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Abstract. We consider the problem of discretizing topological field theories of Chern-
Simons type. Our main instruments are Batalin-Vilkovysky formalism and standard
Feynman diagram technique for functional integral in QFT. We solve the 1-dimensional
case of the problem completely and check that the result does not exhibit nontrivial
renormalization. Then we face the 2-dimensional case of discretizing theory on a triangle.
We use Dupont construction for choosing the gauge and find the action of the discretized
theory in lowest nontrivial order (containing higher classical and quantum operations).
Next we check (by direct calculations, in lowest nontrivial order) that this action does
possess nontrivial topological (BV-exact) renormalization flow for quantum operations
under barycentric gluing, while classical operations are recovered.

We consider the problem of discretizing topological field theories of Chern-Simons type.
Our main instruments are Batalin-Vilkovysky formalism and standard Feynman diagram
technique for functional integral in QFT. We solve the 1-dimensional case of the problem
completely and check that the result does not exhibit nontrivial renormalization. Then
we face the 2-dimensional case of discretizing theory on a triangle. We use Dupont
construction for choosing the gauge and find the action of the discretized theory in lowest
nontrivial order (containing higher classical and quantum operations). Next we check
(by direct calculations, in lowest nontrivial order) that this action does possess nontrivial
topological (BV-exact) renormalization flow for quantum operations under barycentric
gluing, while classical operations are recovered. Thus we partially (and completely for
dimension 1) prove that gluing the discretized theory on a simplicial complex from theories
on elements of triangulation is a consistent operation.

This work is part of program of A. Losev. We are very grateful to A. Losev for ideas
and inspiration and to E. Getzler for we borrowed the construction of Dupont gauge from
his work [1]. The results (different from ours) for higher operations on the segment were
obtained earlier by A.Kozak (in letter to A. Losev) in somewhat different setting.

1. General construction

Consider a topological field theory with action

(1) S =
∑

i

(pi, vi(q))

Here v(q) is a formal vector depending on fields q that live in a (super) dGA V , d : V → V
is the differential. Anti-fields (or momenta) p live in dual space V ∗[+1] (with flipped
parity); (•, •) means canonical pairing. We suppose that the master equation

(2)
∑

i

∂2

∂pi∂qi

exp(
S

�
) = 0

holds. Here index i runs over all degrees of freedom. We will consider the specific case of
BF-theory (reduced version of Chern-Simons theory) when V is the algebra of differential
forms on some space and v(q) = dq + q2. Here master equation is equivalent to d2 = 0
together with Leibnitz rule and associativity of multiplication in V .
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Suppose some smaller complex V ′ is embedded into V as ι : V ′ ↪→ V and V = ι(V ′)⊕V ′′.
We require V ′′ to be an acyclic subcomplex. We call V ′ the space of infrared fields and V ′′

the space of ultraviolet fields. Thus every field q ∈ V is split into IR- and UV-parts and
differential preserves the splitting d : V ′ → V ′, d : V ′′ → V ′′. We denote the projectors
on V ′ and V ′′ by PV ′ and PV ′′ respectively.

We are now going to integrate out UV-degrees of freedom to define an effective action,
depending on IR-fields only:

(3) exp(
1

�
Seff (p

IR, qIR, �)) =

∫
L
DpUV DqUV exp(

1

�
S(ι(pIR) + pUV , ι(qIR) + qUV ))

To make the quadratic form (pUV , qUV ) in S non-degenerate we need to “fix the gauge”
that is, to restrict the integration to the Lagrange submanifold

(4) L : KqUV = 0, pUV K = 0

where K : V → V is subject to the following relation:

(5) d ◦ K + K ◦ d = PV ′′

The purpose of K is to invert d on V ′′ (all the cohomologies of d lying in V ′).
The resulting effective action also satisfies the master equation

(6)
∑

j

∂2

∂pIR
j ∂qIR

j

exp(
1

�
Seff (p

IR, qIR, �)) = 0

For S linear in anti-fields the effective action consists of the tree and one-loop parts only:

(7) Seff (p
IR, qIR, �) = S0

eff (p
IR, qIR) + � S1

eff (p
IR, qIR)

The master equation (6) is then naturally split into the “classical” part

(8) {S0
eff , S

0
eff}BV =

∑
j

∂S0
eff

∂pIR
j

∂S0
eff

∂qIR
j

= 0

and “quantum” part

(9) ∆BV S0
eff + {S0

eff , S
1
eff}BV =

∑
j

(
∂2S0

eff

∂pIR
j ∂qIR

j

+
∂S0

eff

∂pIR
j

∂S1
eff

∂qIR
j

)
= 0

In the case of BF-theory, the action S is the generating function for algebraic operations
on fields, differential and multiplication. The resulting Seff is then interpreted as the
generating function for a set of algebraic operations on IR-fields. The tree part of effective
action generates the L∞ structure on V ′, while the loop part generates some “quantum
operations”. Equation (8) is equivalent to the set of quadratic relations on L∞ algebra
and (9) intertwines the classical and quantum operations.

So this general construction of inducing algebraic structure on a subcomplex by means
of the functional integral can be interpreted in two ways. The first is “physical”: we are
constructing the effective action for topological theory on infrared fields by integrating
out ultraviolet fields. The resulting effective action allows to calculate correlation func-
tions of the theory just by doing finite-dimensional integrals. The master equation may
be regarded as an algebraic way to express locality of the action. Another, “mathemat-
ical” point of view is that we are inducing quantum homotopy algebra structure on a
subcomplex of dGA.

The fact that operation of multiplication of differential forms has two different argu-
ments q, while the action depends only on one field, is taken into account by passing to
matrix valued differential forms.
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2. Segment

2.1. Definitions. Let V be the space of matrix valued (gl(N)-valued, to be more specific,
for some N) differential forms on a segment with de Rham differential d : V → V and
wedge product ∧ : V ⊗ V → V . Let us denote 0-forms by f(t) and 1-forms by ω(t).
The corresponding anti fields are denoted p0 and p1 respectively. We may think of p0 as
1-forms and of p1 as 0-forms. Then the canonical pairing can be interpreted as

(10) (p0, f) = Tr

∫ 1

0

p0(t)f(t), (p1, ω) = Tr

∫ 1

0

p1(t)ω(t)

We assume that parities of the fields (apart from being 0- or 1-forms) are: negative (odd)
for f and p1, positive (even) for ω and p0.

