Symplectic Geometry Talk for the Intermediate Geometry and Topology Seminar

David L. Meretzky

September 18th, 2019

Symplectic Linear Algebra

Let V be an m-dimensional real vector space and let $\omega: V \times V \rightarrow \mathbb{R}$ be an skew-symmetric bilinear map. We can also view ω as a map from V to V^{*} by

$$
v \mapsto \omega(v,-)[w \mapsto \omega(v, w)]
$$

Example 1. Let $V=\mathbb{R}^{2 n}$ let $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ be a basis for V. Where $x_{i}=(0, \ldots, 1, \ldots .0)$ has a 1 the $i^{\text {th }}$ position and $y_{i}=(0, \ldots ., 1, \ldots 0)$ has a 1 the $n+i^{\text {th }}$ position. Let $\left(d x_{1}, \ldots, d x_{n}, d y_{1}, \ldots, d y_{n}\right)$ be the corresponding dual basis. The map

$$
\omega_{1}=\sum_{i=1}^{n} d x^{i} \wedge d y^{i}
$$

is skew-symmetric and bilinear. We will call $\left(\mathbb{R}^{2 n}, \omega_{1}\right)$ the standard symplectic space.

Example 2. If $\operatorname{dim}(V)=2 n$, let $\left(a_{1}, b_{1}, \ldots, a_{n}, b_{n}\right)$ be a basis for V with corresponding dual basis $\left(\alpha^{1}, \beta^{1}, \ldots, \alpha^{n}, \beta^{n}\right)$ for V^{*}. Then define ω by

$$
\omega=\sum_{i=1}^{n} \alpha^{i} \wedge \beta^{i}
$$

and note that the following conditions are satisfied: $\omega\left(a_{i}, a_{j}\right)=0=\omega\left(b_{i}, b_{j}\right)$ for all i, j from 1 to n and furthermore $\omega\left(a_{i}, b_{j}\right)=\delta_{i, j}=-\omega\left(b_{j}, a_{i}\right)$.

Associated to skew symmetric bilinear map we have the following subspace $U=\{u \in V \mid \omega(u, v)=0, \forall v \in V\}$. Note that in the previous examples $U=\{0\}$.

Proposition 1. Let V be a vector space with an skew-symmetric bilinear map to \mathbb{R} called ω. Let u_{1}, \ldots, u_{k} be a basis for U. This can be extended to a basis of the whole space V by $u_{1}, \ldots, u_{k}, e_{1}, f_{1}, \ldots, e_{n}, f_{n}$ such that $\omega\left(e_{i}, e_{j}\right)=0=$ $\omega\left(f_{i}, f_{j}\right)$ for all i, j from 1 to n and $\omega\left(e_{i}, f_{j}\right)=\delta_{i, j}=-\omega\left(f_{j}, e_{i}\right)$.

Proposition 2. The linear map $\omega: V \rightarrow V^{*}$ is an isomorphism if and only if $U=\{0\}$.

Suppose v is in the kernel of this map, then it must be in U so the injectivity part of the statement is clear as is the forward direction. For surjectivity we
will need the following proposition showing there is a standard form for such skew symmetric bilinear maps.

We say that ω is symplectic if ω is nondegenerate, that is if $\omega: V \rightarrow V^{*}$ is an isomorphism, equivalently if $U=\{0\}$. In this case the dimension of V is always even.

Let $U=\{0\}$. Then $\omega\left(f_{i},-\right)$ is the dual vector associated to e_{i} and $\omega\left(e_{i},-\right)$ is the dual vector associated to f_{i}. To show the surjectivity of $\omega: V \rightarrow V^{*}$, let $\phi \in V^{*}$. It is simple to verify that $\phi(-)=\omega(v,-)$ where

$$
v=\sum_{i=1}^{n} \phi\left(e_{i}\right) f_{i}+\phi\left(f_{i}\right) e_{i}
$$

If $S \subset V$ define the symplectic complement of S denoted S^{ω} by

$$
S^{\omega}=\{v \in V \mid \omega(v, w)=0, \forall w \in S\}
$$

Let S be a subspace of V. Applying the Rank-Nullity theorem to the map $\omega: V \rightarrow S *$ by sending v to $\left.\omega(v,-)\right|_{S}$ we obtain the following result.

Proposition 3. $\operatorname{dim}(V)=\operatorname{dim}(S)+\operatorname{dim}\left(S^{\omega}\right)$.
We will say that if S is a subspace of a symplectic vector space then S is symplectic if $S \cap S^{\omega}=\{0\}$, that is S is non-degenerate. S is isotropic if $S \subset S^{\omega}$, e.g. any collection of purely a_{i} or purely b_{i}, that is $\omega \mid S=0$. Lagrangian if $S=S^{\omega}$, i.e. $\operatorname{Span}\left(a_{1}, \ldots, a_{n}\right)$ or $\operatorname{Span}\left(b_{1}, \ldots, b_{n}\right)$. Note that for a Lagrangian subspace S, $\operatorname{dim}(S)=\frac{1}{2} \operatorname{dim}(V)$. Co-isotropic if S^{ω} is isotropic, e.g. $\operatorname{Span}\left(a_{1}, \ldots, a_{n}, b_{1}, b_{2}, b_{3}\right)$.

