def A fiber bundle is a triple of top spaces E, M,F and a continuous surgective map $\pi: E \rightarrow M$ such that:
$\forall p \in M \quad \exists$ opennbhd $U \subset M$ and a homed $\varphi: \pi^{-1}(U) \rightarrow U \times F$
\qquad
E - total space
M - base
F - typical fiber
$F_{x}=\pi^{-1}(x)$ - fiber over x $\approx F$
So: a fiber = "family of top spaces

$$
\text { bundle }=F_{x} \approx F \text { indexed by } x \in M^{\prime \prime}
$$

If E, M, F are smooth mods, π-smooth map, φ 's are diffeomorphisms, then we have a smooth fiber bundle.

Section: $S: M \rightarrow E$ st. $\pi_{0} S=i_{m}$.

Ex: trivial bundle $E=M \times F$

$$
\frac{\sqrt{M}}{M}=\operatorname{prog}_{1}
$$

Ex: an n-fold covering space of M is a fiber handle (with fibber a set with nelemets)

Transition functions
Given a local triv. $\left\{\left(U_{\alpha}, \varphi_{\alpha}\right)\right\}$, on each overlap $U_{\alpha} \cap U_{\beta}$ one has

$$
\varphi_{\alpha} \varphi_{\beta}^{-1}:\left(U_{\alpha} \cap U_{\beta}\right) \times F \longrightarrow\left(U_{\alpha} \cap U_{\beta}\right) \times F
$$

$$
(x, \xi) \longmapsto\left(x, t_{\alpha \beta}(x) \xi\right)
$$

where $t_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G$

- transition function,

One hall
(1) $\operatorname{t}_{\alpha \alpha}(x)=1$
(2) $t_{\alpha \beta}(x)=t_{\beta \alpha}(x)^{-1}$
(5) $\operatorname{tap}_{\alpha}(x) t_{\beta \gamma}(x) t_{r \alpha}(x)=1$
for $x \in U_{\alpha} \cap U_{\beta} \cap U_{\gamma}$
$\frac{8 / 28}{2}$ - and vice verse; given an atlas $\left\{U_{\alpha}\right\}$ on M and travsitionfunctions satisfying (1),(2) (3), one can glue a fiber bundle

$$
\begin{aligned}
& E=\left(\frac{11}{\alpha} U_{\alpha} \times F\right) /\left(\begin{array}{l}
\text { dor each } \\
\left(x, \xi \in U_{\alpha} \cap U_{\beta}\right) \\
(x, \xi
\end{array}\right)\left(x, t_{\beta \times \xi} \xi\right)_{\beta} \\
& U_{\alpha \times F} U_{\beta}^{\beta} \times F
\end{aligned}
$$

Def a vector bundle over $\mathbb{K}(=\mathbb{R}, \mathbb{C})$ is a fiber bundle with $F=V$ - k-vector space and transition functions tap-linear transformation of V <put another way, F is linear, F_{x} 's are linear (ie. $G=G L(V)$) and differs φ induce linear iso between F_{x} and $F>$
$\operatorname{dim} V=$ "rank" of the vector bundle rank 1 vector- bundles are also celled "line bundles"

Ex: (Möbius band) $\quad M=S^{1}, V=\mathbb{R}$
define E via transition functions:

purple and red
ribbons are identified with a twist on the overlap

such that the diagram
$E \rightarrow E^{\prime}$
L^{π}
$\downarrow^{\prime \prime}$ commutes <inpacticular, fibers are sent to fibers>
$M \longrightarrow M^{\prime}$
Exercise: show that Möbius band (above) is not isomorphic to the trial bundle $S^{\prime} \times \mathbb{R}$
Ex: the ta gent bundle $T_{11} \quad$ <sections = vector fields>

$$
\left\{\left.(x, u)\right|_{u-\tan } ^{x \in M}\right.
$$

$$
\left.\begin{array}{l}
x \in M \\
u \text {-tangent vector to } M
\end{array}\right\}
$$

