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The Stable Point Process

and its Applications to Wireless Networks
Martin Haenggi, Fellow, IEEE

Abstract—What happens if the points of a point process are
repeatedly displaced randomly in their Voronoi cells? This paper
shows that the resulting point process, called the stable point
process (SPP), is of repulsive nature and characterized only by
its density. In contrast to the existing soft-core models, the SPP is
easy to simulate in arbitrary dimensions and thus fills a nagging
void in the arsenal of repulsive point processes. Several pertinent
applications of the SPP to wireless networks are discussed and
demonstrate its relevance and versatility.

Index Terms—Wireless networks, stochastic geometry, point
process, soft-core models, interference.

I. INTRODUCTION

Clustered point processes, in particular those of Coxian

type, are versatile, easy to define and simulate and fairly

tractable. In contrast, the family of repulsive point processes

that are tractable and/or easy to simulate is limited. In this

paper, to help address this, we introduce and discuss the stable

point process (SPP). It is obtained by repeatedly perturbing

points uniformly at random in their Voronoi cells. If this

process is repeated n times, the SPP is obtained in the limit

as n → ∞. The term “stable” comes from the fact that further

Voronoi perturbations of the SPP no longer change its law.

II. DEFINITIONS

Let U(B) be the uniform distribution on B ⊂ R
d and U(B)

a point chosen uniformly at random from B, where the volume

(Lebesgue measure) |B| is finite, independently of all other

randomness.

For a point set ϕ ⊂ R
d, let ϕ(B) be number of points in B

and let Vx, x ∈ ϕ, be the Voronoi cell of x, i.e., Vx , {y ∈
R

d : ‖y − x‖ = ‖y − ϕ‖}. The ball of radius r centered at x
is denoted as b(x, r).

Definition 1 (Proper point pattern and point process) A

deterministic set ϕ ⊂ R
d is a proper point pattern if it is

countable and its convex hull is R
d. A point process Φ is

called proper if the properties hold almost surely (a.s.)

This definition implies that for a proper point pattern, all

Voronoi cells are finite and that its density

λ , lim
r→∞

ϕ(b(o, r))

|b(o, r)|
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is positive and finite. In the case of non-ergodic point pro-

cesses, λ may be a random variable.

Definition 2 (Voronoi perturbation) For a proper point pat-

tern ϕ ⊂ R
d, the Voronoi perturbation is

V(ϕ) , {x ∈ ϕ : U(Vx)}.

The Voronoi perturbation is obtained by the independent

random displacement of each point within its Voronoi cell.

It is itself proper. The point pattern ϕ may be chosen as a

realization of a stationary point process, or as a point process

itself, in which case we denote it as Φ.

Remark. Stationarity of a point process is not required for

the Voronoi cells to be finite a.s.; it suffices that the convex

hull of all B with intensity measure Λ(B) > 0 equals R
d.

Definition 3 (Stable point process) A proper point process

Φ ⊂ R
d is stable if V(Φ)

d
= Φ.

It is not obvious that stable point processes exist. If they do,

they can be constructed by applying the Voronoi perturbation

repeatedly to any proper point pattern.

Definition 4 (Voronoi iterated point process sequence)

Let Φ0 ⊂ R
d be proper and define

Φn+1 , V(Φn), n = 0, 1, . . . .

The sequence (Φ0,Φ1,Φ2, . . .) is called Voronoi iterated point

process sequence (VIPS).

By this definition, if the VIPS converges in distribution, it

converges to a stable point process. Formally, this means that

there exists a probability measure P∞ such that

P(Φn ∈ A) → P∞(A) as n → ∞ (1)

for all events A. Intuitively, such stationary law P∞ is unique,

i.e., it does not depend on Φ0, only on the density λ.

III. EXISTENCE AND BASIC PROPERTIES

By construction, the VIPS (Φ0,Φ1, . . .) is a Markov process

and belongs to the class of iterated random functions [1] on the

space of point processes. The random functions are the inde-

pendent displacements Vk in each step k. In the cases usually

studied, the random functions are identically distributed, while

here the support of each random displacement depends on the

current state and thus is different for each point and in each

step. Such a Markov chain is time-varying and irreversible, and

standard results on the convergence to a stationary distribution
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such as average contractivity [2, Thm. 1], which would require

to show that, for a suitable distance ℓ,

E log

(

ℓ(V(ϕ1),V(ϕ2))

ℓ(ϕ1, ϕ2)

)

< 0, (2)

are not applicable. Hence a formal proof of the existence of

stable processes is elusive but is stipulated by a conjecture for

which ample evidence will be provided.

