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We follow the appendix C of [1].

1 Notations and definitions
In the following, M is a real smooth manifold and T ∗CM −! M is the com-
plexified cotangent bundle of M . We consider also E π

−!M a complex vector
bundle of rank n overM and {s1, . . . , sn} a local basis of sections of E π

−!M .

Definition. A connection on E π
−!M is a C-linear map

∇ : Γ (M,E) −! Γ (M,T ∗CM ⊗ E)

satisfying ∀ f ∈ C∞ (M,C), ∀ s ∈ Γ (M,E),

∇ (fs) = df ⊗ s+ f∇ (s) (Leibniz formula).

Notation. We write
∇ (si) =

n∑
j=1

ωij ⊗ sj

with ωij ∈ Γ (M,T ∗CM) and sj ∈ Γ (M,E).

Definition. We define another C-linear map

∇̂ : Γ (M,T ∗CM ⊗ E) −! Γ
Ä
M,Λ2T ∗CM ⊗ E

ä
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such that ∀ θ ∈ Γ (M,T ∗CM), ∀ s ∈ Γ (M,E),

∇̂ (θ ⊗ s) = (dθ)⊗ s− θ ∧∇ (s) (Leibniz formula)

and we define the curvature on E
π
−! M associated to the connection ∇ to

be the C-linear map

K := ∇̂ ◦ ∇ : Γ (M,E) −! Γ
Ä
M,Λ2T ∗CM ⊗ E

ä
.

Notation. We write
K (si) =

n∑
j=1

Ωij ⊗ sj

with
Ωij = dωij −

n∑
k=1

ωik ∧ ωkj.

Remark. Everything in this section can be transposed to the real case, that
is, the case where E π

−! M is a real vector bundle over M , T ∗M −! M is
the non-complexified cotangent bundle of M ,

∇ : Γ (M,E) −! Γ (M,T ∗M ⊗ E)

and
∇̂ : Γ (M,T ∗M ⊗ E) −! Γ

Ä
M,Λ2T ∗M ⊗ E

ä
are R-linear maps satisfying Leibniz formulæ.

Note that, whatever the case, M is a real smooth manifold.

Problem. We want to construct some characteristic classes of E π
−!M from

the curvature K.

2 Invariant polynomials, curvature and char-
acteristic classes

Definition. An invariant polynomial on Mn (C) is a function

P : Mn (C) −! C

which can be expressed as a complex polynomial in the entries of its matrix
argument and satisfies

∀X, Y ∈Mn (C) , P (XY ) = P (Y X) .
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Examples. Trace, determinant, Pfaffian...

Definition. Let P : Mn (C) −! C be an invariant polynomial. We extend P
to a map P : Mn (C)⊗

Å ∞⊕
r=0

Λ2rT ∗CM
ã
−!

∞⊕
r=0

Λ2rT ∗CM

Proposition. Set Ω = (Ωij)1≤i,j≤n. Then P (Ω) does not depend on {si}1≤i≤n
and defines local differential forms that piece together to yield a global differ-
ential form P (K).

Lemma. For any invariant polynomial P , P (K) is closed, i.e. dP (K) = 0.

Remark. This is also true for P a formal power series since the powers higher
than dim(M)/2 are zero.

Consequence. P (K) is a de Rham cocycle.

Proposition. The cohomology class of P (K) is independent from the choice
of the connection ∇.

Consequence. P defines a characteristic cohomology class in H∗ (M,C) de-
pending only on the isomorphism class of E π

−!M .

Remark. Everything in this section remains true in the real case briefly intro-
duced at the end of the first section, provided we consider invariant polynomials
in Mn (R) instead of Mn (C).

3 Metric in the real case
In this section, we consider the real case mentioned at the end of each of
the previous sections. Furthermore, assume E π

−! M is provided with the
Euclidean metric defining an inner product 〈·, ·〉 such that

∀ θ ∈ Γ (M,T ∗M) , ∀s, s′ ∈ Γ (M,E) , 〈θ ⊗ s, s′〉 = 〈s, θ ⊗ s′〉 = 〈s, s′〉 θ

Definition. A connection ∇ on E is metric, or compatible with the metric, if

∀s, s′ ∈ Γ (M,E) , d 〈s, s′〉 = 〈∇s, s′〉+ 〈s,∇s′〉

Notation. Let U ⊂ M sufficiently small so that E π
−! M is locally trivial

above U . We denote E|U = U × Rn.
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Proposition. Let {s1, . . . , sn} be an orthonormal basis for E|U i.e. so that
〈si, sj〉 = δij. Then, ∇ on E|U is compatible with the metric if and only if
ω = (ωij)1≤i,j≤n is skew symmetric.

We consider now the case E = T ∗M

Definition. A connection ∇ on T ∗M π
−!M is symmetric (or torsion free) if

Γ (M,T ∗M) ∇
−! Γ (M,T ∗M ⊗ T ∗M) ∧

−! Γ
Ä
M,Λ2T ∗M

ä
is equal to the exterior derivative d.
Proposition. The cotangent bundle T ∗M π

−! M of a Riemann manifold
possesses one and only one symmetric connection compatible with its metric.
Definition. This unique connection is called the Levi-Civita connection.