The master invariant action on V ⊕ V ∗[+1] takes the following form:

(11) S = (p1, df) + (p0, f ∧ f) + (p1, f ∧ ω + ω ∧ f)

Our quest now is to induce an effective action on the subcomplex V ′ of functions that
naturally live on the end points of the segment and 1-forms living on the “bulk”. We
propose the following embedding ι of infrared forms in V :

(12) f IR(t) = f0(1 − t) + f1t, ωIR(t) = Cdt

We call IR-forms both the elements of V ′ and of ι(V ′). So f IR are just linear functions
and ωIR are constant 1-forms. Obviously, the space V ′ thus constructed is closed under
action of d and contains all its cohomologies (constant functions). Ultraviolet forms are
defined as those with

(13) fUV (0) = fUV (1) = 0,

∫ 1

0

ωUV (t) = 0

Having defined V ′ and V ′′, we know the projectors

PV ′ : f(t) �→ f(0)(1 − t) + f(1)t, ω(t) �→
(∫ 1

0

ω(t)

)
dt(14)

PV ′′ = 1 − PV ′

The dual splitting of anti-fields is defined by (pUV , qIR) = (pIR, qUV ) = 0, so

(15) pIR 0(t) = p0
0δ(t) + p0

1δ(1 − t), pIR 1(t) = pIR 1 = const

and ultraviolet anti-fields are defined by

(16)

∫ 1

0

pUV 0(t) =

∫ 1

0

t pUV 0(t) = 0,

∫ 1

0

pUV 1(t)dt = 0

We see that under these definitions pIR 0 are precisely the 0-chains with support on the
end points of the segment, while pIR 1 is a 1-chain supported on the “bulk”.

Operator K inverting d on V ′′ is constructed uniquely

(17) K : fUV �→ 0, ωUV �→
∫ t

0

ωUV (t′)

To define K on the whole space V , we first project a form on V ′′ and then use d−1 there:

(18) K : f �→ 0, ω �→
∫ t

0

ω(t′) − t

∫ 1

0

ω(t′)

Now the Lagrange submanifold L, defined by (4) is

(19) L : ωUV (t) = 0, pUV 0(t) = 0
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2.2. Calculations. Having defined all the necessary objects, we may construct the effec-
tive action on V ′:

(20) exp(
1

�
Seff (p

IR0, pIR1, f IR, ωIR; �)) =∫
DpUV 1 DfUV exp(

1

�
S(pIR0, pIR1 + pUV 1, f IR + fUV , ωIR))

We calculate (20) perturbatively, regarding (pUV 1, fUV ) as the Gaussian part of the action.
Let us write down the action in the right hand side of (20) explicitly:

(21)

S|L = (pIR1, f1 − f0) + (p0
0, f0f0) + (p0

1, f1f1) + (pIR1,
1

2
(f0 + f1)ω

IR +
1

2
ωIR(f0 + f1))+

+ (pIR1, fUV ωIR + ωIRfUV ) + (pUV 1, f IRωIR + ωIRf IR)+

+ (pUV 1, dfUV ) + (pUV 1, fUV ωIR + ωIRfUV )

Let us denote the part depending on IR-fields only here (the first line in (21)) by SIR =
S(pIR0, pIR1, f IR, ωIR). The action (21) gives us K as the propagator and a bunch of
vertices that basically say that a function (UV or IR one) can be multiplied by ωIR from
either side to produce a 1-form. The anti-field pUV 1 serves as conjugate to fUV here.

There are only two kinds of Feynman diagrams in this theory: “branches” and “loops”:

f IR

ωIR

ωIR
ωIR

ωIR
ωIR

pIR1

ωIR
ωIR

ωIR

ωIR

ωIR ωIR

fUV

Let us denote the branch with m ωIR ends pointing up and n pointing down by branchm,n

(we draw f IR end on the left and pIR1 on the left). The loop with m ωIR ends pointing
out and n pointing in will be denoted by loopm,n (we assume that the function in the loop
runs clockwise). It is evident from the signs in (21) that branchm,n = (−1)nbranchm+n,0.
Let us now calculate branchn,0:

(22) branch2,0 = −(pIR1, ωIRK(ωIRf IR)), · · · ,

branchn,0 = −(pIR1, ωIR ∧ (K(ωIR ∧ •))n−1 ◦ f IR)

Let us introduce an operator κ acting on functions on the segment:

(23) κ = K(dt ∧ •) : f(t) �→
∫ t

0

f(t′)dt′ − t

∫ 1

0

f(t′)dt′
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Then

(24) branchn,0 = −(pIR1, Cn(f1 − f0)) ×
∫ 1

0

dt κn−1 ◦ t

Iterated action of κ on t gives a sequence of Bernoulli polynomials:

(25) κn−1 ◦ t =
Bn(t) − Bn

n!

Here Bn(t) are Bernoulli polynomials, defined by

(26)
xext

ex − 1
=

∑
Bn(t)

xn

n!

and Bn = Bn(0) are Bernoulli numbers. Thus we obtain

(27) branchm,n = (−1)n Bm+n

(m + n)!
(pIR1, Cm(f1 − f0)C

n)

There exist Cn
m+n = (m+n)!

m!n!
branches of type (m, n), differing by the order of ωIR ends

going up and down. Therefore the tree part of effective action (apart from SIR) is

(28) Stree =
∑

m≥0,n≥0,m+n≥2

(−1)n Bm+n

m!n!
(pIR1, Cm(f1 − f0)C

n)

The summand here gives a set of higher Massey operations on the segment.
Let us now compute the loop diagrams. The value of a loop diagram equals the trace

of monodromy matrix along the loop (times the symmetry coefficient):

(29) loopm,n = − 1

m + n
Tr Mm,n

(the sign here is a “minus for fermion loop”) where

(30) Mm,n : fUV �→ (K(ωIR ∧ •))m ◦ (K(• ∧ ωIR))n ◦ fUV

We may express Mm,n through κ:

(31) Mm,nfUV = (−1)nCm(κm+n ◦ fUV )Cn

so that

(32) loopm,n = −(−1)nTr CmTr Cn 1

m + n
Tr κm+n

Here the first two traces are in matrices where our forms take value, while the last trace
is on the space of scalar-valued functions. A remarkable fact is that if we are computing
Tr κn in monomial basis, i.e.