Conjecture 1 Starting with a proper point pattern or process

Φ0, the limit

Φ∞ , lim
n→∞

Φn

of a VIPS has a unique stationary distribution and forms

a stationary point process, defined only by the density λ
of the starting set Φ0 (and all intermediate processes Φn).

Consequently, Φ∞ is a stable point process.

By construction, the dynamics of the VIPS exhibits the

following properties:

1) Repulsion. If two points are very close, they are likely

to be repelled from each other in the next iteration, since

most of the Voronoi cell lies on the other side of the close

neighbor.

2) Attraction. If a point lies near the centroid of its Voronoi

cell (i.e., it has several neighbors at a comparable dis-

tance), it is likely to be significantly closer to the nearest

neighbor than the second-nearest one in the next itera-

tion1.

The combined forces of repulsion and attraction suggest that

the VIPS tends to a point process with a certain level of

regularity, rather than towards extreme clustering or a lattice

(extreme repulsion). Indeed, it turns out that the stable process

is a soft-core process, i.e., the second-order density is smaller

than λ2 at short distances.

Proposition 1 The stable point process is a soft-core process

with pair correlation function (pcf) g(r) = Θ(r), r → 0, in

all dimensions.

Proof: For a point x to have a neighbor within distance r,

x needs to be within r of its nearest Voronoi boundary, and the

point y in that neighboring cell needs to fall in the (hyper)ball

segment b(x, r) ∩ Vy . The first event has probability Θ(r),
r → 0, while the second has probability Θ(rd), r → 0, since

the volume of the hyperball segment grows with rd. So for

Ripley’s K function [3, Def. 6.8], we have K(r) = Θ(rd+1),
and thus g(r) = K ′(r)/(dcdr

d−1) = Θ(r), r → 0, where

cd = |b(o, 1)|. This indicates repulsion relative to the PPP, for

which g(r) ≡ 1, and g(r) > 0 for r > 0 shows that the stable

point process is not a hard-core process.

This property of the pair correlation function holds also for

any Φn, n > 0, if Φ0 is stationary.

Next we examine the one- and two-dimensional cases.

1If the cell was a disk with the point at the origin, the expected distance
of the displaced point from the origin would be 2/3 of the cell radius, so the
point is likely to move out of the center

IV. THE ONE-DIMENSIONAL CASE

A. Repulsion, Attraction, and Filtering

Let {xk}k∈Z be the ordered2 points of a point pattern ϕ ⊂
R and {x′

k}k∈Z the points of V(ϕ) such that x′
k is the new

position of xk. This way, the ordering is preserved,

Lemma 1 (Repulsion) Letting mk = (xk−1 + xk+1)/2 be

the midpoint of the left and right neighbors of xk , we have

Ex′
k = (xk +mk)/2, i.e., the new expected position of each

point is the mid-point between its current position and the

mid-point of its neighbors. Equivalently, denoting by X(·) the

discrete-time Fourier transform3 (DTFT) of ϕ interpreted as

a signal vector, the DTFT X̄ ′ of the expected new positions

(Ex′
k)k∈Z is given by X̄ ′(ω) = 1

2X(ω)(1 + cosω).

Proof: x′
k is uniform on the interval [(xk−1+xk)/2, (xk+

xk+1)/2], hence Ex′
k = xk/2 + (xk−1 + xk+1)/4 = xk/2 +

mk/2. In the frequency domain, this relationship corresponds

to a multiplication with the low-pass (LP) frequency response

(1 + cosω)/2.

In words, each point is expected to move half-way towards

the center of its left and right neighbors. This shows that

points are, on average, repelled from their closer neighbor and

attracted by the further one.

Letting ck be the length of the Voronoi interval of nucleus

xk, we have ck = (xk+1 − xk−1)/2 = xk+1 − mk, i.e., ck
does not depend on xk itself but only on its neighbors.

The evolution can also be expressed as a move to the

expected position (LP filtering) plus the addition of a white

noise process of uniform random variables whose support

depends on the two neighbors, i.e.,

x′
k = (xk +mk)/2 + U([−ck/2, ck/2]). (3)

As such, it constitutes a general form of a moving-average

process. The first term makes the point process more regular,

while the second one ensures that it does not approach a lattice.

Put differently, it leads to some level of attraction since there

is a probability that two points get arbitrarily close to each

other. This is expressed quantitatively in the next lemma.

Lemma 2 (Attraction) For a pattern with points ±2,±1, 0
in ϕ, with x0 = 0, let D = min{−x′

−1, x
′
1} be the distance of

x′
0 to its nearest neighbor. The support of D includes 0, and

ED = 5/6.

