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Symplectic Linear Algebra

Let V be an m-dimensional real vector space and let ω : V × V → R be an
skew-symmetric bilinear map. We can also view ω as a map from V to V ∗ by

v 7→ ω(v,−)[w 7→ ω(v, w)]

Example 1. Let V = R2n let (x1, ..., xn, y1, ..., yn) be a basis for V . Where
xi = (0, ..., 1, .....0) has a 1 the ith position and yi = (0, ....., 1, ...0) has a 1 the
n+ ith position. Let (dx1, ..., dxn, dy1, ..., dyn) be the corresponding dual basis.
The map

ω1 =

n∑
i=1

dxi ∧ dyi

is skew-symmetric and bilinear. We will call (R2n, ω1) the standard symplectic
space.

Example 2. If dim(V ) = 2n, let (a1, b1, ..., an, bn) be a basis for V with corre-
sponding dual basis (α1, β1, ..., αn, βn) for V ∗. Then define ω by

ω =

n∑
i=1

αi ∧ βi

and note that the following conditions are satisfied: ω(ai, aj) = 0 = ω(bi, bj) for
all i, j from 1 to n and furthermore ω(ai, bj) = δi,j = −ω(bj , ai).

Associated to skew symmetric bilinear map we have the following subspace
U = {u ∈ V | ω(u, v) = 0, ∀v ∈ V }. Note that in the previous examples
U = {0}.

Proposition 1. Let V be a vector space with an skew-symmetric bilinear map
to R called ω. Let u1, ..., uk be a basis for U . This can be extended to a basis
of the whole space V by u1, ..., uk, e1, f1, ..., en, fn such that ω(ei, ej) = 0 =
ω(fi, fj) for all i, j from 1 to n and ω(ei, fj) = δi,j = −ω(fj , ei).

Proposition 2. The linear map ω : V → V ∗ is an isomorphism if and only if
U = {0}.

Suppose v is in the kernel of this map, then it must be in U so the injectivity
part of the statement is clear as is the forward direction. For surjectivity we
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will need the following proposition showing there is a standard form for such
skew symmetric bilinear maps.

We say that ω is symplectic if ω is nondegenerate, that is if ω : V → V ∗ is an
isomorphism, equivalently if U = {0}. In this case the dimension of V is always
even.

Let U = {0}. Then ω(fi,−) is the dual vector associated to ei and ω(ei,−) is
the dual vector associated to fi. To show the surjectivity of ω : V → V ∗, let
φ ∈ V ∗. It is simple to verify that φ(−) = ω(v,−) where

v =

n∑
i=1

φ(ei)fi + φ(fi)ei.

If S ⊂ V define the symplectic complement of S denoted Sω by

Sω = {v ∈ V | ω(v, w) = 0, ∀w ∈ S}.

Let S be a subspace of V . Applying the Rank-Nullity theorem to the map
ω : V → S∗ by sending v to ω(v,−)|S we obtain the following result.

Proposition 3. dim(V ) = dim(S) + dim(Sω).

We will say that if S is a subspace of a symplectic vector space then S is
symplectic if S ∩ Sω = {0}, that is S is non-degenerate. S is isotropic if
S ⊂ Sω, e.g. any collection of purely ai or purely bi, that is ω|S = 0. La-
grangian if S = Sω, i.e. Span(a1, ..., an) or Span(b1, ..., bn). Note that for a
Lagrangian subspace S, dim(S) = 1

2dim(V ). Co-isotropic if Sω is isotropic, e.g.
Span(a1, ..., an, b1, b2, b3).

Proposition 4. If dim(V ) = 2n then ω is symplectic if and only if the n-fold
wedge product ωn is non-zero. The top degree form 1

n!ω
n can serve as a volume

form and it is called the Liouville form on V .

Let (V, ω and (W, η) be symplectic vector spaces and L : V → W be a linear
isomorphism. Then L is called a symplectomorphism if L∗η = ω. By proposition
1 every symplectic vector space is symplectomorphic to (R2n, ω1) the standard
symplectic vector space of example 1.

