Fall 2017 MATH 70330 "Intermediate Geometry and Topology" Pavel Mnev

Detailed plan.

- I. Characteristic classes.
 - (a) Fiber/vector/principal bundles. Examples. Connections, curvature. Riemannian case. Ref: [MT97].
 - (b) (2 classes.) Stiefel-Whitney, Chern and Pontryagin classes properties, axiomatic definition. Classifying map and classifying bundle. $\mathbb{R}P^{\infty}, \mathbb{C}P^{\infty}$, infinite Grassmanians $Gr(n, \infty)$, CW structure, cohomology ring (universal characteristic classes). Characteristic classes as obstructions (e.g. for embeddability of projective spaces). Euler class. Also: Chern character, splitting principle, Chern roots. Also: BG for a finite group/Lie group, group cohomology. **Ref:** [MS74]; also: [BT82, Hat98, LM98, May99].
 - (c) Chern-Weil homomorphism. Example: Chern-Gauss-Bonnet formula. Chern-Simons forms. **Ref:** Appendix C in [MS74]; [AM05, Dup78, MT97].
 - (d) Equivariant cohomology. Borel model (homotopy quotient), algebraic version Cartan and Weil models. **Ref:** [GS99, Mei06, Tu13].
- II. Bits of symplectic geometry.
 - (a) Symplectic linear algebra, Lagrangian Grassmanian, Maslov class. Ref: [BW97, Ran, MS17].
 - (b) Symplectic manifolds, Darboux theorem (proof via Moser's trick). Distinguished submanifolds (isotropic, coisotropic, Lagrangian). Examples. Constructions of Lagrangians in T^*M (graph, conormal bundle). **Ref:** [DS00].
 - (c) Hamiltonian group actions, moment maps, symplectic reduction. Ref: [Jef] (lectures 2–4,7), [DS00].
 - (d) (Optional) Convexity theorem (Atyiah-Guillemin-Sternberg) for the moment map of a Hamiltonian torus action. Toric varieties as symplectic reductions, their moment polytopes, Delzant's theorem. Ref: [Pra99, Sch], Part XI in [DS00], lectures 5,6 in [Jef].
 - (e) Localization theorems: Duistermaat-Heckman and Atiyah-Bott. Ref: [Mei06, Tu13], [Jef] (lecture 10).
 - (f) (Optional) Classical field theory via Lagrangian correspondences. Chern-Simons theory and Atiyah-Bott symplectic structure on the moduli space of flat connections on a surface; line bundle on the moduli space. Ref: [Fre95, CMR12, Mne17].
 - (g) Introduction to Floer homology. **Ref:** [MS04].
 - (h) (Optional) Fukaya category. Explicit example of homological mirror symmetry for an elliptic curve. **Ref:** Polishchuk-Zaslow paper [PZ98].
 - (i) (Optional) Geometric quantization of symplectic (and in particular Kähler) manifolds. Examples: quantization of coadjoint orbits (Borel-Weil-Bott theorem / Kirillov's orbit method), quantization of the moduli space of flat connections on a surface (Axelrod - Della Pietra - Witten). Ref: [BW97], Lecture 12 in [Jef].

III. Index theory.

Ref: [Roe99, BGV03, Fre87, LM16]; a short review and review talk slides: [HK09, Maz02]; original papers: [AS68b, AS68a].

- (a) Clifford algebra, Spin and Pin groups. Laplacian and Dirac operator on a flat space. Differential-geometric setting: spin structure, (2nd Stiefel-Whitney class as obstruction), Dirac operator.
- (b) Elliptic operators and elliptic complexes. Analytic index. Examples.
- (c) Multiplicative sequences, genera. Cobordism ring and Thom's theorem. Some important genera: Todd genus, \hat{A} , L.
- (d) (2 classes?) Topological index. Statement of Atiyah-Singer index theorem. Examples: Riemann-Roch-Hirzebruch, Hirzebruch signature theorem, Rochlin's theorem.
- (e) (2 classes?) Topological K theory basic definitions. K-theoretic statement of the index theorem.
- (f) Atiyah-Patodi-Singer approach to index theorems via the heat equation. Index theorem on manifolds with boundary, eta invariant. **Ref:** [APS75].
- (g) (Optional) Applications of index theorems. E.g. application of Riemann-Roch-Hirzebruch to geometric quantization; dimension of Verlinde space (geometric quantization of the moduli space of flat connections on a surface).
- IV. Topological quantum field theory Atiyah's definition and examples.
 - (a) Atiyah's definition of topological quantum field theory. Classification theorems in dimensions 1, 2. **Ref:** [Ati88].
 - (b) Dijkgraaf-Witten theory count of coverings twisted by a group cocycle. Ref: [DW90].
 - (c) (Optional) Turaev-Viro invariants of 3-manifolds. Ref: [TV92].

