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Symplectic Linear Algebra

Let V be an m-dimensional real vector space and let w : V x V — R be an
skew-symmetric bilinear map. We can also view w as a map from V to V* by

v = wv, =) [w— wv,w)]

Example 1. Let V = R?" let (21, ..., %n,Y1,--,Yn) be a basis for V. Where
z; = (0,...,1,.....0) has a 1 the i*" position and y; = (0, .....,1,...0) has a 1 the
n 4+ i*" position. Let (dxy,...,dx,, dyi, ..., dy,) be the corresponding dual basis.
The map

n
wy = Z dz® A dyi
i=1

is skew-symmetric and bilinear. We will call (R?",w;) the standard symplectic
space.

Example 2. If dim(V) = 2n, let (a1,b1, ..., an, b,) be a basis for V with corre-
sponding dual basis (al, 8, ...,a", 8") for V*. Then define w by

n
w:Zai/\ﬁi
i=1

and note that the following conditions are satisfied: w(a;, a;) = 0 = w(b;,b;) for
all 4, from 1 to n and furthermore w(a;, b;) = 6; ; = —w(b;, a;).

Associated to skew symmetric bilinear map we have the following subspace
U ={u e V] wluwv) =0, Yo € V}. Note that in the previous examples
U = {0}.

Proposition 1. Let V be a vector space with an skew-symmetric bilinear map
to R called w. Let uq,...,u; be a basis for U. This can be extended to a basis
of the whole space V' by w1, ..., ug, €1, f1,..., €n, fn such that w(e;,e;) = 0 =
w(fi, f;) for all ¢, 7 from 1 to n and w(e;, f;) = 0;; = —w(f;, €).

Proposition 2. The linear map w : V — V* is an isomorphism if and only if
U = {o}.

Suppose v is in the kernel of this map, then it must be in U so the injectivity
part of the statement is clear as is the forward direction. For surjectivity we



will need the following proposition showing there is a standard form for such
skew symmetric bilinear maps.

We say that w is symplectic if w is nondegenerate, that is if w : V' — V* is an
isomorphism, equivalently if U = {0}. In this case the dimension of V' is always
even.

Let U = {0}. Then w(f;,—) is the dual vector associated to e; and w(e;, —) is
the dual vector associated to f;. To show the surjectivity of w : V. — V* | let
¢ € V*. It is simple to verify that ¢(—) = w(v, —) where

n

v=">" (e fi+ o(fi)es.

i=1
If S C V define the symplectic complement of S denoted S“ by
SY ={veV|ww)=0, Ywe S}.

Let S be a subspace of V. Applying the Rank-Nullity theorem to the map
w:V — S by sending v to w(v, —)|s we obtain the following result.

Proposition 3. dim(V) = dim(S) + dim(S¥).

We will say that if S is a subspace of a symplectic vector space then S is
symplectic if S N SY = {0}, that is S is non-degenerate. S is isotropic if
S C 5% e.g. any collection of purely a; or purely b;, that is w|S = 0. La-
grangian if S = S“, i.e. Span(as,...,a,) or Span(by,...,b,). Note that for a
Lagrangian subspace S, dim(S) = 1dim (V). Co-isotropic if S is isotropic, e.g.
Span(ay, ..., ap, b1, b2, b3).

Proposition 4. If dim(V) = 2n then w is symplectic if and only if the n-fold
wedge product w” is non-zero. The top degree form -+

—w™ can serve as a volume
form and it is called the Liouville form on V.

Let (V,w and (W,n) be symplectic vector spaces and L : V. — W be a linear
isomorphism. Then L is called a symplectomorphism if L*n = w. By proposition
1 every symplectic vector space is symplectomorphic to (R?",w;) the standard
symplectic vector space of example 1.

Symplectic Manifolds

Let M be a smooth manifold. Let w be a closed 2-form on M such that w, is
symplectic on T,M for all p € M. We call (M, w) a symplectic manifold and w
the associated symplectic form on M. From the previous section we know M
must have even dimension and must be orientable.



Example 3. Let M = R?" with linear coordinates (21, ...,%n, Y1, ..., Yn). The
form

n
wo = Z dJL‘Z A dyz
i=1

is symplectic and the set {(a%l)p, vy (a%n)p, (8%1)1” - (%)p} is a symplectic

basis of T, M

Example 4. Let M = C™ with coordinates z1, ..., z,, then

. n
? _
w= 5 E dzy N\ dzy
=1
is symplectic.

Example 5. Let M = S? C R3. Let p be a point on S?. Then w,(u,v) =
{(p,u x v) for u,v € T,S? is symplectic.

Let (M,w) be a symplectic manifold and F : N — M be a smooth immersion.
Then we say F' is symplectic, isotropic, co-isotropic or Lagrangian if the sub-
space dI},(T,N) C Tp(,yM has the corresponding property for each p € N.

Let (M7,w1) and (Ma,ws) be 2n-dimensional manifolds and ¢ : M7 — M; be a
diffeomorphism. We say ¢ is a symplectomorphism if ¢*ws = ws.

Symplectic Structure on the Cotangent Bundle

Theorem 1. If M is a smooth manifold, then there exists a canonical 1-form
7 on the cotangent bundle T* M such that —dr is a symplectic form on 7% M.
Furthermore this 1-form has the following property Vo € QY(M) o*1 = 0.

If m: T*M — M is the usual projection then dr : T(T*M) — TM and for any
(p, @) € T*M we have a pointwise pullback dwz‘p g T"M — T*(T*M).