loci. coordinate charts on M, describe the transition functions of TM

838
Rem. bundles $E E^{\prime}$ are isomorphic, with iso covering identity $M \xrightarrow{i d} M$

$$
\begin{aligned}
\frac{1}{M} \quad \frac{I}{M} \quad & \Leftrightarrow \text { one has a collection of maps } h_{\alpha}: U_{\alpha} \rightarrow G \\
& \text { st. } t_{\alpha \beta}^{\prime}(x)=h_{\alpha}(x) t_{\alpha \beta}(x) h_{\beta}^{-1}(x) \\
& \forall x \in U_{\alpha} \cap U_{\beta}
\end{aligned}
$$

- In reticular

$$
\begin{aligned}
& E \text { is iso. to the trivial bundle iff } t_{\alpha \beta}(x)=h_{\alpha}(x) h_{\beta}^{-1}(x) \\
& \text { fer some functions }\left\{h_{\alpha}: U_{\alpha} \rightarrow G\right\}
\end{aligned}
$$

$\left.8 \frac{30}{2}\right)$ Ex: $M \subset \mathbb{R}^{n}$ embedded submanifold, $\operatorname{dim} M=k$
normal bundle $N M$ has fiber $\left(T_{x} M\right)^{\perp}$

$\underline{E_{x}}: \mathbb{R} P^{n}=\left\{\left(x_{0}, \ldots, x_{n}\right) \in \mathbb{R}^{n+1}-\{0\}\right\}$
(real) projective space

$$
\operatorname{rank}(N M)=n-k
$$

$$
\begin{aligned}
& \text { tautological line bundle } \underset{\downarrow}{\downarrow} \text { : fiber over a line }\left(x_{0}: x_{1}: \ldots: x_{n}\right) \\
& \text { is the le } \frac{l_{n}}{i+\text { self }}\left\{\left(\mu x_{0}, \ldots, \mu x_{n}\right) \mid \mu \in \mathbb{R}\right\}
\end{aligned}
$$

Similarly, one has a tautological complex line bundle over $\mathbb{C} P^{n}$. - More generally, over the Grassmanian $\operatorname{Gr}(k, n)$ of k-dimensional subspaces in $\mathbb{R}^{n} / \mathbb{C}^{n}$, one has the taut. vector bundle of rank k

There are lots of ways to cook up nev vector bundles from old ones:
-Whitney sum $E_{1} \oplus E_{2} \cdot\left(E_{\oplus} \oplus E_{2}\right)_{x}=\left(E_{1}\right)_{x} \oplus\left(E_{2}\right)_{x}$

- tensor product $E_{1} \otimes E_{2} \quad\left(E_{1} \otimes E_{2}\right)_{x}=\left(E_{1}\right)_{x} \otimes\left(E_{2}\right)_{x}$ especially unteretiog for bundles
- dual E^{*}

$$
\left(E^{*}\right)_{x}=\left(E_{x}\right)^{*}
$$ with inverse- transpose transition functions

(ex: $(T M)^{*}=T^{*} M$-cotangent bundle)

- box tensor product $\frac{E_{1}}{\frac{1}{M_{1}} \boxtimes \frac{E_{2}}{M_{2}}}$ is a buddle $E_{1} \boxtimes E_{2}$ over tirecroctuct manifold,

$$
m_{1}^{\downarrow} \times m_{2} \quad\left(E_{1} \otimes E_{2}\right)_{\left(x_{1}, x_{2}\right)}=\left(E_{1}\right)_{x_{1}} \otimes\left(E_{2}\right)_{x_{2}}
$$