References

- [AM05] Anton Alekseev and Eckhard Meinrenken. Lie theory and the chern-weil homomorphism. In Annales Scientifiques de lÉcole Normale Supérieure, volume 38, pages 303-338. Elsevier, 2005. https://arxiv.org/pdf/math/0308135.pdf.
- [APS75] Michael F Atiyah, Vijay Kumar Patodi, and IM Singer. Spectral asymmetry and riemannian geometry. i. In Mathematical Proceedings of the Cambridge Philosophical Society, volume 77, pages 43-69. Cambridge University Press, 1975. http://www.maths. ed.ac.uk/~aar/papers/aps001.pdf.
- [AS68a] Michael F Atiyah and Isadore M Singer. The index of elliptic operators: Iii. Annals of mathematics, pages 546–604, 1968.
- [AS68b] Michael Francis Atiyah and Isadore Manuel Singer. The index of elliptic operators: I. Annals of mathematics, pages 484–530, 1968.
- [Ati88] Michael F Atiyah. Topological quantum field theory. Math. Publ. IHES, 68:175-186, 1988. http://www.numdam.org/article/PMIHES_1988_68_175_0.pdf.
- [BGV03] Nicole Berline, Ezra Getzler, and Michele Vergne. *Heat kernels and Dirac operators*. Springer Science & Business Media, 2003.
- [BT82] Raoul Bott and Loring W Tu. Differential forms in algebraic topology. 1982. http: //www.maths.ed.ac.uk/~aar/papers/botttu.pdf.
- [BW97] Sean Bates and Alan Weinstein. Lectures on the Geometry of Quantization, volume 8. American Mathematical Soc., 1997. https://math.berkeley.edu/ alanw/GofQ.pdf.
- [CMR12] Alberto S Cattaneo, Pavel Mnev, and Nicolai Reshetikhin. Classical and quantum lagrangian field theories with boundary. arXiv preprint arXiv:1207.0239, 2012. https: //arxiv.org/pdf/1207.0239.pdf.
- [DS00] A Cannas Da Silva. Lectures on symplectic geometry. Lecture Notes, 2000. http://cdn. preterhuman.net/texts/math/Lectures%20on%20Symplectic%20Geometry.pdf.

2

- [Dup78] JL Dupont. Curvature and characteristic classes. 1978. http://www.maths.ed.ac.uk/ ~aar/papers/dupont2.pdf.
- [DW90] Robbert Dijkgraaf and Edward Witten. Topological gauge theories and group cohomology. Communications in Mathematical Physics, 129(2):393-429, 1990. https: //projecteuclid.org/download/pdf_1/euclid.cmp/1104180750.
- [Fre87] Daniel S Freed. Geometry of dirac operators. https://www.ma.utexas.edu/users/ dafr/DiracNotes.pdf, 1987.
- [Fre95] Daniel S Freed. Classical chern-simons theory, 1. Advances in Mathematics, 113(2):237– 303, 1995. https://arxiv.org/pdf/hep-th/9206021.pdf.
- [GS99] Victor Guillemin and Shlomo Sternberg. Supersymmetry and equivariant de rham theory. 1999.
- [Hat98] Allen Hatcher. Vector bundles and k-theory. http://www.math.cornell.edu/ ~hatcher, 1998.
- [HK09] Friedrich Ernst Peter Hirzebruch and Matthias Kreck. On the concept of genus in topology and complex analysis. Notices of the American Mathematical Society, 56(6):713– 719, 2009. http://www.ams.org/notices/200906/rtx090600713p.pdf.
- [Jef] Lisa Jeffrey. http://www.math.toronto.edu/~jeffrey/mat1312/notesdriver1312. pdf.
- [LM98] Glenys Luke and Alexander S Mishchenko. Vector bundles and their applications. 1998. http://www.maths.ed.ac.uk/~aar/papers/mishch1.pdf.
- [LM16] H Blaine Lawson and Marie-Louise Michelsohn. Spin Geometry (PMS-38), volume 38. Princeton university press, 2016.
- [May99] J Peter May. A concise course in algebraic topology. University of Chicago press, 1999. http://www.maths.ed.ac.uk/~aar/papers/maybook.pdf.
- [Maz02] Rafe Mazzeo. The atiyah-singer index theorem, what it is and why you should care. http://www.patrickorson.com/indextheory/asit3.pdf, 2002.
- [Mei06] Eckhard Meinrenken. Equivariant cohomology and the cartan model. http://www. math.toronto.edu/mein/research/enc.pdf, 2006.
- [Mne17] Pavel Mnev. Lectures on batalin-vilkovisky formalism and its applications in topological quantum field theory. https://arxiv.org/pdf/1707.08096.pdf, 2017.
- [MS74] John Willard Milnor and James D Stasheff. Characteristic Classes. Number 76. Princeton University Press, 1974. http://www.maths.ed.ac.uk/~aar/papers/milnstas.pdf.
- [MS04] Dusa McDuff and Dietmar Salamon. *J-holomorphic curves and symplectic topology*, volume 52. American Mathematical Society Providence, RI, 2004.
- [MS17] Dusa McDuff and Dietmar Salamon. Introduction to symplectic topology. Oxford University Press, 2017.
- [MT97] Ib H Madsen and Jorgen Tornehave. From calculus to cohomology: de Rham cohomology and characteristic classes. Cambridge University Press, 1997. http://www.gbv.de/dms/ goettingen/22139625X.pdf.
- [Pra99] Elisa Prato. The convexity theorem and symplecitc toric manifolds. http://www-math. unice. fr/publis/elisa_notesam. ps, 1999.
- [PZ98] Alexander Polishchuk and Eric Zaslow. Categorical mirror symmetry: the elliptic curve. arXiv preprint math/9801119, 1998.
- [Ran] Andrew Ranicki. The algebraic theory of the maslov index. http://www.maths.ed. ac.uk/~aar/maslounotes.pdf.
- [Roe99] John Roe. Elliptic operators, topology, and asymptotic methods. CRC Press, 1999. http: //www.maths.ed.ac.uk/~aar/papers/roeindex.pdf.
- [Sch] Wolfgang Schmaltz. The atiyah-guillemin-sternberg convexity theorem. http://www. math.uchicago.edu/~may/VIGRE/VIGRE2010/REUPapers/Schmaltz.pdf.
- [Tu13] Loring W Tu. What is... equivariant cohomology? arXiv preprint arXiv:1305.4293, 2013.
- [TV92] Vladimir G Turaev and Oleg Ya Viro. State sum invariants of 3-manifolds and quantum 6j-symbols. Topology, 31(4):865-902, 1992. http://www.pdmi.ras.ru/~olegviro/ 6j.pdf.