Proposition 4. If $\operatorname{dim}(V)=2 n$ then ω is symplectic if and only if the n-fold wedge product ω^{n} is non-zero. The top degree form $\frac{1}{n!} \omega^{n}$ can serve as a volume form and it is called the Liouville form on V.

Let $(V, \omega$ and (W, η) be symplectic vector spaces and $L: V \rightarrow W$ be a linear isomorphism. Then L is called a symplectomorphism if $L^{*} \eta=\omega$. By proposition 1 every symplectic vector space is symplectomorphic to $\left(\mathbb{R}^{2 n}, \omega_{1}\right)$ the standard symplectic vector space of example 1.

Symplectic Manifolds

Let M be a smooth manifold. Let ω be a closed 2 -form on M such that ω_{p} is symplectic on $T_{p} M$ for all $p \in M$. We call (M, ω) a symplectic manifold and ω the associated symplectic form on M. From the previous section we know M must have even dimension and must be orientable.

Example 3. Let $M=\mathbb{R}^{2 n}$ with linear coordinates $\left(x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$. The form

$$
\omega_{0}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}
$$

is symplectic and the set $\left\{\left(\frac{\partial}{\partial x_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial x_{n}}\right)_{p},\left(\frac{\partial}{\partial y_{1}}\right)_{p}, \ldots,\left(\frac{\partial}{\partial y_{n}}\right)_{p}\right\}$ is a symplectic basis of $T_{p} M$

Example 4. Let $M=\mathbb{C}^{n}$ with coordinates z_{1}, \ldots, z_{n} then

$$
\omega=\frac{i}{2} \sum_{i=1}^{n} d z_{k} \wedge d \bar{z}_{k}
$$

is symplectic.
Example 5. Let $M=S^{2} \subset \mathbb{R}^{3}$. Let p be a point on S^{2}. Then $\omega_{p}(u, v)=$ $\langle p, u \times v\rangle$ for $u, v \in T_{p} S^{2}$ is symplectic.

Let (M, ω) be a symplectic manifold and $F: N \rightarrow M$ be a smooth immersion. Then we say F is symplectic, isotropic, co-isotropic or Lagrangian if the subspace $d F_{p}\left(T_{p} N\right) \subset T_{F(p)} M$ has the corresponding property for each $p \in N$.

Let $\left(M_{1}, \omega_{1}\right)$ and $\left(M_{2}, \omega_{2}\right)$ be $2 n$-dimensional manifolds and $\varphi: M_{1} \rightarrow M_{2}$ be a diffeomorphism. We say φ is a symplectomorphism if $\varphi^{*} \omega_{2}=\omega_{1}$.

Symplectic Structure on the Cotangent Bundle

Theorem 1. If M is a smooth manifold, then there exists a canonical 1-form τ on the cotangent bundle $T^{*} M$ such that $-d \tau$ is a symplectic form on $T^{*} M$. Furthermore this 1-form has the following property $\forall \sigma \in \Omega^{1}(M) \sigma^{*} \tau=\sigma$.

If $\pi: T^{*} M \rightarrow M$ is the usual projection then $d \pi: T\left(T^{*} M\right) \rightarrow T M$ and for any $(p, \phi) \in T^{*} M$ we have a pointwise pullback $d \pi_{(p, \phi)}^{*}: T^{*} M \rightarrow T^{*}\left(T^{*} M\right)$.

Define $\tau: T^{*} M \rightarrow T^{*}\left(T^{*} M\right)$ by

$$
\tau_{(p, \phi)}=d \pi_{(p, \phi)}^{*}(\phi)
$$

so that for $v \in T_{(p, \phi)}\left(T^{*} M\right)$ we have

$$
\tau_{(p, \phi)}(v)=\phi\left(d \pi_{(p, \phi)}(v)\right)
$$

In local coordinates $\phi=\xi_{i} d x_{i} \in T^{*} M, v=\left(\sum \alpha_{i} \frac{\partial}{\partial x_{i}}+\sum \beta_{i} d \frac{\partial}{\partial \xi_{i}}\right) \in T\left(T^{*} M\right)$ and $d \pi\left(\frac{\partial}{\partial x_{i}}\right)=\frac{\partial}{\partial x_{i}}$ and $d \pi\left(\frac{\partial}{\partial \xi_{i}}\right)=0$ for all i.

