ δ
∫∞
τ−δ( vr )2

1
1+u1/δ du. Now, by interchang-

ing the order of the integrals and further simplification, we
obtain (14). This completes the proof.

IV. NUMERICAL RESULTS AND DISCUSSION

Fig. 1 (Right) shows that the desired signal power and
interference power received by the typical users of the Type
I and the Type II processes are significantly different (by 2-3
dB). Given the fundamental differences in the constructions of
these two processes, this observation is not surprising. Besides,
in Fig. 2 we note that the coverage probabilities for the two
processes are fairly similar, especially for higher values of
α. This is mainly because the desired signal power and
the interference from a few dominant interfering BSs scale
up by almost the same factors in the two cases (note that
ρ1 ≈ ρo) and a few neighboring interfering BSs dominate
the aggregate interference for higher values of α. A key point
to note here is that the fact that the coverage probabilities
are similar in the two models does not imply that the other
performance measures will also be close. Finally, note that
App2 results in a slightly higher coverage probability since
it slightly underestimates the pcf of the point process of
interferers (refer Fig. 1(left)). Besides, for the noise-limited
scenario, the gap between the coverage probabilities for the
Type I and Type II processes is essentially the gap in the
desired received powers of these processes, which is illustrated
in Fig. 1 (Right). V. CONCLUSION

In this letter, we have revisited the downlink analysis of cel-
lular networks by arguing that the typical user analysis in the
popular approach of considering a stationary and independent
user point process results in the analysis of a Crofton cell,
which is bigger on average than the typical cell. In order to
characterize the performance of the typical cell, we consider a
recent construction in which each cell is assumed to contain a
single user distributed uniformly at random independently of
the other cells. After highlighting the key analytical challenges

in characterizing the typical cell performance in this case, we
provide a remarkably accurate approximation that facilitates
the general analysis of the typical cell in Poisson cellular
networks. From the perspective of downlink SIR coverage,
the match between the Crofton and typical cells based analyses
is a mere coincidence which results from the fact that the
desired signal and interference powers scale essentially in the
same order in these cases. However, the significant differences
in the distributions of signal and interference powers for the
two cases necessitate the need for a careful analysis of the
typical cell. Although this letter was focused on the downlink
coverage, the underlying characterization of the interference
field can be used for the analysis of other key performance
metrics as well.
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Figure 2. Coverage probability of the Type I and the Type II processes.
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