(33) Tr κn =
∞∑
i=0

< ti|κn|ti >

we will find that only terms with i ≤ n are nonzero. This means that only a finite number
of monomials contribute to any given loop diagram. For example,

(34) κ2ti =
ti+2

(i + 1)(i + 2)
− t2

2(i + 1)
+ (

1

2(i + 1)
− 1

(i + 1)(i + 2)
)t

and so

(35) Tr κ2 =< t|κ2|t > + < t2|κ2|t2 >= (
1

4
− 1

6
) + (−1

6
) = − 1

12
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The result for Tr κn is

(36) Tr κn = −Bn

n!

for n ≥ 2 (and the loop diagram with one end cancels out anyway). Therefore

(37) loopm,n = (−1)n Bm+n

(m + n)(m + n)!
Tr CmTr Cn

and the loop part of effective action is

(38) Sloop = S1
eff =

∑
m≥0,n≥0,m+n≥2

(−1)n Bm+n

(m + n)m!n!
Tr CmTr Cn

So we have computed all the contributions to the effective action on the segment:

(39) Seff = SIR + Stree + �Sloop =

= (p0
0, f

2
0 ) + (p0

1, f
2
1 ) + (pIR1, (f1 − f0) + (

1

2
(f0 + f1)C − 1

2
C(f0 + f1)))+

+ (pIR1,
∑

m≥0,n≥0,m+n≥2

(−1)n Bm+n

m!n!
Cm(f1 − f0)C

n)+

+ �

∑
m≥0,n≥0,m+n≥2

(−1)n Bm+n

(m + n)m!n!
Tr CmTr Cn

2.3. Forms of the result. We can present the result for effective action on the segment
in several ways. One form is the following: we can use a sort of Mellin transformation for
Bernoulli numbers:

(40) Bn =
1

2πi

∫
γ

sn ψ′(s + 1) ds

where contour γ is a circle of infinite radius on the complex plane run counterclockwise,
ψ(s) = d

ds
log Γ(s). Using this representation, we obtain

Stree =
1

2πi

∫
γ

ds(ψ′(s + 1) − 1

s
+

1

2s2
)(pIR1, esC(f1 − f0)e

−sC)(41)

Sloop = − 1

2πi

∫
γ

ds
ψ(s + 1)

s
Tr esC Tr e−sC(42)

If we evaluate these integrals as sums over poles, we will end up with something like a
Fourier series for the effective action:

Stree =
1

2
(pIR1, [C, f1 − f0]) +

∞∑
k=1

(p1IR, e−kC [C, f1 − f0]e
kC)(43)

Sloop = −
∞∑

k=1

1

k
Tr e−kC Tr ekC(44)

Another way to rewrite the effective action is as follows: note that the last term in
(11) could be written as −(p1, [ω, f ]) = −(p1, adω ◦ f), where adω is the adjoint action in
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matrices. Then we can collect the branches and loops with equal number of ends:

n∑
m=0

branchn,n−m =
Bn

n!
(pIR1, adn

C ◦ (f1 − f0))(45)

n∑
m=0

loopn,n−m =
Bn

n!
Tr adn

C(46)

(we understand trace in the last line as a trace in gl(N)∗ ⊗ gl(N)). Then our series
involving Bernoulli numbers collect into

Stree = (pIR1,
1

2
adC coth

1

2
adC ◦ (f1 − f0))(47)

Sloop = Tr log
sinh 1

2
adC

1
2
adC

(48)

The integral for the effective action (20) we were computing is Gaussian in the case of
segment. So it is no surprise that it can be evaluated exactly. We actually have chosen
the long way to the result (47–48), expanding the action around (pUV 1, dfUV ).

2.4. Master equation. We may check directly the master equation for our Seff . The
classical part yields

(49) 0 =
∂S0

eff

∂p0
0

∂S0
eff

∂f0

+
∂S0

eff

∂p0
1

∂S0
eff

∂f1

+
∂S0

eff

∂pIR1

∂S0
eff

∂C
=

= (pIR1,
1

4
(C(f1 − f0)

2 − (f1 − f0)
2C)−

−
∑

m,n≥0

∑
m′,n′≥0

m∑
k=1

(−1)n+n′ B̃m+nB̃m′+n′

m!n!m′!n′!
Ck−1+m′

(f1 − f0)C
n′+m−k(f1 − f0)C

n+

+
∑

m,n≥0

∑
m′,n′≥0

n∑
l=1

(−1)n+n′ B̃m+nB̃m′+n′

m!n!m′!n′!
Cm(f1 − f0)C

l−1+m′
(f1 − f0)C

n′+n−l)

We introduced here the notation B̃n = Bn for n 
= 1 and B̃1 = 0. Collecting together
monomials of same type Ca(f1−f0)C

b(f1−f0)C
c in (49) we get a set of quadratic relations

on Bernoulli numbers.
The quantum part of master equation gives

(50) 0 =
∂2S0

eff

∂pIR1∂C
+

∂S0
eff

∂pIR1

∂S1
eff

∂C
=

=
∑

m,n≥0

m∑
k=1

(−1)n B̃m+n

m!n!
Tr Ck−1 Tr Cm+n−k(f1 − f0)+

+
∑

m,n≥0

n∑
l=1

(−1)n B̃m+n

m!n!
Tr Cn−l Tr Cm+l−1(f1 − f0)+

+ 2
∑

m,n≥0

(−1)n B̃m+n

(m + n)m!n!
nTr Cm Tr Cn−1(f1 − f0)

This equation could in turn be interpreted as a set of linear relations on Bernoulli numbers.
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2.5. Gluing. The next property we would expect from our discretized theory is the prop-
erty of gluing: we build effective action on the complex of two segments with one common
end point and then integrate this middle point out. We would like that the resulting ac-
tion on the segment would coincide with the one we know (maybe up to BV-exact terms).
Thus we are checking the renormalization group (in Wilson sense) for our results.

Consider the complex of three points 0,1,2 (those are labels, not coordinates) and two
segments between them, (01) and (12). We embed infrared functions as piecewise linear
continuous functions (with point 1 the only possible braking point) and infrared 1-forms
as piecewise constant 1-forms. Then we proceed analogously to the case of one segment
to obtain the effective action on this two-segment complex. The result is

(51) S012 = (p0
0, f

2
0 ) + (p0

1, f
2
1 ) + (p0

2, f
2
2 )+

+ (p1
01, (f1 − f0) +

1

2
(f0 + f1)C01 − 1

2
C01(f0 + f1) +

∑
m+n≥2

Bn+m

n!m!
(−1)nCm

01(f1 − f0)C
n
01)+

+ (p1
12, (f2 − f1) +

1

2
(f1 + f2)C12 − 1

2
C12(f1 + f2) +

∑
m+n≥2

Bn+m

n!m!
(−1)nCm

12(f2 − f1)C
n
12)+

+ �

∑
m+n≥2

Bn+m

(n + m)n!m!
(−1)n(Tr Cm

01 Tr Cn
01 + Tr Cm

12 Tr Cn
12)

Now we need to separate fields on the (123) complex into IR- and UV-parts:

(52) f1 = α̃f0 + αf2 + fUV , C01 = αC + CUV , C12 = α̃C − CUV ,

p0
1 = p0

UV , p1
01 = p1

IR − 1

α
p1

UV , p1
12 = p1

IR +
1

α̃
p1

UV

Here f0, f2, C, p0
0, p

0
2, p

1
IR are the new infrared fields. Parameter α defines the embedding,

and has the sense of length of segment (01) divided by length of segment (02); α̃ = 1−α.
To pass from (012) complex to (02) complex we need to restrict S012 to the Lagrange
submanifold L : p0