Symplectic Manifolds

Let M be a smooth manifold. Let ω be a closed 2-form on M such that ωp is
symplectic on TpM for all p ∈M . We call (M,ω) a symplectic manifold and ω
the associated symplectic form on M . From the previous section we know M
must have even dimension and must be orientable.
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Example 3. Let M = R2n with linear coordinates (x1, ..., xn, y1, ..., yn). The
form

ω0 =

n∑
i=1

dxi ∧ dyi

is symplectic and the set {( ∂
∂x1

)p, ..., (
∂
∂xn

)p, (
∂
∂y1

)p, ..., (
∂
∂yn

)p} is a symplectic
basis of TpM

Example 4. Let M = Cn with coordinates z1, ..., zn then

ω =
i

2

n∑
i=1

dzk ∧ dz̄k

is symplectic.

Example 5. Let M = S2 ⊂ R3. Let p be a point on S2. Then ωp(u, v) =
〈p, u× v〉 for u, v ∈ TpS2 is symplectic.

Let (M,ω) be a symplectic manifold and F : N → M be a smooth immersion.
Then we say F is symplectic, isotropic, co-isotropic or Lagrangian if the sub-
space dFp(TpN) ⊂ TF (p)M has the corresponding property for each p ∈ N .

Let (M1, ω1) and (M2, ω2) be 2n-dimensional manifolds and ϕ : M1 →M2 be a
diffeomorphism. We say ϕ is a symplectomorphism if ϕ∗ω2 = ω1.

Symplectic Structure on the Cotangent Bundle

Theorem 1. If M is a smooth manifold, then there exists a canonical 1-form
τ on the cotangent bundle T ∗M such that −dτ is a symplectic form on T ∗M .
Furthermore this 1-form has the following property ∀σ ∈ Ω1(M) σ∗τ = σ.

If π : T ∗M →M is the usual projection then dπ : T (T ∗M)→ TM and for any
(p, φ) ∈ T ∗M we have a pointwise pullback dπ∗

(p,φ) : T ∗M → T ∗(T ∗M).

Define τ : T ∗M → T ∗(T ∗M) by

τ(p,φ) = dπ∗
(p,φ)(φ)

so that for v ∈ T(p,φ)(T ∗M) we have

τ(p,φ)(v) = φ(dπ(p,φ)(v)).

In local coordinates φ = ξidxi ∈ T ∗M , v = (
∑
αi

∂
∂xi

+
∑
βid

∂
∂ξi

) ∈ T (T ∗M)

and dπ( ∂
∂xi

) = ∂
∂xi

and dπ( ∂
∂ξi

) = 0 for all i.
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Thus τ(p,φ)(v) = ξidxi(dπ(
∑
αi

∂
∂xi

+
∑
βid

∂
∂ξi

)) = αiξi. Note that αiξi =

ξidxi(
∑
αi

∂
∂xi

+
∑
βid

∂
∂ξi

) and so locally τ(p,ξidxi) = ξidxi. Furthermore,

−dτ(p,ξidxi) =

n∑
i=1

dxi ∧ dξi.

The result that ∀σ ∈ Ω1(M) σ∗τ = σ is left as an exercise. Hint: σ is a section
of π.

Construction and Application of Lagrangian Sub-
manifolds

Proposition 5. Let M be a smooth n-manifold and σ ∈ Ω1(M). Then σ(M)
is a Lagrangian sub-manifold of T ∗M if and only if σ is closed.

Proof. Since dim(M) = n = 1
2dimT

∗M σ(M) is Lagrangian if and only if σ(M)
is isotropic, meaning σ∗ω = ω|σ(M) = 0. But

σ∗(ω) = −σ∗dτ = −d(σ∗τ) = −dσ

so σ(M) is Lagrangian if and only if σ is closed.

Example 6. Let σ0 be the section sending every point to the zero vector.
Clearly, σ∗

0ω = 0 and so σ0(M) must be Lagrangian. This is called the zero
section.

Let S be a k dimensional submanifold of an n dimensional manifold X. The
conormal space at x ∈ S is defined to be

N∗
xS = {ξ ∈ T ∗

xX|ξ(v) = 0, ∀v ∈ TxS}.

The conormal bundle is

N∗S = {(x, ξ) ∈ T ∗X|x ∈ S, ξ ∈ N∗
xS}

Proposition 6. Let i : N∗S → T ∗X be the inclusion, and let τ be the tauto-
logical 1-form on T ∗X. Then i∗τ = 0.