Thus $\tau_{(p, \phi)}(v)=\xi_{i} d x_{i}\left(d \pi\left(\sum \alpha_{i} \frac{\partial}{\partial x_{i}}+\sum \beta_{i} d \frac{\partial}{\partial \xi_{i}}\right)\right)=\alpha_{i} \xi_{i}$. Note that $\alpha_{i} \xi_{i}=$ $\xi_{i} d x_{i}\left(\sum \alpha_{i} \frac{\partial}{\partial x_{i}}+\sum \beta_{i} d \frac{\partial}{\partial \xi_{i}}\right)$ and so locally $\tau_{\left(p, \xi_{i} d x_{i}\right)}=\xi_{i} d x_{i}$. Furthermore,

$$
-d \tau_{\left(p, \xi_{i} d x_{i}\right)}=\sum_{i=1}^{n} d x_{i} \wedge d \xi_{i}
$$

The result that $\forall \sigma \in \Omega^{1}(M) \sigma^{*} \tau=\sigma$ is left as an exercise. Hint: σ is a section of π.

Construction and Application of Lagrangian Submanifolds

Proposition 5. Let M be a smooth n-manifold and $\sigma \in \Omega^{1}(M)$. Then $\sigma(M)$ is a Lagrangian sub-manifold of $T^{*} M$ if and only if σ is closed.

Proof. Since $\operatorname{dim}(M)=n=\frac{1}{2} \operatorname{dim}^{*} M \sigma(M)$ is Lagrangian if and only if $\sigma(M)$ is isotropic, meaning $\sigma^{*} \omega=\left.\omega\right|_{\sigma(M)}=0$. But

$$
\sigma^{*}(\omega)=-\sigma^{*} d \tau=-d\left(\sigma^{*} \tau\right)=-d \sigma
$$

so $\sigma(M)$ is Lagrangian if and only if σ is closed.
Example 6. Let σ_{0} be the section sending every point to the zero vector. Clearly, $\sigma_{0}^{*} \omega=0$ and so $\sigma_{0}(M)$ must be Lagrangian. This is called the zero section.

Let S be a k dimensional submanifold of an n dimensional manifold X. The conormal space at $x \in S$ is defined to be

$$
N_{x}^{*} S=\left\{\xi \in T_{x}^{*} X \mid \xi(v)=0, \forall v \in T_{x} S\right\}
$$

The conormal bundle is

$$
N^{*} S=\left\{(x, \xi) \in T^{*} X \mid x \in S, \xi \in N_{x}^{*} S\right\}
$$

Proposition 6. Let $i: N^{*} S \rightarrow T^{*} X$ be the inclusion, and let τ be the tautological 1-form on $T^{*} X$. Then $i^{*} \tau=0$.

As a corollary we have that for any submanifold $S \subset X$, the conormal bundle $N^{*} S$ is a Lagrangian submanifold of $T^{*} X$.

The notion of a lagrangian submanifold will also give us a method to discern whether a given diffeomorphism is a symplectomorphism.

Let $\left(M_{1}, \omega_{1}\right)$ and $\left(M_{2}, \omega_{2}\right)$ be two $2 n$-dimensional symplectic manifolds. Given a diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ does $\varphi^{*} \omega_{2}=\omega_{1}$?

Use the projection maps $p_{1}: M_{1} \times M_{2} \rightarrow M_{1}$ and $p_{2}: M_{1} \times M_{2} \rightarrow M_{2}$ to creat a form on $M_{1} \times M_{2}$ given by

$$
\omega=p_{1}^{*} \omega_{1}+p_{2}^{*} \omega_{2}
$$

which is closed since differential commutes with pullback and symplectic which you can check by showing $\omega^{2} n \neq 0$ using proposition 4 . More generally

$$
\omega=\lambda_{1} p_{1}^{*} \omega_{1}+\lambda_{2} p_{2}^{*} \omega_{2}
$$

is a symplectic form for all $\lambda_{1}, \lambda_{2} \in \mathbb{R}^{\times}$. In particular examine the twisted product

$$
\widetilde{\omega}=p_{1}^{*} \omega_{1}-p_{2}^{*} \omega_{2}
$$

We define the graph of a diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ as follows

$$
\Gamma_{\varphi}:=\left\{(p, \varphi(p)) \mid p \in M_{1}\right\}
$$

The submanifold Γ_{φ} is an embedded image of M_{1} in $M_{1} \times M_{2}$, the embedding being the map $\gamma: M_{1} \rightarrow M_{1} \times M_{2}$ by $(p \mapsto(p, \varphi(p)))$

Proposition 7. The diffeomorphism $\varphi: M_{1} \rightarrow M_{2}$ is a symplectomorphism if and only if Γ_{φ} is a Lagrangian submanifold of $M_{1} \times M_{2}$.