Define 7 : T*M — T*(T*M) by
T(p.6) = A7) (@)
so that for v € T(p, 4)(T* M) we have

T(p,9) (V) = G(dT(p,4) (V).

In local coordinates ¢ = dx; € T*M ;v = (D aia%i + Zﬁid%) eT(T*M)
and dﬂ'(a%i) = a%i and dﬂ'(%) =0 for all 4.



Thus 7(,¢)(v) = Sdzi(dr(} O‘ia%i + Zﬁid%)) = a;&. Note that a;& =
&idx; (> O‘ia%i +> Bida%,-) and so locally 7(, ¢, dz,) = §idx;. Furthermore,

_dT(p7€'id$i) = Z dx; N\ d§&;.

i=1

The result that Vo € Q' (M) o*7 = o is left as an exercise. Hint: o is a section
of .

Construction and Application of Lagrangian Sub-
manifolds

Proposition 5. Let M be a smooth n-manifold and o € Q!(M). Then o(M)
is a Lagrangian sub-manifold of 7% M if and only if o is closed.

Proof. Since dim(M) =n = 3dimT*M o(M) is Lagrangian if and only if o(M)
is isotropic, meaning o*w = w\J(M) = 0. But

0" (w) = —o"dr = —d(o"7) = —do
so (M) is Lagrangian if and only if o is closed. O

Example 6. Let g be the section sending every point to the zero vector.
Clearly, ofw = 0 and so oo(M) must be Lagrangian. This is called the zero
section.

Let S be a k dimensional submanifold of an n dimensional manifold X. The
conormal space at x € S is defined to be

NS ={¢eT;X|¢((v) =0, Yv e T, S}
The conormal bundle is
N*S={(z,§) e T"X|x € 5,6 € N} S}

Proposition 6. Let i : N*S — T*X be the inclusion, and let 7 be the tauto-
logical 1-form on 7*X. Then ¢*7 = 0.

As a corollary we have that for any submanifold S C X, the conormal bundle
N*S is a Lagrangian submanifold of T*X.

The notion of a lagrangian submanifold will also give us a method to discern
whether a given diffeomorphism is a symplectomorphism.

Let (M1, w1) and (M, ws) be two 2n-dimensional symplectic manifolds. Given
a diffeomorphism ¢ : M1 — M, does p*ws = wy?



Use the projection maps py : My x My — M; and po : M7 x My — Ms to creat
a form on M; x My given by

* *
W = p1wi + Paw2

which is closed since differential commutes with pullback and symplectic which
you can check by showing w?n # 0 using proposition 4. More generally

w = A1pjwi + Aapswe

is a symplectic form for all A;, Ao € R*. In particular examine the twisted
product
W = pjwi — p3wa
We define the graph of a diffeomorphism ¢ : M7 — Ms as follows
Ly :={(p,(p))lp € M1}

The submanifold I',, is an embedded image of M; in My x Ms, the embedding
being the map v : My — My x Ma by (p — (p, ¢(p)))

Proposition 7. The diffeomorphism ¢ : My — My is a symplectomorphism if
and only if I'y, is a Lagrangian submanifold of M; x M.

Proof. The graph is Lagrangian if and only if v*w = 0 but
YW ="piwi + 7 pawe = (p1 oY) wi — (p207) w2
but since p; o 7y is the identity on M; and ps o 7 is exactly ¢ we have
YO = wp — @ ws.

note that ¢ is a symplectomorphism if and only if wy — ¢*ws = 0. O

Darboux’s Theorem and Moser’s Trick

Just as any n-dimensional manifold looks locally like R™ any 2n-dimensional
symplectic manifold looks locally like (R?",w;).

Theorem 2. (Darboux) Let (M,wp) be a 2n-dimensional symplectic mani-
fold, and let p € M. Then there is a coordinate chart (Up, Z1, ..., Tn, Y1, -, Yn)
centered at py such that on Uy

n
W = Zd.ﬁl A dyi.
i=1

A chart with this property is called a Darboux chart and 1, ..., Zyn, Y1, ..., Yn are
called Darboux coordinates.



Proof. (sketch) Let p be an arbitrary point of M. Let pg = ¢(p) We need a
chart (Uy, ) such that ¢*(w;) = wp where wy is the standard form on R?*. This
is a local question so replace wy with (¢ =) *wy = wo(¢ (=), 1(—)). So w;
and wq are both forms on Uy. By a linear change of coordinates we can require
that wi|p, = wolpe-

Let n = w1 — wq since 7 is closed the poincare lemma says there is a smooth
1-form « on Uy such that da = —n. For each ¢t € R define a closed 2-form w; by
wy =wp +tn=(1—t)wo + tws.

Because wy|p, = wolp, is non degenerate for all t there is some neighborhood Uy
of po contained in Uy such that wy : TU; — T*U; is an isomorphism for all ¢.

Define a time-dependent vector field by V : J x Uy — TU; by V; = wt_l(oz).

Note: % = w; —wy = 1. Note: —n = do

= dw(Vi, =) = duv, (i) =
duy, (wi) + vy, (dwi) = Ly,wp. Thus Ly,w; + % = 0.

Associated to a time dependent vector field V; there exists a family of diffeo-
morphisms 6; : Uy — Uj called a time dependent flow such that v; = %9: o, L

Since 0 = 07 (Ly,w; + %t) = L (07 (w;)) then 0} (wy) = 05 (wo) = wo.
In particular 6*(w1) = wp. O
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