UV = 0, CUV = 0 and integrate over the remaining ultraviolet fields
fUV , p1

UV :

(53) exp(S02/�) =

∫
dp1

UV dfUV exp(S012|L/�)

The restricted action is

(54) S012|L = (p0
0, f

2
0 ) + (p0

2, f
2
2 ) + (p1

IR, (f2 − f0) +
1

2
(f0 + f2)C − 1

2
C(f0 + f2)+

+
∑

n+m≥2

Bn+m

n!m!
(−1)n(αn+m+1 + α̃n+m+1)Cm(f2 − f0)C

n)+

+ (p1
IR,

1

2
fUV C − 1

2
CfUV +

∑
n+m≥2

Bn+m

n!m!
(−1)n(αn+m − α̃n+m)CmfUV Cn)+

+ (p1
UV ,

1

2
(f2 − f0)C − 1

2
C(f2 − f0)−

∑
n+m≥2

Bn+m

n!m!
(−1)n(αn+m − α̃n+m)Cm(f2 − f0)C

n)+

+ (p1
UV ,− 1

αα̃
fUV −

∑
n+m≥2

Bn+m

n!m!
(−1)n(αn+m−1 + α̃n+m−1)CmfUV Cn)+

+ �

∑
n+m≥2

Bn+m

(n + m)n!m!
(−1)n(αn+m + α̃n+m)Tr Cm Tr Cn
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We could now calculate (53) perturbatively, considering (p1
UV ,− 1

αα̃
fUV ) the Gaussian part

of S012|L. Let us denote by Ŝ02 the action induced on the segment (02) directly from the
continuous theory

(55) Ŝ02 = (p0
0, f

2
0 ) + (p0

2, f
2
2 ) + (p1

IR, (f2 − f0) +
1

2
(f0 + f2)C − 1

2
C(f0 + f2)+

+
∑

n+m≥2

Bn+m

n!m!
(−1)nCm(f2 − f0)C

n) + �

∑
n+m≥2

Bn+m

(n + m)n!m!
(−1)nTr Cn Tr Cm

It turns out that S02 = Ŝ02, which means the absence of renormalization. This identity
may be checked order by order in C. In O(C0) and O(C1) it is obvious. In O(C2) we
must take into account terms

(56)
B2

2!
(α3 + α̃3)(p1

IR, C2(f2 − f0) − 2C(f2 − f0)C + (f2 − f0)C
2)+

+ �
B2

2 × 2!
(α2 + α̃2)(Tr C2 Tr 1 − 2Tr C Tr C + Tr 1 Tr C2)

from S012|L; the tree diagrams like

fIR

C C

p1
IR−αα̃

where C ends may point either up or down. These four diagrams together give

(57)
1

4
αα̃(p1

IR, C2(f2 − f0) − 2C(f2 − f0)C + (f2 − f0)C
2)

At last we need loop diagrams like

−αα̃

C

C

fUV

p1
UV

where again the C ends may point either in or out. These give

(58) �
B2

2!
αα̃(Tr C2 Tr 1 − 2Tr C Tr C + Tr 1 Tr C2)

Collecting all these parts together we obtain

(59)
B2

2!
(α3 + 3αα̃ + α̃3)(p1

IR, C2(f2 − f0) − 2C(f2 − f0)C + (f2 − f0)C
2)+

+ �
B2

2 × 2!
(α2 + 2αα̃ + α̃2)(Tr C2 Tr 1 − 2Tr C Tr C + Tr 1 Tr C2)

Since α3+3αα̃+α̃3 = α2+2αα̃+α̃2 = 1, what we obtained is precisely the quadratic in C
part of Ŝ02. Hence we proved the identity S02 = Ŝ02 up to order O(C2). These calculations
way be continued in precisely the same manner to check the absence of renormalization
in higher orders in C.
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Another way to calculate (53) is to avoid perturbative expansions and evaluate the
(Gaussian) integral exactly using the form (47–48).

2.6. Summary. Let us summarize the results: we derived the effective action on seg-
ment that is a proper discretization of the 1-dimensional Chern-Simons type theory. This
effective action is a generating functional for the set of higher classical and quantum op-
erations on discretized forms. The classical operations form an L∞ deformation of the
former natural operations on continuous differential forms. The master equation for the
effective action was checked directly. At last we checked that gluing two segments yields
precisely the effective action on a single segment, and that means absence of renormal-
ization for this theory. The exact solvability of the 1-dimensional problem is due to the
fact that the only sensible gauge condition (the Lagrange submanifold L, see (19)) makes
the functional integral (3) Gaussian. We have no freedom in choice of operator K, and
hence of L, on the segment. Our embedding of infrared forms as linear functions and
1-forms as constant forms is not unique, but any other embedding (that forms a sub-
complex, contains constant functions (cohomologies of d), and has the same dimension)
differs from our embedding by a diffeomorphism of the segment. Hence our results for
the 1-dimensional case seem to be universal, at least in the framework of construction
described in the beginning.

3. Triangle

3.1. Infrared and ultraviolet fields. We now proceed to the 2-dimensional case of the
problem considered in the previous section. Our fields (living in V ) are now differential
forms on the triangle: f is a function, ω is 1-form, Ω is a 2-form. The corresponding anti-
fields are p0, p1 and p2. All forms and anti-fields are again assumed to take values in gl(N)
for some N . The (internal) parities are 1,0,1 for f ,ω,Ω and 0,1,0 for p0, p1, p2. Our first
task is to embed discretized forms, living on vertices, edges and face of the triangle into
the space V of continuous forms on triangle as “infrared” forms ι : V ′ ↪→ V . Informally,
thus we are interpolating forms into the bulk of triangle. Let the vertices of the triangle
be labeled 1,2,3 (say, counterclockwise). Then edges have natural labels (12),(23),(31)
and we may prescript label (123) to the bulk (we do not need it, while we consider the
complex on one triangle). Then V ′ consists of discretized functions (f1, f2, f3), 1-forms
(ω12, ω23, ω31) and 2-forms Ω = Ω123 (all these entities are constants in gl(N)). Hence V ′

is of dimension 7 = 3 + 3 + 1 over gl(N).
Let us present the nice construction for ι, borrowed from [1]. We will use homogeneous

(barycentric) coordinates on the triangle: (t1, t2, t3) with all ti ≥ 0 and t1 + t2 + t3 = 1.
Then there are defined three 1-forms dti subject to the relation dt1 + dt2 + dt3 = 0. Now
we introduce the elementary, or Whitney, forms as

(60) χi0...ik = k!
k∑

j=0

(−1)jtijdti0 . . . ˆdtij . . . dtik

Here the hat means exclusion. For our case this definition means

(61) χ1 = t1, χ2 = t2, χ3 = t3,

χ12 = t1dt2 − t2dt1, χ23 = t2dt3 − t3dt2, χ31 = t3dt1 − t1dt3

χ123 = 2(t1dt2 ∧ dt3 + t2dt3 ∧ dt1 + t3dt1 ∧ dt2)
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These forms span the subcomplex of infrared forms ι(V ′) ⊂ V . We define the embedding
ι as

(62) ι : (f1, f2, f3) �→ f1t1 + f2t2 + f3t3,

ι : (ω12, ω23, ω31) �→ ω12χ12 + ω23χ23 + ω31χ31,

ι : Ω123 �→ Ω123χ123

Thus the infrared functions are just (all) linear functions on the triangle, IR 1-forms are
some special linear forms, IR 2-forms are proportional to the area form. The elementary
forms have the following nice property: χi0...ik restricted to the edge (face, etc.) (i0, . . . ik)
is constant and its integral is 1, while, being restricted to any other edge of same dimen-
sionality it gives zero. This justifies their use for interpolating discretized forms.