Proof. The graph is Lagrangian if and only if $\gamma^{*} \widetilde{\omega}=0$ but

$$
\gamma^{*} \widetilde{\omega}=\gamma^{*} p_{1}^{*} \omega_{1}+\gamma^{*} p_{2}^{*} \omega_{2}=\left(p_{1} \circ \gamma\right)^{*} \omega_{1}-\left(p_{2} \circ \gamma\right)^{*} \omega_{2}
$$

but since $p_{1} \circ \gamma$ is the identity on M_{1} and $p_{2} \circ \gamma$ is exactly φ we have

$$
\gamma^{*} \widetilde{\omega}=\omega_{1}-\varphi^{*} \omega_{2}
$$

note that φ is a symplectomorphism if and only if $\omega_{1}-\varphi^{*} \omega_{2}=0$.

Darboux's Theorem and Moser's Trick

Just as any n-dimensional manifold looks locally like \mathbb{R}^{n} any $2 n$-dimensional symplectic manifold looks locally like $\left(\mathbb{R}^{2 n}, \omega_{1}\right)$.

Theorem 2. (Darboux) Let $\left(M, \omega_{0}\right)$ be a 2 n -dimensional symplectic manifold, and let $p \in M$. Then there is a coordinate chart $\left(U_{0}, x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}\right)$ centered at p_{0} such that on U_{0}

$$
\omega_{0}=\sum_{i=1}^{n} d x_{i} \wedge d y_{i}
$$

A chart with this property is called a Darboux chart and $x_{1}, \ldots, x_{n}, y_{1}, \ldots, y_{n}$ are called Darboux coordinates.

Proof. (sketch) Let p be an arbitrary point of M. Let $p_{0}=\varphi(p)$ We need a chart $\left(U_{0}, \varphi\right)$ such that $\varphi^{*}\left(\omega_{1}\right)=\omega_{0}$ where ω_{1} is the standard form on $\mathbb{R}^{2 n}$. This is a local question so replace ω_{0} with $\left(\varphi^{-1}\right)^{*} \omega_{0}=\omega_{0}\left(\varphi^{-1}(-), \varphi^{-1}(-)\right)$. So ω_{1} and ω_{0} are both forms on U_{0}. By a linear change of coordinates we can require that $\left.\omega_{1}\right|_{p_{0}}=\left.\omega_{0}\right|_{p_{0}}$.

Let $\eta=\omega_{1}-\omega_{0}$ since η is closed the poincare lemma says there is a smooth 1-form α on U_{0} such that $d \alpha=-\eta$. For each $t \in \mathbb{R}$ define a closed 2 -form ω_{t} by $\omega_{t}=\omega_{0}+t \eta=(1-t) \omega_{0}+t \omega_{1}$.

Because $\left.\omega_{t}\right|_{p_{0}}=\left.\omega_{0}\right|_{p_{0}}$ is non degenerate for all t there is some neighborhood U_{1} of p_{0} contained in U_{0} such that $\omega_{t}: T U_{1} \rightarrow T^{*} U_{1}$ is an isomorphism for all t.

Define a time-dependent vector field by $V: J \times U_{1} \rightarrow T U_{1}$ by $V_{t}=\omega_{t}^{-1}(\alpha)$.
Note: $\frac{d \omega_{t}}{d t}=\omega_{1}-\omega_{0}=\eta$. Note: $-\eta=d \alpha=d\left(\omega\left(V_{t},-\right)=d \iota_{V_{t}}\left(\omega_{t}\right)=\right.$ $d \iota_{V_{t}}\left(\omega_{t}\right)+\iota_{V_{t}}\left(d \omega_{t}\right)=\mathcal{L}_{V_{t}} \omega_{t}$. Thus $\mathcal{L}_{V_{t}} \omega_{t}+\frac{d \omega_{t}}{d t}=0$.

Associated to a time dependent vector field V_{t} there exists a family of diffeomorphisms $\theta_{t}: U_{1} \rightarrow U_{1}$ called a time dependent flow such that $v_{t}=\frac{d}{d t} \theta_{t}^{*} \circ \theta_{t}^{-1}$.

Since $0=\theta_{t}^{*}\left(\mathcal{L}_{V_{t}} \omega_{t}+\frac{d \omega_{t}}{d t}\right)=\frac{d}{d t}\left(\theta_{t}^{*}\left(\omega_{t}\right)\right)$ then $\theta_{t}^{*}\left(\omega_{t}\right)=\theta_{0}^{*}\left(\omega_{0}\right)=\omega_{0}$.
In particular $\theta^{*}\left(\omega_{1}\right)=\omega_{0}$.

References

[1] Ana Cannas Da Silva and A Cannas Da Salva. Lectures on symplectic geometry, volume 3575. Springer, 2001.
[2] John M Lee. Introduction to Smooth Manifolds. Springer, 2013.