Proof: A standard calculation reveals that the distance

to the new nearest neighbor has the cumulative distribution

function (cdf)

F1(x) =

{

− 1
3x

3 + x2 0 ≤ x < 1
1
3x

3 − 2x2 + 4x− 5
3 1 ≤ x ≤ 2,

which has a mean of 5/6.

This shows that a point right at the center of its neighbors

is likely to be closer to one of them after displacement. The

second-nearest point is at mean distance 7/6.

2Such that x0 is the first non-negative point
3Since ϕ does not have a DTFT, suitable windowing is presumed.
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B. One Caged Point

To make concrete statements about the evolution and the

stationary distribution, we consider the single point x0 ∈
(−1/2, 1/2), with its neighbors fixed at ±1/2. Its Voronoi

cell (interval) is [x0/2−1/4, x0/2+1/4]. In this case, we can

numerically evaluate (2) for the standard Euclidean distance

and obtain approximately −0.35, which shows average con-

tractivity and, in turn, the existence of a stationary distribution.

The probability density function (pdf) after n iterations

is denoted by fn, with f0 the pdf of x0, and f ≡ f∞ is

the stationary distribution. We also denote by f (n) the n-th

derivative of f : [0, 1] 7→ R
+ and use f ′ ≡ f (1).

The following lemma characterizes fn and its derivatives.

Lemma 3 (Properties of the density function)

(a) For any f0,

• fn(0) = 2 , n > 0.

• fn(±1/2) = 0 and f ′
n(−1/4) = 8, n > 1.

• Generally, f
(m)
n (±1/2) = 0, n > m+ 1.

(b) If f0 is the uniform distribution,

fn(x) =
2(n

2+3n)/2

n!
(x+1/2)n, x ≤ −1/2+2−n. (4)

In particular, fn(−1/2+2−n) = 2(3n−n2)/2/n!. For n =
0, 1, 2, 3, 4, this is 1, 2, 1, 1/6, 1/96.

(c) The stationary distribution f satisfies

• f (n)(±1/2) = 0 and f (n)(0) = 0, n > 0.

• f(±1/4) = 1, f ′(−1/4) = 8, f ′(−3/8) = 4.

• f (n)(−1/2 + 2−n−1) = 2(n
2+3n+2)/2. For n =

0, 1, 2, 3, this is 2, 8, 64, 1024.

Proof: In each iteration, the point x ∈ (−1/2, 1/2)
is displaced according to the kernel k(x, y) =
21[x/2−1/4,x/2+1/4](y), thus the distribution evolves as

fn+1(y) = 2

∫ 1/2

−1/2

1[x/2−1/4,x/2+1/4](y)fn(x)dx

= 2

∫ min{1/2,2y+1/2}

max{−1/2,2y−1/2}

fn(x)dx. (5)

In differential form,

f ′
n+1(y) = 4fn(2y + 1/2), y ≤ 0. (6)

(a) Since fn is a pdf supported on [−1/2, 1/2], fn+1(0) =

2
∫ 1/2

−1/2
fn(x)dx = 2. Hence fn(0) = 2 for any n > 0,

irrespective of f0. Since f1 cannot have a discrete part (Dirac

pulse), by (5), f2(±1/2) = 0. The other properties follow

from (6).

(b) Starting with a uniform f0, f1(y) = 2− 4|y|. The next

iteration yields f2(y) = 16(y + 1/2)2 for y ≤ −1/4 and

f2(y) = 2 − 16y2 for |y| ≤ 1/4. Repeated application of (5)

yields the result.

(c) Since the stationary distribution is unique it is given by

the density for which fn ≡ fn+1 and thus, by (6), f ′(y) =
4f(2y+1/2), y ≤ 0. Repeated application of (6) shows that f
is infinitely flat at ±1/2 and 0. and yields the specific values

of f and f (n).

A good approximation of the limiting distribution is

f̃(x) =

{

2− e1−1/(16x2), |x| ≤ 1/4,

e1−1/(16(1/2−|x|)2) |x| ∈ [1/4, 1/2].
(7)

The Wasserstein-1 distance between the exact distribution and

this approximation is excellent4 since the distance is less than

0.005.

There is an alternative way to show convergence and express

the stationary distribution. To this end, we introduce the H
distribution.

Definition 5 (H distribution) For n ∈ N, The Hn distribu-

tion is the distribution of the sum of independent uniform

random variables

Hn ,

n
∑

k=1

U([−2−k−1, 2−k−1]), (8)

and we set H to be the distribution of limn→∞ Hn.