We define ultraviolet fields in the following way: fUV is zero on the vertices: fUV
1 =

fUV
2 = fUV

3 = 0; ωUV has zero integral on the edges:
∫

(ij)
ωUV = 0 for any edge (ij); ΩUV

has zero integral over the bulk:
∫

(123)
ΩUV = 0. Let us now construct the projectors. Let

I be the integration operator I : V → V ′ defined as

(63) I : f �→ (f(0), f(1), f(2)),

I : ω �→ (

∫
(12)

ω,

∫
(23)

ω,

∫
(31)

ω),

I : Ω �→
∫

(123)

Ω

Then the projector V → V ′ is defined as

(64) PV ′ = I

So PV ′ takes a form and integrates it over the edges of proper dimension. The projector
on V ′′ is PV ′′ = 1 − ι ◦ PV ′

The splitting V = V ′ ⊕ V ′′ induces the dual splitting for anti-fields. Discretized anti-
fields are just the chains of the discretized complex. Denote the space of discretized
anti-fields by V ′∗ (which is natural, because it is dual space for V ′, the cochains on the
discretized complex). Then V ′∗ consists of 0-chains (p0

0, p
0
1, p

0
2), 1-chains (p1

12, p
1
23, p

1
31) and

2-chains p2 = p2
123. The embedding ι̃ : V ′∗ → V ∗ multiplies pk

i0...ik
by delta-function (delta-

form, to be more precise) δi0...ik with support on the corresponding edge (i0, . . . , ik). We
understand pk ∈ V ∗ as a gl(N)-valued (2− k)-form (with prescribed internal parity), and
the pairing between fields and anti-fields is

(65) (pk, ωk) = Tr

∫
(123)

pk ∧ ωk

where ωk is f , ω or Ω when k = 0, 1, 2 correspondingly.

3.2. Dupont gauge. Now, having defined the splitting of fields into infrared and ultra-
violet parts, we face the next question, the question of gauge, or of Lagrange submanifold,
or of operator K. Contrary to the 1-dimensional case, the choice of K is not unique now,
and the answers will depend on it. We adopt the construction for K, suggested by Dupont
and cited in [1]. We first reproduce (for the sake of convenience) the general construction,
working for simplex ∆n of any dimension n, following [1]. The next paragraph is a direct
citation from [1], we only slightly changed the notation to match ours.

Given a vertex ei of ∆n (in our notations i runs from 1 to n + 1), define the dilation
map

(66) φi : [0, 1] × ∆n → ∆n
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by the formula

(67) φi(u, t1, . . . , tn+1) = (ut1, . . . , uti + (1 − u), . . . , utn+1)

Let π : [0, 1] × ∆n → ∆n be the projection on the second factor, and let π∗ : Ω∗([0, 1] ×
∆n) → Ω∗−1(∆n) be integration over the first factor. Define operators

(68) hi
n : Ω∗

n → Ω∗−1
n

by the formula

(69) hi
nω = π∗φ∗

i ω

Let εi
n : Ωn → gl(N) be evaluation at the vertex ei. Stokes’s theorem implies that hi

n is a
chain homotopy between the identity and εi

n:

(70) dhi
n + hi

nd = idn − εi
n

The operator

(71) Kn =
n−1∑
k=0

(−1)k
∑

0≤i0<···<ik≤n

χi0...ikh
ik . . . hi0

was introduced by Dupont.
This operator Kn : V → V ′′ is precisely the one we were. looking for. The defining

property of K, that it inverts d on V ′′, see (5), was also proved by Dupont and cited in
[1] under the name of de Rham theorem.

Now we present the specialized version for the case of triangle (n = 2). Since K lowers
the degree of the form, K ◦ f = 0. To define K ◦ω, we decompose ω = ω12χ12 + ω23χ23 +
ω31χ31 where ωij = ωij(t1, t2, t3) are now functions on triangle. We should keep in mind
that the elementary 1-forms are not independent: t1χ23 + t2χ31 + t3χ12 = 0. For the
dilation map φi : [0, 1] × ∆ → ∆ (here ∆ means the triangle), pulling a point on triangle
towards one the i-th vertex, we have

(72) φ1(u)(t1, t2, t3) = (ut1 + 1 − u, ut2, ut3),

φ2(u)(t1, t2, t3) = (ut1, ut2 + 1 − u, ut3),

φ3(u)(t1, t2, t3) = (ut1, ut2, ut3 + 1 − u)

The operators hi from 1-forms to functions are

(73) h1 : ω �→
∫ 1

0

du(t2 ω12 ◦ φ1(u) − t3 ω31 ◦ φ1(u))

h2 : ω �→
∫ 1

0

du(t3 ω23 ◦ φ2(u) − t1 ω12 ◦ φ2(u))

h3 : ω �→
∫ 1

0

du(t1 ω31 ◦ φ3(u) − t2 ω23 ◦ φ3(u))

The purpose of hi is to integrate ω along the segment, connecting point (t1, t2, t3) and
i-th vertex. Action of K on 1-forms is then

(74) K : ω �→ t1h
1ω + t2h

2ω + t3h
3ω

Denote the edge opposite to the i-th vertex by op(i), so that op(1) = (23), op(2) = (31)
and op(3) = (12). Operators hi act on 2-forms Ωχ123 as follows:

(75) hi(Ωχ123) = χop(i)2

∫ 1

0

udu Ω ◦ φi(u)

12



We can now write down explicit expression for the action of K on 2-forms:

(76) K(Ωχ123) =

= (t1h
1 + t2h

2 + t3h
3 − χ12h

2h1 − χ23h
3h2 − χ31h

1h3) ◦ (Ωχ123) =

= 2χ12t3

(∫ 1

0

udu Ω ◦ φ3(u) −
∫ 1

0

du

∫ 1

0

vdv Ω ◦ φ1(v) ◦ φ2(u)

)
+

+ 2χ23t1

(∫ 1

0

udu Ω ◦ φ1(u) −
∫ 1

0

du

∫ 1

0

vdv Ω ◦ φ2(v) ◦ φ3(u)

)
+

+ 2χ31t2

(∫ 1

0

udu Ω ◦ φ2(u) −
∫ 1

0

du

∫ 1

0

vdv Ω ◦ φ3(v) ◦ φ1(u)

)

The introduced operator K defines a Lagrange submanifold L by (4). It is easy to see
that condition (4) admits any fUV and pUV 2 (since K is automatically zero on them), kills
ΩUV and pUV 0 entirely (just like with the form of highest degree and anti-field of lowest
degree on segment). So Ω and p0 are non-dynamical fields. For ωUV and p1 condition (4)
is nontrivial. The allowed 1-forms are in the image of K.