- syanetric l exterior posers.
$\varepsilon_{x}: \quad \Lambda^{p} T^{*} M$ - the bundle of p-forms on M
$\varepsilon_{x}:$ metric $\in \Gamma\left(S_{y_{m}}{ }^{2} T^{+} M\right)$
$\frac{8 / 30}{3}$ pullback of a fiber bundle:
given

$$
\text { abudle } \underset{M}{\ddagger} \quad \text { and a } \operatorname{map} \quad f: M^{\prime} \rightarrow M \text {, }
$$

one can form the bundle $f^{*} E$
where $f^{+} E:=\left\{\left(x^{\prime}, e\right) \in M^{\prime} \times E \mid f\left(x^{\prime}\right)=\pi(e)\right\} \subset M^{\prime} \times E$

$$
\stackrel{\downarrow}{M^{\prime}}
$$

$$
\text { prog }_{1} \text { - bundle projection } f^{*} E M^{\prime}
$$

s.t. $f^{*} E \xrightarrow{h} E$

$$
{\underset{M}{ }}_{\pi^{\prime}}^{\longrightarrow} \underset{M}{ } \downharpoonleft^{\pi} \quad \text { commutes }
$$

- fiber of $f^{*} E$ over $x^{\prime} \in M^{\prime}$

$$
=\text { fiber of } E \text { over } f\left(x^{\prime}\right)
$$

Theorem (Thu 15.21 from MT, p. 155)
for ${\underset{M}{⿺}}_{\underset{M}{ }}$ a vector bundle and $f_{0}, f_{1}: X 马 M$ two Lomotopic maps,
then the pullbacks $f_{0}^{*} E f_{1}^{*} E$ compact $\stackrel{\downarrow}{X} \quad, \frac{L}{X}$ are isomorphic as bundles over X.

Corollary every vector bundle over a contractible base is trivial
Rem: in fact, The works for X paracompact - see Dan Freed's lecture
https://web.ma.utexas.edu/users/dafr/M392C-2015/Notes/lecture2.pdf
Ex: Complex line bundles over $\mathbb{C} \mathbb{P}^{1}$

- classified by a transition map

$$
t: S^{\prime} \times[-2, \varepsilon] \rightarrow G L(1, \mathbb{C})=\mathbb{C}^{*}
$$

iso classes of bundles \sim homotory classes of maps t -clacsified by the winding number $\in \mathbb{Z}$
$\left(\frac{8 / 30}{4}\right.$ def A principal G-bundle (with G a toplogigeal ${ }^{\text {group }}$) is a fiber bundle
$\pi: P \rightarrow M$, with a continuous right action $P \times G \rightarrow P$ preserving fiber of π, space
ie. for $p \in P_{x}, p \cdot g \in P_{x} \forall g$, and such that G acts on $P_{x}^{\text {foreach }}$ freely-transitively
$\left\langle\right.$ so that $\forall p \in P_{x}$, the map $G \rightarrow P_{x}$ is a homeo>

- G-orhits of P

$$
g \mapsto p \cdot g
$$

are the fibers of π

- fibers of π are " G-torsors" -copies of G without a marked unit
smooth setting: G-Lie group, all maps in C^{∞}
Ex: frame bundle of a manifold M : FM
fiber over $x=$ frames (ordered bases) in $T_{x} M$.
$F M \circlearrowright G L(n, \mathbb{R})$

\downarrow	$\operatorname{dim}_{M} M$

xi $H_{\text {op }}$ bundle (Hoof libration)

$$
\begin{aligned}
& S^{3}=\left\{\left.\left(z_{0}, z_{1}\right) \in \mathbb{C}^{2}| | z_{0}\right|^{2}+\left|z_{1}\right|^{2}=1\right\} \circlearrowleft S^{1} \\
& \ell_{\left(z_{0}, z_{1}\right)} \downarrow \\
& \left(z_{0}, z_{1}\right) \mapsto\left(e^{i \theta} z_{0}, e^{i \theta_{z_{1}}}\right) \\
& \mathbb{C} P^{1} \stackrel{\text { differ }}{\sim} S^{2}
\end{aligned}
$$