Lemma 4 In the one-dimensional case with fixed points at

±1/2, the stationary distribution is the H distribution. If x0 =
0, fn is the pdf of Hn for all n.

Proof: Let xn be the interior point after n iterations with

x0 ∈ (−1/2, 1/2) chosen arbitrarily. According to (3),

xn = xn−1/2 + U([−1/4, 1/4]), n > 0,

As n → ∞, the value of x0 becomes irrelevant, hence the

limiting distribution is H. For x0 = 0, xn
d
= Hn.

For general distributions f0 of x0, we have fn = 2nf0(2
n ·) ∗

fHn
, where kf0(k ·) is the pdf of x0/k and fHn

is that of Hn.

This is alternative representation of the limiting distribution.

Fig. 1 shows the density functions for Hn for n = 1, 2, 3, 4.

For n = 3 and n = 4, the are almost indistinguishable, so H4

is already very close to H. Even H2 is already an excellent

match. Its pdf is the piecewise linear function

fH2
(x) =











0 |x| > 3
8

8(38 − |x|) 1
8 ≤ |x| < 3

8

2 |x| ≤ 1
8 ,

(9)

This is the trapezoidal function in Fig. 1.

The fact that f is infinitely flat at ±1/2 shows the repulsive

nature of the process.

C. Convergence in the General Case

Here we numerically explore how quickly the statistics of

the processes in the VIPS converge to the those of the stable

distribution.

We focus on the interpoint intervals dk = xk − xk−1. If

Φ0 is a PPP with intensity 1, (dk)k∈Z are iid exponential with

mean 1, and their variance-to-mean ratio is 1. Conversely, if

Φ0 = Z, the variance is 0. In Fig. 2, the convergence of the

ratio is shown for these two cases. Convergence is fast in the

4The distance that qualifies as an “excellent” match is quantified in https:
//stogblog.net/2022/06/15/how-well-do-distributions-match-a-case-for-the-m
h-distance/.
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Fig. 1: Density functions of Hn, n ∈ {1, 2, 3, 4}.
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Fig. 2: Convergence of the variance-to-mean ratio in the one-dimensional case
when the initial point process is a PPP and an integer lattice, respectively.

beginning, it takes only 3 iterations for 75% convergence to

the limiting value of 0.26 and then slows down considerably.

If the stationary intervals are approximated using a gamma

variable, it corresponds closely to that of Nakagami-4 fading.

Hence the difference between the PPP and the stable process is

akin to that between Rayleigh fading and Nakagami-4 fading.

V. THE TWO-DIMENSIONAL CASE

A. Convergence

To examine how quickly the VIPS converges to the stable

process, we consider the mean interference-to-signal ratio

(MISR) [4] at exponent 4, defined as

MISR4 , E

(

‖x0‖
4

∞
∑

i=1

‖xi‖
−4

)

, (10)

where the points {x0, x1, . . .} are ordered according to their

distance from the origin. The MISR is a natural and simple

statistic that applied in any dimension. For the PPP, MISR4 =
1, while for more regular point processes, MISR4 < 1. For the

square lattice, MISR4 ≈ 1/2 [5].

Fig. 3 shows that MISR4 converges to its final value of

about 3/4 after only 4 iterations. So in terms of MISR4, the

SPP is precisely in between the lattice and the PPP, and the

convergence speed from both is very similar. The simulation

is based on 40000 points on [−100, 100]2.

Compared with the one-dimensional case, the convergence

is significantly faster, for two reasons: More probability mass
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Fig. 3: Simulated convergence of MISR4 of the two-dimensional SPP when
the initial point process is a PPP and a square lattice, respectively.

of the uniform distribution on the Voronoi cells is concentrated

near the boundary, and repulsion and attraction act in many

directions at once.

B. J Function and Comparison with Ginibre Point Process

Letting G denote the cdf of the nearest-neighbor distance

and F the empty space function (cdf of the distance from an

arbitrary location to the nearest point), a repulsive process has

the property that G(r) < F (r) for r > 0 since the nearest-

neighbor distance stochastically dominates the nearest-point

distance. The ratio of the complementary cdfs J(r) , (1 −
G(r))/(1 − F (r)) is called the J function [3, Def. 2.40].

It is natural to compare the SPP with the Ginibre point

process (GPP) and the β-GPP [6], which are arguably the

most popular soft-core models used for wireless networks. In

the β-GPP, the points of a GPP are independently deleted with

probability 1 − β. Their pcf is g(r) = Θ(r2), r → 0, so, by

Prop. 1, the GPP is more repulsive at least for small r.