3.3. Effective action. The master invariant continuous action on the triangle is

(77) S = (p0, f ∧ f) + (p1, df + f ∧ ω + ω ∧ f) + (p2, dω + ω ∧ ω + f ∧ Ω + Ω ∧ f)

The only way to deform this action, preserving master invariance and not introducing
new “interactions” is to renormalize the fields and anti-fields in self consistent fashion:

(78) f �→ Zff, p0 �→ Z−1
f p0, ω �→ Zωω, p1 �→ Z−1

ω p1, Ω �→ ZΩΩ, p2 �→ Z−1
Ω p2

The effective action is defined by (3). It is right to think of effective action as being
defined on the 14-dimensional (7 for chains and 7 for cochains) space of discretized fields
and anti-fields W ⊕W ∗. Effective action is (as in 1-dimensional case) naturally split into
three parts:

(79) Seff = SIR + Stree + �Sloop

The first term here is SIR = S(pIR, qIR) (q denotes all forms, as in introduction). Given
the splitting V = ι(V ′) ⊕ V ′′, this object is well defined (and does not depend on the
gauge). Let us write down explicit expression for SIR:

(80) SIR =

= (p1
12, f2 − f1) + (p1

23, f3 − f2) + (p1
31, f1 − f3)+

+ (p2, ω12 + ω23 + ω31)+

+ (p0
1, f

2
1 ) + (p0

2, f
2
2 ) + (p0

3, f
2
3 )+

+ (p1
12, [

1

2
(f1 + f2), ω12]) + (p1

23, [
1

2
(f2 + f3), ω23]) + (p1

31, [
1

2
(f3 + f1), ω31])+

+ (p2, [
1

3
(f1 + f2 + f3), Ω])−

− (p2,
1

6
([ω12, ω23] + [ω23, ω31] + [ω31, ω12]))

Each line here contains definition of a discretized operation, namely of discretized versions
of df, dω, f ∧ f, f ∧ ω + ω ∧ f, f ∧ Ω + Ω ∧ f, ω ∧ ω (in this order). The brackets [•, •]
mean graded commutator here.

The signs behave quite tricky in the process of discretization. This is due to the fact
that continuous field have “external” parity as forms and internal parity, and sum of those
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is always 1, so all continuous forms (that is, f , ω and Ω) in the theory are effectively odd
(while all anti-fields are even for triangle). But for discretized fields, living in V ′ only
the intrinsic parity survives. So they are effectively of alternating parity. One therefore
might say that 5-th line in (80) defines rather operation f̂ ∧̂ω̂− ω̂∧̂f̂ , where hat over forms
means that they are discretized, that is, belong to V ′, and hat over wedge states that it
is discretized (non associative etc.) wedge product. The last line of (80) also looks rather
like −ω̂∧̂ω̂. The best test for signs is master equation.

3.4. Trees. Contrary to the 1-dimensional case, there are many trees on triangle. For
example, there exist all binary trees with many ωIR ends and one pIR2 end. This is,
of course, the sign that this theory is “interacting”, and the functional integral (3) is
non-Gaussian. All the trees may have many fields (infrared forms) on input, but only
one anti-field (chain) on output. The trees ending on pIR1 naturally represent higher
operations living on the edges of triangle, while trees ending on pIR2 represent operations
living in bulk. The nice property, specific to Dupont gauge is that all higher operations
living on edges coincide with higher operations on the segment (and those we know quite
well). So this gauge, apart from conserving the discrete symmetry of triangle, has the
wonderful property of restriction compatibility of higher operations.

Having said these general words we will present results for trees with 3 field-ends, giving
trinary classical operations on triangle. The only nonzero tree, living on edges is

f

ω ω

p1

where the ω end may point either up or down. It corresponds to the following contribution
to Stree:

(81) (pIR1, [ωIR, K([ωIR, f IR])]) =

=
1

12
(p1

12, [ω12, [ω12, f2 − f1]]) +
1

12
(p1

23, [ω23, [ω23, f3 − f2]]) +
1

12
(p1

31, [ω31, [ω31, f1 − f3]])

So, as we promised, this tree represents the operation, living on edges, that coincides with
our old result for trinary operation on segment. The tree

ω

ω ω

p2

where the rightmost ω end may point up or down equals

(82) (pIR2, [ωIR, K(ωIR ∧ ωIR)]) =

=
1

72
(pIR2, [ω12, [ω12, ω12+ω23+ω31]]+[ω23, [ω23, ω12+ω23+ω31]]+[ω31, [ω31, ω12+ω23+ω31]])

The next tree
ω

p2

f

Ω
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where Ω may up or down and ω and f may interchange gives

(83) (pIR2, [K([f IR, ωIR), Ω]+) =

=
1

24
(pIR2, [[f2 − f1, ω12], Ω]+ + [[f3 − f2, ω23], Ω]+ + [[f1 − f3, ω31], Ω]+)

We explicitly wrote anticommutators here as [•, •]+ (although the sign of commutator
can anyway be seen from the parities). At last tree

p2

Ω

f ω

where ω may point up or down and Ω and f may interchange equals

(84) (pIR2, [ω, K([f, Ω]+)]) =

=
1

36
(p2, [[f2 − f1, Ω]+, ω12] + [[f3 − f2, Ω]+, ω23] + [[f1 − f3, Ω]+, ω31])

This concludes the list of trees with three infrared forms on input on triangle. We should
remind that these results are for Dupont gauge. In other gauges the values of trees will be
different and several trees that equal zero in Dupont gauge will have some values. From
the experience of calculating in different gauges, it seems that Dupont gauge gives the
most compact results.

3.5. Loops. There loop diagrams on triangle have the following structure: a single loop
were an ultraviolet form runs and several trees are plugged into the loop. The trees may
have any number of infrared fields on ends. Loop diagrams do not depend on infrared
anti-fields (that is, as operations they have input but no output).