Sections \& trivializations
given a trivialization $\pi^{-1}(U) \xrightarrow{\varphi} U \times G$, one has the associated section $\left.S\right|_{U}=x \mapsto \varphi^{-1}(x$, è $)$ conversely, given S, one builds an equivariant trivialization $\varphi^{-1}(x, g)=S(x) \cdot g$

$$
\text { (i.e. } \varphi(p \cdot g)=\varphi(p) \cdot g)
$$

Ja global section $S \Leftrightarrow$ principal benders trivial! (this is special to principal bundles, is not true for general fiber bund es)
transition functions: $\left\{\left(U_{\alpha}, S_{\alpha}\right)\right\}$ - ecc.triv., $s_{\beta}(x)=s_{2}(x) \cdot t_{\alpha \beta}(x), x \in U_{\alpha} \cap U_{\beta}$ bot. sections

$$
t_{\alpha \beta}: U_{\alpha} \cap U_{\beta} \rightarrow G \text {-transitio nfunction }
$$

$\left(\frac{8 \text { Bo }}{5}\right) *$ Associated bundle construction
if PSG-principal bundle and G is linearly represented on V-usp., \downarrow
M

$$
\begin{aligned}
& \text { M then } E=P \times V=\{(p, v) \in P \times V\} /(p \cdot g, v) \sim(p, g \cdot V) \\
& \text {-the associated vector bundle } \quad \pi(p, v))=\pi(p) \text { in well-difined }
\end{aligned}
$$

more generally: if $E \in F \quad$-fiber bundle with transition fundions $t_{\alpha \beta}: U_{\alpha} \cap U_{\rho} \rightarrow G \quad G F$ str. group fiber and F^{\prime} another top space on which G ads,

$4 / 2$
Connections
def A_{n} (Ehresmann) connection in a fiber bundle $\frac{\mathrm{L}}{\mathrm{M}}$ is a subbundle $H C T E$ such that $H \oplus \underset{V}{V}=T E$.

Curvature (of the onuction)

$$
F \bar{F} \in \Omega^{2}(E, V) \text { defined by }
$$

$$
x, y-t w \text { vader }
$$

* parallel transport/Lolonomy
$f_{i x} \gamma:[0,1] \rightarrow M$ a curve on the base
$H_{0} l_{\gamma}: F_{\gamma(0)} \rightarrow F_{\gamma(1)}$
$p \longmapsto \tilde{\gamma}(1)$ where $\tilde{\gamma}(t)$ is the horiz. 1, it of $r(t)$ stacking at p,

$$
F(x, y)=\left[X_{H}, y_{H}\right]_{V}
$$

$\frac{4 \sqrt{2}}{2}$) curvature measures how $f_{\text {ar }}$ is $\tilde{\gamma}(1)$ from p for r a small closed loop

* connection has zero curvature ("is flat") if H is Frobenius-integrable (and the integrates into a foliation of E)

Ex: a trivial bundle $M \times F$ has a "trivial connection" F

$$
\stackrel{l}{\mathrm{~L}} \text { is }_{\mathrm{F}} \quad \mathrm{H}=\text { ker(lprog } \mathrm{g}_{2} \text {) }
$$

- For E a vector bundle, one considers Ehresmann connections $\downarrow \quad$ inducing $l_{\text {near }}$ holonomg maps (in other words, $H_{(x, y)}$ depends linearly on $v \in E_{x}$)
covariant derivative
one can extend this deferential

$$
\begin{aligned}
& \nabla(S \alpha)=\nabla s \cdot \alpha+S \cdot d \alpha \\
& \text { section }{ }_{l}{ }_{p} \text {-form }
\end{aligned}
$$

to an operator

$$
* \nabla^{2}=F .
$$ one has ∇ :