4 Gauss-Bonnet theorem and generalizations
Let Σ be an oriented 2-dimensional Riemannian manifold and {θ1, θ2} a local
basis of the space of 1-forms. Then

ω =
Ç

0 ω12
−ω12 0

å
and Ω =

Ç
0 Ω12
−Ω12 0

å
with Ω12 = − dω12.
Definition. Write Ω12 = K dA = −Kθ1 ∧ θ2. Hence, Ω12 is a globally defined
object but not K. Ω12 and K are respectively called the Gauss-Bonnet 2-
form and the Gaussian curvature of the oriented 2-dimensional Riemannian
manifold Σ.
Remark. This unusual choice for the sign of dA is justified in [1].
Theorem (Gauss-Bonnet). For any closed oriented 2-dimensional Riemannian
manifold Σ, for any oriented vector bundle E π

−! Σ of rank 2 with Euclidean
metric, ¨

Σ
Ω12 =

¨
Σ
K dA = 2πeE ([Σ])

where eE ([Σ]) is the Euler class of E π
−! Σ evaluated on the fundamental

class of Σ.
In particular, if we consider the vector bundle E = TΣ π

−! Σ then eTΣ ([Σ])
is simply the Euler characteristic χ (Σ) of Σ.
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Remark. This result can be generalized to the case where Σ has a boundary.

Proposition. Let E π
−!M be an oriented real vector bundle of rank 2n with

Euclidean metric. The local 2n-forms Pf(Ω) ∈ Γ (M,Λ2nT ∗M |U) can be pieced
together to obtain a global 2n-form Pf(K) ∈ Γ (M,Λ2nT ∗M).

Proposition. Pf(K) is closed, thus it represents a characteristic cohomology
class in H2n (M,R).

These remarks on the Pfaffian make it possible to generalize Gauss-Bonnet
theorem as:

Theorem (Chern-Gauss-Bonnet). For any closed oriented 2n-dimensional Rie-
mannian manifoldM , for any oriented vector bundle E π

−!M of rank 2n with
Euclidean metric and any compatible connection,

ˆ
M

Pf(Ω) =
ˆ
M

Pf(K) dV = (2π)n eE ([M ]) .

where dV = (−1)n θ1 ∧ . . . ∧ θn and eE ([M ]) is the Euler class of E π
−! M

evaluated on the fundamental class of M .
In particular, if we consider the vector bundle E = TM

π
−! M then

eTM ([M ]) is simply the Euler characteristic χ (M) of M .

Remark. This result can be generalized to the case where M has a boundary.

Example. As an illustration of the Chern-Gauss-Bonnet theorem, consider
S2n with the Levi-Civita connection and {θ1, . . . , θ2n} an orthonormal basis
for the sections of T ∗M |U . Then

−Ωij = θi ∧ θj

and

Pf(Ω) = (−1)n Pf(θi ∧ θj) = (−1)n (1 · 3 · . . . (2n− 1)) θ1 ∧ . . . ∧ θ2n

Furthermore, on the one hand,
ˆ
S2n

Pf(Ω) =
ˆ
S2n

(−1)n Pf(θi ∧ θj) = (1 · 3 · . . . (2n− 1)) Vol
Ä
S2nä
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and on the other hand,
ˆ
S2n

Pf(Ω) = (2π)n eTM
Äî
S2nóä = (2π)n χ

Ä
S2nä = 2 (2π)n

As a consequence, we recover the well-known formula for the volume of S2n:

Vol
Ä
S2nä = 2 (2π)n

1 · 3 · . . . · (2n− 1)

Remark. The Euler class cannot be computed from the curvature of an arbi-
trary connection. We need the connection to be compatible with the metric.
To illustrate the importance of this assumption, an example of a vector bundle
with a flat connection but with non-zero Euler class is presented in [1]. If this
connection was compatible with any metric, then, by Gauss-Bonnet theorem,
the Euler class would be zero since it is computed from the Pfaffian of the
curvature of this connection.

The Gauss-Bonnet theorem and the Chern-Gauss-Bonnet theorem exhibit
a link between topology and differential geometry. Those results can be un-
derstood in the more general framework of Chern-Weil theory which relies on
the following construction.

Definition. Let G be a complex Lie group with Lie algebra g and let C [g]
denote the algebra of C-valued polynomials on g. Let C [g]G be the subalgebra
of fixed points in C [g] under the adjoint action of G, that is, it consists of all
polynomials P such that for any g ∈ G and X ∈ g, P (AdgX) = P (X).

Given a principal G-bundle P −! M , there is an associated homomor-
phism of C-algebras

C [g]G −! H∗ (M,C)
called the Chern–Weil homomorphism, where H∗ (M,C) is the complex valued
de Rham cohomology. This homomorphism is obtained by taking invariant
polynomials in the curvature of any connection on the given bundle.

An important result from the Chern Weil theory is

Theorem (Chern-Weil). If G is either compact or semi-simple, then the co-
homology ring of the classifying space for G-bundles BG is isomorphic to the
algebra of invariant polynomials:

H∗ (BG,C) ∼= C [g]G .
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Remark. This works also for R instead of C.

As a conclusion and a foretaste for the coming lectures, let us mention that
Atiyah-Singer index theorem, that establishes the equivalence between some
quantities coming from topology on the one hand and differential geometry on
the other hand, can also be regarded as a generalization of the Gauss-Bonnet
theorem.
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