The loop diagrams with one end cancel (between end pointing out and end pointing
in). The simplest loop diagram that gives contribution to effective action is

ω ω

with ends pointing either in or out. Its value is

(85)
1

2
(Tr K(ω ∧ K(ω ∧ •ωUV )) − Tr K(ω ∧ K(ω ∧ •fUV )))

The half in front is a symmetry factor, the first term is for the case when 1-form runs in
the loop, the trace is a trace of operator from 1-form sector of L to itself. The second
term is for function running in the loop, minus sign is (as for the segment) from “fermion
loop”.

Now we face the problem of calculating functional trace on triangle. The bad news is
that while trees may be calculated in symmetric setting, in coordinates (t1, t2, t3), now
we need a basis in functions on triangle to calculate the diagonal elements of monodromy
matrix along the loop. It is not clear how to find a symmetric basis in functions on
triangle, so we chose rectangular coordinates (x, y), related to barycentric ones by t1 =
x, t2 = y, t3 = 1 − x − y. Of course, in this coordinates we lose manifest symmetry, but
now we can introduce, say, monomial basis xayb in functions on triangle and calculate
traces using it. We must hope then that final answers will be symmetric.
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The first trace in (85) must be calculated on 1-forms from L so we rewrite it as Tr ω ∧
K(ω∧K(•Ω)), a trace calculated on all 2-forms (and it is easier to introduce basis there).
The calculation of (85) is rather lengthy, so we present only the results. An interesting
phenomenon is that the two traces in (85) separately diverge logarithmically. We may
introduce some regulator, say the degree of monomials on which we calculate the trace
xayb, a + b ≤ n. Then the traces behave like ∼ log n. The wonderful thing is that in
(85) the divergence cancels between cases when function or 1-form runs in the loop. This
might mean that some sort of supersymmetry is at work here. After this cancelation the
result becomes wonderfully symmetric:

(86)
1

18
Tr (ω2

12 + ω2
23 + ω2

31) Tr 1 − 1

18
((Tr ω12)

2 + (Tr ω23)
2 + (Tr ω31)

2)+

+
1

270
Tr ((ω12 + ω23 + ω31)

2) Tr 1 − 1

270
(Tr (ω12 + ω23 + ω31))

2

We see that there is part ∼ Tr ω2 Tr 1 − (Tr ω)2 similar to what we had on the segment
and part of a new kind ∼ Tr (dω)2 Tr 1− (Tr dω)2 where dω is the discretized differential.

If we intend to glue some bigger complexes from triangles, we should ask the following
question: we know where do classical operations, represented by trees, live, but where do
the quantum operations live? On edges? On the bulk? To answer this question we must
calculate (85) using a special basis for functions on triangle. It should consist of three
sub-bases for each edge and one for bulk. For each edge we must take a basis in functions
on it (say, monomials) and multiply by delta-function with support on this edge. For
the bulk we must take basis in functions, vanishing on the edges, say xy(1 − x − y)xayb.
Ultraviolet 1-forms automatically live in the bulk. Evaluating (85) on each of the sub-
bases, we will understand what portions of the answer (86) lives on any edge, and what
lives in the bulk. We present the result:

(87)
1

12
(Tr ω2

12 Tr 1 − (Tr ω12)
2)+

1

12
(Tr ω2

23 Tr 1 − (Tr ω23)
2)+

1

12
(Tr ω2

31 Tr 1 − (Tr ω31)
2)+

+

(
− 1

36
Tr (ω2

12 + ω2
23 + ω2

31) Tr 1 +
1

36
((Tr ω12)

2 + (Tr ω23)
2 + (Tr ω31)

2))+

+
1

270
Tr ((ω12 + ω23 + ω31)

2) Tr 1 − 1

270
(Tr (ω12 + ω23 + ω31))

2

)

The first three lines contain parts living on edges (12), (23) and (31) correspondingly,
while the last two lines represent the bulk part of the loop diagram.

All the other loop diagrams with two end are zero. Vanishing of diagram where there
is one f IR-end and one ΩIR-end plugged into the loop in non-evident. It was proved by
direct computation.

Thus we have calculated Seff on triangle up to order O(pq3 + �q2) where q is any
IR-form, and p is any IR-chain. Note that the order “trinary classical operations+binary
quantum operations” is self-consistent from the point of view of checking master equation.
The master equation holds for our answers (to the order where the next operations do
not interfere). A nice observation is that parts of (85) living on edges cancels in quantum
part of master equation by trees living on those edges, while the bulk part cancels by
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trees living in bulk. Let us write down our result for Seff in full form:

(88) Seff = SIR + Stree + �Sloop =

= (p1
12, f2 − f1) + (p1

23, f3 − f2) + (p1
31, f1 − f3)+

+ (p2, ω12 + ω23 + ω31)+

+ (p0
1, f

2
1 ) + (p0

2, f
2
2 ) + (p0

3, f
2
3 )+

+ (p1
12, [

1

2
(f1 + f2), ω12]) + (p1

23, [
1

2
(f2 + f3), ω23]) + (p1

31, [
1

2
(f3 + f1), ω31])+

+ (p2, [
1

3
(f1 + f2 + f3), Ω])−

− (p2,
1

6
([ω12, ω23] + [ω23, ω31] + [ω31, ω12])+

+
1

12
(p1

12, [ω12, [ω12, f2 − f1]]) +
1

12
(p1

23, [ω23, [ω23, f3 − f2]]) +
1

12
(p1

31, [ω31, [ω31, f1 − f3]])+

+
1

72
(pIR2, [ω12, [ω12, ω12+ω23+ω31]]+[ω23, [ω23, ω12+ω23+ω31]]+[ω31, [ω31, ω12+ω23+ω31]])+

+
1

24
(pIR2, [[f2 − f1, ω12], Ω]+ + [[f3 − f2, ω23], Ω]+ + [[f1 − f3, ω31], Ω]+)+

+
1

36
(p2, [[f2 − f1, Ω]+, ω12] + [[f3 − f2, Ω]+, ω23] + [[f1 − f3, Ω]+, ω31])+

+ �

(
1

18
Tr (ω2

12 + ω2
23 + ω2

31) Tr 1 − 1

18
((Tr ω12)

2 + (Tr ω23)
2 + (Tr ω31)

2)+

+
1

270
Tr ((ω12 + ω23 + ω31)

2) Tr 1 − 1

270
(Tr (ω12 + ω23 + ω31))

2

)
+ O(pq4 + �q3)

Each line here represents an operation on triangle (except the quantum operation, which
occupies the last two lines).