For the standard GPP, J(r) = eπr
2

. For the β-GPP, J(r) ∼
1 + πr2, r → 0, and limr→∞ J(r) = 1/(1− β) for β < 1.

Fig. 4 displays the J functions of the SPP in comparison

with the GPP and 2/3-GPP. β = 2/3 is chosen so that the

MISR, given by MISR4 ≈ (1 + β/2)−1 [7], corresponds to

MISR4 ≈ 3/4 of the SPP. We observe that despite having

similar MISRs, the J function of the 2/3-GPP plateaus at 3,

while the J function of the SPP reaches at least 7 and may

keep increasing way beyond. So the SPP is more regular at

larger distances.

While the GPP is more tractable than the SPP, it has two

key disadvantages: it is defined in two dimensions only, and

it is hard to simulate [8]. Another advantage of the SPP is

that it emerges naturally in several important applications in

wireless networks.

VI. APPLICATIONS

A. Vehicular Networks and Robot and UAV Swarms

In moderately high traffic, the positions of vehicles on

a street may be well modeled by a one-dimensional SPP.

Cars maintain a safe distance from each other, where the

interpretation of “safe” varies from driver to driver. Impatient

drivers may get quite close to another vehicle, while others
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Fig. 4: J functions of the SPP (simulated), the GPP, and the 2/3-GPP of
density 1.

prefer a larger distance, which leads to a variability in the

inter-vehicle spacing akin to that of an SPP.

Similarly, swarms of robots or UAVs naturally attempt to

keep a certain distance from each other, but the unavoidable

variability is captured by the SPP in two and three dimensions,

respectively.

B. Base Stations and Users

Perturbation of BS locations. If an operator decides on

desired base station locations ϕ, geographic constraints and

complaints by residents may force it to find other locations

with comparable coverage, without straying too far from the

original locations. The new placement is thus well modeled by

V(ϕ). After a second objection, the BSs will essentially form

a stable process. For the SPP, the distribution of the signal-to-

interference ratio with nearest-BS association (SIR) is related

to that of the PPP by (10) as P(SIR > θ) ≈ P(SIRPPP >
(3/4)θ) [5], i.e., its regularity results in a gain of about 5/4
dB over the PPP.

User point process. If each BS of a BS process Φ serves

a user uniformly positioned in its cell, the point process of

(served) users is V(Φ), which is the user point process of type I

defined in [9]. The fast convergence from both the PPP and the

square lattice shows that the user point processes pertaining to

both types of base station deployments are fairly similar, i.e.,

the interference in the uplink is comparable. Hence the SPP is

a general user model that represents user positions with good

accuracy irrespective of the BS geometry.

C. Mobility Modeling

The displacements from Φ to V(Φ) can naturally be inter-

preted as a mobility model, where the points move uniformly

at random within a polygon but keep at least half the distance

to any other point’s current position. The movements constitute

a random walk with conditionally independent displacements.

A histogram of the displacements in the one-dimensional case

with density 1 is shown in Fig. 5a, together with a normal

approximation with variance e−2. For an individual point, the

displacements at times k and k + 1 are negatively correlated,

with a linear correlation coefficient −0.27. Similarly, the

displacements of neighboring points are negatively correlated

with ρ = −0.17.

(a) Empirical pdf of displacement
vector in one dimension and normal
approximation with variance e−2.

(b) Empirical pdf of displacement
distance in two dimensions and
Rayleigh approximation with param-
eter

√
2 with mean 2

−5/4 ≈ 0.42.

In two dimensions, the displacement are isotropic and close

to circularly Gaussian. This is verified by comparing the

empirical pdf of the lengths of the displacements with that

of a Rayleigh distribution in Fig. 5b.

An interesting question is whether in a VIPS, points stay

largely confined to a certain disk or drift away arbitrarily far.

VII. CONCLUSIONS

The uniform displacement of points in their Voronoi cells is

a natural operation on point processes and eventually results

in the stable point process, with rapid convergence in two

and higher dimensions. The “inevitability of the Poisson

process” notwithstanding [10], it is a soft-core process in all

dimensions.

The results for the caged point demonstrate exactly how

the distribution converges to the stationary one, which is the

newly introduced H distribution. 86% of its probability mass

is concentrated in the inner half of the unit interval, which

demonstrates the repulsion of the Voronoi displacement.

It will be interesting to explore other types of displacements,

for instance those supported on part of the Voronoi cell only,

such as the in-disk in two dimensions, and to analyze the

performance of SPP-based wireless networks in detail.
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