As a corollary we have that for any submanifold S ⊂ X, the conormal bundle
N∗S is a Lagrangian submanifold of T ∗X.

The notion of a lagrangian submanifold will also give us a method to discern
whether a given diffeomorphism is a symplectomorphism.

Let (M1, ω1) and (M2, ω2) be two 2n-dimensional symplectic manifolds. Given
a diffeomorphism ϕ : M1 →M2 does ϕ∗ω2 = ω1?
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Use the projection maps p1 : M1 ×M2 →M1 and p2 : M1 ×M2 →M2 to creat
a form on M1 ×M2 given by

ω = p∗1ω1 + p∗2ω2

which is closed since differential commutes with pullback and symplectic which
you can check by showing ω2n 6= 0 using proposition 4. More generally

ω = λ1p
∗
1ω1 + λ2p

∗
2ω2

is a symplectic form for all λ1, λ2 ∈ R×. In particular examine the twisted
product

ω̃ = p∗1ω1 − p∗2ω2

We define the graph of a diffeomorphism ϕ : M1 →M2 as follows

Γϕ := {(p, ϕ(p))|p ∈M1}

The submanifold Γϕ is an embedded image of M1 in M1 ×M2, the embedding
being the map γ : M1 →M1 ×M2 by (p 7→ (p, ϕ(p)))

Proposition 7. The diffeomorphism ϕ : M1 → M2 is a symplectomorphism if
and only if Γϕ is a Lagrangian submanifold of M1 ×M2.

Proof. The graph is Lagrangian if and only if γ∗ω̃ = 0 but

γ∗ω̃ = γ∗p∗1ω1 + γ∗p∗2ω2 = (p1 ◦ γ)∗ω1 − (p2 ◦ γ)∗ω2

but since p1 ◦ γ is the identity on M1 and p2 ◦ γ is exactly ϕ we have

γ∗ω̃ = ω1 − ϕ∗ω2.

note that ϕ is a symplectomorphism if and only if ω1 − ϕ∗ω2 = 0.

Darboux’s Theorem and Moser’s Trick

Just as any n-dimensional manifold looks locally like Rn any 2n-dimensional
symplectic manifold looks locally like (R2n, ω1).

Theorem 2. (Darboux) Let (M,ω0) be a 2n-dimensional symplectic mani-
fold, and let p ∈ M . Then there is a coordinate chart (U0, x1, ..., xn, y1, ..., yn)
centered at p0 such that on U0

ω0 =

n∑
i=1

dxi ∧ dyi.

A chart with this property is called a Darboux chart and x1, ..., xn, y1, ..., yn are
called Darboux coordinates.
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Proof. (sketch) Let p be an arbitrary point of M . Let p0 = ϕ(p) We need a
chart (U0, ϕ) such that ϕ∗(ω1) = ω0 where ω1 is the standard form on R2n. This
is a local question so replace ω0 with (ϕ−1)∗ω0 = ω0(ϕ−1(−), ϕ−1(−)). So ω1

and ω0 are both forms on U0. By a linear change of coordinates we can require
that ω1|p0 = ω0|p0 .

Let η = ω1 − ω0 since η is closed the poincare lemma says there is a smooth
1-form α on U0 such that dα = −η. For each t ∈ R define a closed 2-form ωt by
ωt = ω0 + tη = (1− t)ω0 + tω1.

Because ωt|p0 = ω0|p0 is non degenerate for all t there is some neighborhood U1

of p0 contained in U0 such that ωt : TU1 → T ∗U1 is an isomorphism for all t.

Define a time-dependent vector field by V : J × U1 → TU1 by Vt = ω−1
t (α).

Note: dωt

dt = ω1 − ω0 = η. Note: −η = dα = d(ω(Vt,−) = dιVt
(ωt) =

dιVt(ωt) + ιVt(dωt) = LVtωt. Thus LVtωt + dωt

dt = 0.

Associated to a time dependent vector field Vt there exists a family of diffeo-
morphisms θt : U1 → U1 called a time dependent flow such that vt = d

dtθ
∗
t ◦θ−1

t .

Since 0 = θ∗t (LVt
ωt + dωt

dt ) = d
dt (θ

∗
t (ωt)) then θ∗t (ωt) = θ∗0(ω0) = ω0.

In particular θ∗(ω1) = ω0.
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