3.6. Barycentric gluing. We now proceed to gluing one triangle from three triangles
in the spirit of calculation done earlier for the segment. The idea is to write down the
discretized theory on the complex of three triangles

1 2

3

4

Denote this complex by (1234). Then we would like to “glue” the three triangles (124),(234),(314)
in one (123), that is to integrate out the “ultraviolet” degrees of freedom, living on inter-
nal edges and vertex 4. Next we want to compare the result to the action (88), the result
of inducing operations on forms directly from continuous theory to one triangle. If the
results coincide, it would mean that there is again no renormalization for triangle. If they
not, it would mean there exists nontrivial renormalization group. Then we would like it
to be BV-exact.
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To find the action S1234 on big complex (1234) we need to start from continuous
theory, embed forms as piecewise-elementary with “pieces” being the smaller triangles
(124),(234),(314), define operator K by Dupont construction on each of the smaller tri-
angles and so on. The resulting action is constructed as follows: we will have the same
operations as in (88), for operation living on vertices we should sum over the 4 vertices
of big complex, for those living on edges we should sum over the 6 edges, for those living
on bulk we will have sum over three smaller triangles. Here we will need the information
(87) on how the quantum operation is distributed over edges and bulk.

The embedding of infrared/ultraviolet forms and the Lagrange submanifold are directly
induced from the continuous construction. The 7-dimensional space of forms on (123) V ′

is embedded into 13-dimensional space of forms on (1234) V as follows:

(89) f1 = f1, f2 = f2, f3 = f3, f4 =
1

3
(f1 + f2 + f3) + fUV

4 ,

ω12 = ω12, ω23 = ω23, ω31 = ω31,

ω14 =
1

3
(ω12 − ω31) + ωUV

14 , ω24 =
1

3
(ω23 − ω12) + ωUV

24 , ω34 =
1

3
(ω31 − ω23) + ωUV

34 ,

Ω124 =
1

3
Ω123 + ΩUV

124 , Ω234 =
1

3
Ω123 + ΩUV

234 , Ω314 =
1

3
Ω123 + ΩUV

314

Here ΩUV are assumed to satisfy ΩUV
124 + ΩUV

234 + ΩUV
314 = 0. Fields (f1, f2, f3), (ω12, ω23, ω31)

and Ω123 are considered infrared. Thus we defined the splitting V = V ′ ⊕ V ′′ of 13-
dimensional space of discretized forms on big complex (1234) into 7-dimensional space of
infrared forms V ′, isomorphic to space V ′ of discretized forms on small complex (123) and
V ′′, the 6-dimensional space of ultraviolet forms.

The dual splitting for chains is:

(90) p0
1 = p0

1, p0
2 = p0

2, p0
3 = p0

3, p0
4 = pUV 0

4 ,

p1
12 = p1

12, p1
23 = p1

23, p1
31 = p1

31, p1
14 = pUV 1

14 , p1
24 = pUV 1

24 , p1
34 = pUV 1

34 ,

p2
124 = p2

123 + pUV 2
124 , p2

234 = p2
123 + pUV 2

234 , p2
314 = p2

123 + pUV 2
314

where the ultraviolet 2-chains are subject to condition pUV 2
124 + pUV 2

234 + pUV 2
314 = 0. Chains

(p0
1, p

0
2, p

0
3), (p1

12, p
1
23, p

1
31) and p2

123 are considered infrared.
Discrete version of operator K : V → V ′, induced from continuous Dupont construction,

acts as follows:

(91) (KΩ)14 =
1

3
(Ω314 − Ω124), (KΩ)24 =

1

3
(Ω124 − Ω234), (KΩ)34 =

1

3
(Ω234 − Ω314),

(Kω)4 =
1

3
(ω14 + ω24 + ω34)

It is very easy to check for this discretized Dupont construction its main properties K ◦
d + d ◦ K = PV ′′ and K2 = 0. Having defined K, we defined the Lagrange submanifold
(4):

(92) L : ωUV
14 + ωUV

24 + ωUV
34 = 0, ΩUV

124 = ΩUV
234 = ΩUV

314 = 0,

pUV 0
4 = 0, pUV 1

14 = pUV 1
24 = pUV 1

34 = pUV 1

So integration space in (3) is reduced from 6+6 to 3+3 dimensions: we have to integrate
over fUV

4 , pUV 1, over 2-dimensional plane ωUV
14 +ωUV

24 +ωUV
34 = 0 and another 2-dimensional
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plane pUV 2
124 + pUV 2

234 + pUV 2
314 = 0. Calculating

(93) exp(
1

�
S123(p

IR, qIR; �)) =

=

∫
L
DpUV DqUV exp(

1

�
S1234(p

IR + pUV , qIR + qUV ; �))

is quite lengthy (it is done in the same fashion as we did gluing two segments), so we
present only the result. Denote the action (88) obtained by direct inducing from contin-

uous theory to the complex (123) by Ŝ123. The calculations were done as before to order

O(pq3 + �q2). It turned out that the tree parts of S123 and Ŝ123 coincide, while the loop
parts do not. The difference between these two actions comes from the ∼ (dω)2 part of
the loop action. Let us denote the coefficient of the term Tr (dω)2 Tr 1 − (Tr dω)2 in the
action by g. For action (88) g = 1

270
. The result of barycentric gluing is that the glued

action S123 will contain the same term with coefficient g′ = 1
3
g − 2

243
. Thus we see that

there is nontrivial renormalization group for triangle in Dupont gauge. Obviously it is
BV-exact (at least in the order we can check it). We may write down the renormaliza-
tion flow under successive barycentric gluing: if on small triangles the coefficient was g0

then on the big triangle, after k successive iterations of barycentric gluing we will obtain
coefficient

(94) gk = (g0 +
1

81
) × 3−k − 1

81

The beta-function of this barycentric renormalization flow is linear and nonhomogeneous

(95) β(g) =
∂g

∂ log N∆

= − 1

81
− g

Here N∆ = 3k is the number of triangles in triangulation. In the limit k → ∞ we arrive
at the stable point of the flow g∞ = − 1

81
. Action with this coefficient of the problematic

term will be automorphic, that is, it will recover itself after barycentric gluing. We may
then propose the following conjecture: the effective action on triangle in Dupont gauge
has nontrivial BV-exact renormalization flow under barycentric gluing for loop part (while
tree part recovers itself), this flow has a stable point, where the action approaches with
successive iterations of gluing, which gives automorphic action. We checked this conjecture
in the lowest nontrivial order.

3.7. Summary of results for triangle. We calculated the effective action for discretized
forms on triangle in Dupont gauge to order O(pq3 + �q2). We also argued why this
gauge is particulary nice: apart from being manifestly symmetric, it maintains a sort
of restriction compatibility. Of particular interest here is the calculation of the loop
diagram. We see there a wonderful cancelation of logarithmic divergencies between a loop
with function running inside and with 1-form running inside. Which we may regard as
hint on supersymmetry. Next we checked the master equation for our results by direct
computation. At last, we checked the barycentric gluing of three triangles in one. We
found out that (in the order we are working) the tree part of action recovers itself, while
the loop part gives nontrivial topological (BV-exact) renormalization group. Latter was
shown to possess a fixed point that gives automorhic action (under barycentric gluing).
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