with $F \in \Omega^{2}(M, E-d E)$ - curvature $\quad(\sim)$ Ehrcsman curvative 2 form:
Exercise: (1) show that locally \cdots hes $F=d A+\frac{1}{2}[A, A]$
(2) show that on an overlap $U_{\alpha} \cap U_{\beta}$ one has
$A_{\beta}=t_{\alpha \beta}^{-1} A_{\alpha} t_{\alpha \beta}+t_{\alpha \rho}^{-1} d t_{\alpha \beta}$ with $t_{\alpha \beta}$ the transition function

$$
\begin{aligned}
& A_{\alpha} \in \Omega^{1}\left(U_{\alpha}, E_{n} d V\right)
\end{aligned}
$$

$$
\begin{aligned}
& \Omega^{\circ}(E) \xrightarrow{\nabla} \Omega^{\prime}(E) \xrightarrow{\nabla} \Omega^{2}(E) \xrightarrow{\nabla} \ldots \xrightarrow{\nabla} \Omega^{n}(E) \\
& =\Gamma(E) \\
& \text { or: } \sum e_{a} g^{a}(x) \rightarrow \sum e_{a}\left(d s^{a}(x)+\right. \\
& A_{\alpha} \in \Omega^{1}\left(U_{\alpha}, E_{n} d V\right)
\end{aligned}
$$

$$
\begin{aligned}
& \begin{array}{l}
\text { Section } \\
\text { of } E=
\end{array}
\end{aligned}
$$

(4/2 5 Connection in a principal bundle
-an Ehresmann connection on $P \underset{\perp}{\perp}$ which is G-equivariant, i.e. $H_{p . g}=d\left(R_{g}\right)_{p} H_{p}$
connection 1 form $A \in \Omega^{\prime}(P, y)$

$$
\begin{aligned}
R_{g}: P & \rightarrow P \\
y & \mapsto y \cdot g
\end{aligned}
$$

- satisfies (1) equivariance $A d_{y}\left(R_{g}^{*} d\right)=A$
(2) normalization $L_{X_{\xi}} A=\xi$ with $\xi \in Y$ and X_{ξ} the core sp. fund. vi. on P
curvature: $\mathcal{F}=d d+\frac{1}{2}[d, d] \in S^{2}(P, g)-G$-equivariant, horizontal 2-form; it corresponds to an element $F \in \Omega^{2}(M, \operatorname{ad}(P))$
- in a trivializing ibid U_{2} with section S_{2},

$$
P_{a}^{\lambda} \text { y -adjoint bundle }
$$

$$
\begin{aligned}
& F_{\alpha}:=s_{\alpha}^{*} F \in \Omega^{2}\left(U_{\alpha}, y\right) \\
& \text { on } U_{\alpha} \cap U_{\beta}: \quad F_{\beta}=\underbrace{\operatorname{ad}\left(t_{\beta^{\alpha}}\right)}_{\text {correct transition }} \cdot F_{\alpha}
\end{aligned}
$$

- Antler way to compare F and \bar{F} :

$$
F_{X}(d \pi(X), d \pi(Y))^{G}=\left(p, F_{p}(X, Y)\right) / \text { for } P \in \mathcal{P}_{x}, X, Y \in T_{p} P
$$

- In fact, one has a general Lemma:

$$
\begin{aligned}
& \text { horizontal, } \\
& \Omega^{k}(P, V)^{G-\text { equivarant }} \simeq \Omega^{k}(M, P \times V) \\
& \begin{array}{c}
\text { vest space } \\
\text { carry.garepof } G
\end{array}
\end{aligned}
$$

Cor: the space of
connections is an affine
space modeled on $\Omega^{1}(M, \operatorname{ad}(P))$.
(proof a difference of two connection forms $\mathcal{A}_{1}-\mathcal{A}_{0}$ is equivar. and horizontal \Rightarrow

$$
\left.\Rightarrow A_{1}-S_{0} \text { corresponds to an element of } \Omega^{\prime}(M, a d(P))\right)^{(\text {see (2) above) }}
$$

