Elliptic Operators and Analytic Index

Definition: Let $\Omega \subseteq \mathbb{R}^n$ be an open domain. A second order differential operator L given by

$$Lu = a_{ij}D^{ij}(u) + b_iD^i(u) + c(u)$$

is said to be elliptic (on Ω) if for all $\xi \in \mathbb{R}^n$, there exist $\lambda, \Lambda > 0$ such that

$$\lambda |\xi|^2 \le a_{ij}(x)\xi_i\xi_j \le \Lambda |\xi|^2$$

for all $x \in \Omega$. Equivalently, L is elliptic if the matrix a_{ij} is positive. If $\frac{\lambda}{\Lambda}$ is bounded, then L is said to be uniformly elliptic.

More generally, a differential operator of order k, which has the form

$$Lu = \sum_{|\alpha| \le k} a_{\alpha} D^{\alpha} u$$

is said to be elliptic if for all $x \in \Omega$ and for all $\xi \in \mathbb{R}^n$ we have that

$$\sum_{|\alpha|=k} a_{\alpha}(x)\xi^{\alpha} \neq 0$$

For a differential operator L, we can define the symbol of L to be the polynomial

$$p_L(x,\xi) = \sum_{|\alpha| \le k} a_{\alpha}(x)\xi^{\alpha}$$

where $\xi = (\xi^1, \dots, \xi^k)$. The principal symbol of L is the truncated polynomial

$$\sigma_L(\xi)(x) = \sum_{|\alpha|=k} a_\alpha(x)\xi^\alpha$$

Example: The most classical example of an elliptic operator is the Laplacian Δ , which is defined by

$$\Delta u = \nabla \cdot \nabla u = D^{jj}u$$

Of course here $a_{ij} = \delta_{ij}$, so it is easy to see that Δ is uniformly elliptic.

Definition: Let M be a smooth compact manifold. We say that $L : C^{\infty}(M) \to C^{\infty}(M)$ is a differential operator (on M) if L is of the form above in any chart U_{α} of M. Similarly, L is said to be elliptic if it satisfies the properties for ellipticity locally.

Remark: Of course, a differential operator L of order k can be considered as an operator from either $C^{\infty}(M)$ into itself or as an operator from $C^{k}(M)$ into C(M).

Example: Suppose that (M,g) is a Riemannian manifold. The Laplace-Beltrami operator Δ_g is given by

$$\Delta_g \varphi = \frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^i} \left(\sqrt{|g|} g^{ij} \frac{\partial \varphi}{\partial x^j} \right)$$

Note that if $M = \mathbb{R}^n$ and g is the standard Euclidean metric, then Δ_g agrees with our definition of Δ . Furthermore, one can check that $\Delta_g \varphi = \operatorname{div} \operatorname{grad} \varphi$ for suitable definitions of divergence and gradient on a Riemannian manifold, as is the case in \mathbb{R}^n .

Definition: We can define an inner product on $C^{\infty}(M)$ in the usual way via

$$\langle u,v\rangle = \int_M u\overline{v}dx$$

Here, dx is a smooth Borel measure on M (it is locally the Lebesgue measure). For a differential operator L, we can then define the adjoint of L in the usual way by requiring that $L^* : C^{\infty}(M) \to C^{\infty}(M)$ satisfy

$$\langle Lu, v \rangle = \langle u, L^*v \rangle$$

for all $u, v \in C^{\infty}(M)$.

Theorem (Fredholm): If M is compact and L is an elliptic operator on M, then ker L is finite-dimensional and $C^{\infty}(M) \ni u \in \operatorname{ran} L$ if and only if $\langle u, v \rangle = 0$ for all $v \in \ker L^*$.

This theorem is useful because it allows us to talk about the analytic indices of elliptic differential operators on compact smooth manifolds.

Definition: Let L be an elliptic operator on a compact smooth manifold M. The <u>(analytic) index</u> of L is defined to be

$$\operatorname{ind} L = \dim \ker L - \dim \ker L^*$$

Example: Let $M = \mathbb{S}^1 = \mathbb{R}/\mathbb{Z}$ and let $L = \frac{d}{dx} - \lambda$ for some $\lambda \in \mathbb{R}$. Elements of ker L are of the form $e^{\lambda x}$ if λ is an integer multiple of $2\pi i$ and zero otherwise. A simple computation shows that elements of ker L^* are then of the form $e^{\bar{\lambda}x}$ if $\lambda \in 2\pi i\mathbb{Z}$ and 0 otherwise, so L has analytic index 0.

Elliptic Complexes

Definition: Let M be a compact smooth manifold as before. Let E^k be a rank-k vector bundle over M. Let $d: C^{\infty}(E^k) \to C^{\infty}(E^{k+1})$ be a first-order differential operator. We say that the complex

$$C^{\infty}(M) \xrightarrow{d} C^{\infty}(E^1) \xrightarrow{d} \dots \xrightarrow{d} C^{\infty}(E^k) \xrightarrow{d} \dots$$

is a differential complex if $d^2 = 0$.

For $x \in M$ and $\xi \in T_x^*M$, we can define $\sigma_{\xi} : F_x^k \to F_x^{k+1}$ on the fibers of the E^k 's in a way that is analogous to the case for \mathbb{R}^n and then define $\sigma_d(x,\xi)$ to be the symbol of d by

$$\sigma_d(x,\xi)e = d(gs)(x)$$

where $g \in C^{\infty}(M)$ such that $dg_x = \xi, g(x) = 0$ and $s \in \Gamma(M, E^k)$ such that s(x) = e. We see that

$$\sigma_{d^2}(x,\xi) = \sigma_d(x,\xi)\sigma_d(x,\xi) = 0$$

which implies that $\sigma_{\xi}^2 = 0$. This gives us a complex

$$0 \xrightarrow{\sigma_{\xi}} E_x^1 \xrightarrow{\sigma_{\xi}} E_x^2 \xrightarrow{\sigma_{\xi}} \dots$$

We say that our differential complex is an elliptic complex if the complex we get on the fibers is exact for every $x \in M$ and every $\xi \in T_x^*M$.

Example (de Rham Complex): For a smooth compact manifold M, let $E^k = \Omega^k(M)$ - the space of differential k-forms on M. Let $d: \Omega^k(M) \to \Omega^{k+1}(M)$ be the exterior derivative defined in the usual way: for $\omega = f dx^1 \wedge \ldots \wedge dx^k$,

$$d\omega = \frac{\partial f}{\partial x^i} dx^i \wedge dx^1 \wedge \ldots \wedge dx^k = \frac{\partial f}{\partial x^{k+1}} dx^1 \wedge \ldots \wedge dx^{k+1}$$

One can check that in this case, $\sigma_{\xi}(d)(x,\xi)$ becomes $\cdot \wedge \xi$. One can then use this to check that the complex given by d is elliptic.

References:

- 1. Partial Differential Equations by Evans
- 2. Elliptic Partial Differential Equations of Second Order by Trudinger & Gilbarg
- 3. https://ocw.mit.edu/courses/mathematics/18-117-topics-in-several -complex-variables-spring-2005/lecture-notes/18117_lec20.pdf
- 4. http://math.mit.edu/ vwg/18965notes.pdf
- 5. https://en.wikipedia.org/wiki/Atiyah%E2%80%93Singer_index_theorem
- 6. https://en.wikipedia.org/wiki/Symbol_of_a_differential_operator