Elliptic Operators and Analytic Index

Definition: Let $\Omega \subseteq \mathbb{R}^{n}$ be an open domain. A second order differential operator L given by

$$
L u=a_{i j} D^{i j}(u)+b_{i} D^{i}(u)+c(u)
$$

is said to be elliptic (on Ω) if for all $\xi \in \mathbb{R}^{n}$, there exist $\lambda, \Lambda>0$ such that

$$
\lambda|\xi|^{2} \leq a_{i j}(x) \xi_{i} \xi_{j} \leq \Lambda|\xi|^{2}
$$

for all $x \in \Omega$. Equivalently, L is elliptic if the matrix $a_{i j}$ is positive. If $\frac{\lambda}{\Lambda}$ is bounded, then L is said to be uniformly elliptic.

More generally, a differential operator of order k, which has the form

$$
L u=\sum_{|\alpha| \leq k} a_{\alpha} D^{\alpha} u
$$

is said to be elliptic if for all $x \in \Omega$ and for all $\xi \in \mathbb{R}^{n}$ we have that

$$
\sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha} \neq 0
$$

For a differential operator L, we can define the symbol of L to be the polynomial

$$
p_{L}(x, \xi)=\sum_{|\alpha| \leq k} a_{\alpha}(x) \xi^{\alpha}
$$

where $\xi=\left(\xi^{1}, \ldots, \xi^{k}\right)$. The principal symbol of L is the truncated polynomial

$$
\sigma_{L}(\xi)(x)=\sum_{|\alpha|=k} a_{\alpha}(x) \xi^{\alpha}
$$

Example: The most classical example of an elliptic operator is the Laplacian Δ, which is defined by

$$
\Delta u=\nabla \cdot \nabla u=D^{j j} u
$$

Of course here $a_{i j}=\delta_{i j}$, so it is easy to see that Δ is uniformly elliptic.

Definition: Let M be a smooth compact manifold. We say that $L: C^{\infty}(M) \rightarrow C^{\infty}(M)$ is a differential operator (on M) if L is of the form above in any chart U_{α} of M. Similarly, L is said to be elliptic if it satisfies the properties for ellipticity locally.

Remark: Of course, a differential operator L of order k can be considered as an operator from either $C^{\infty}(M)$ into itself or as an operator from $C^{k}(M)$ into $C(M)$.

Example: Suppose that (M, g) is a Riemannian manifold. The Laplace-Beltrami operator Δ_{g} is given by

$$
\Delta_{g} \varphi=\frac{1}{\sqrt{|g|}} \frac{\partial}{\partial x^{i}}\left(\sqrt{|g|} g^{i j} \frac{\partial \varphi}{\partial x^{j}}\right)
$$

Note that if $M=\mathbb{R}^{n}$ and g is the standard Euclidean metric, then Δ_{g} agrees with our definition of Δ. Furthermore, one can check that $\Delta_{g} \varphi=\operatorname{div} \operatorname{grad} \varphi$ for suitable definitions of divergence and gradient on a Riemannian manifold, as is the case in \mathbb{R}^{n}.

Definition: We can define an inner product on $C^{\infty}(M)$ in the usual way via

$$
\langle u, v\rangle=\int_{M} u \bar{v} d x
$$

Here, $d x$ is a smooth Borel measure on M (it is locally the Lebesgue measure). For a differential operator L, we can then define the adjoint of L in the usual way by requiring that $L^{*}: C^{\infty}(M) \rightarrow C^{\infty}(M)$ satisfy

$$
\langle L u, v\rangle=\left\langle u, L^{*} v\right\rangle
$$

for all $u, v \in C^{\infty}(M)$.

Theorem (Fredholm): If M is compact and L is an elliptic operator on M, then $\operatorname{ker} L$ is finite-dimensional and $C^{\infty}(M) \ni u \in \operatorname{ran} L$ if and only if $\langle u, v\rangle=0$ for all $v \in \operatorname{ker} L^{*}$.

This theorem is useful because it allows us to talk about the analytic indices of elliptic differential operators on compact smooth manifolds.

Definition: Let L be an elliptic operator on a compact smooth manifold M. The (analytic) index of L is defined to be

$$
\operatorname{ind} L=\operatorname{dim} \operatorname{ker} L-\operatorname{dim} \operatorname{ker} L^{*}
$$

Example: Let $M=\mathbb{S}^{1}=\mathbb{R} / \mathbb{Z}$ and let $L=\frac{d}{d x}-\lambda$ for some $\lambda \in \mathbb{R}$. Elements of ker L are of the form $e^{\lambda x}$ if λ is an integer multiple of $2 \pi i$ and zero otherwise. A simple computation shows that elements of ker L^{*} are then of the form $e^{\bar{\lambda} x}$ if $\lambda \in 2 \pi i \mathbb{Z}$ and 0 otherwise, so L has analytic index 0 .

Elliptic Complexes

Definition: Let M be a compact smooth manifold as before. Let E^{k} be a rank- k vector bundle over M. Let $d: C^{\infty}\left(E^{k}\right) \rightarrow C^{\infty}\left(E^{k+1}\right)$ be a first-order differential operator. We say that the complex

$$
C^{\infty}(M) \xrightarrow{d} C^{\infty}\left(E^{1}\right) \xrightarrow{d} \ldots \xrightarrow{d} C^{\infty}\left(E^{k}\right) \xrightarrow{d} \ldots
$$

is a differential complex if $d^{2}=0$.
For $x \in M$ and $\xi \in T_{x}^{*} M$, we can define $\sigma_{\xi}: F_{x}^{k} \rightarrow F_{x}^{k+1}$ on the fibers of the E^{k} 's in a way that is analogous to the case for \mathbb{R}^{n} and then define $\sigma_{d}(x, \xi)$ to be the symbol of d by

$$
\sigma_{d}(x, \xi) e=d(g s)(x)
$$

where $g \in C^{\infty}(M)$ such that $d g_{x}=\xi, g(x)=0$ and $s \in \Gamma\left(M, E^{k}\right)$ such that $s(x)=e$. We see that

$$
\sigma_{d^{2}}(x, \xi)=\sigma_{d}(x, \xi) \sigma_{d}(x, \xi)=0
$$

which implies that $\sigma_{\xi}^{2}=0$. This gives us a complex

$$
0 \xrightarrow{\sigma_{\xi}} E_{x}^{1} \xrightarrow{\sigma_{\xi}} E_{x}^{2} \xrightarrow{\sigma_{\xi}} \ldots
$$

We say that our differential complex is an elliptic complex if the complex we get on the fibers is exact for every $x \in M$ and every $\xi \in T_{x}^{*} M$.

Example (de Rham Complex): For a smooth compact manifold M, let $E^{k}=\Omega^{k}(M)$ - the space of differential k-forms on M. Let $d: \Omega^{k}(M) \rightarrow \Omega^{k+1}(M)$ be the exterior derivative defined in the usual way: for $\omega=f d x^{1} \wedge \ldots \wedge d x^{k}$,

$$
d \omega=\frac{\partial f}{\partial x^{i}} d x^{i} \wedge d x^{1} \wedge \ldots \wedge d x^{k}=\frac{\partial f}{\partial x^{k+1}} d x^{1} \wedge \ldots \wedge d x^{k+1}
$$

One can check that in this case, $\sigma_{\xi}(d)(x, \xi)$ becomes $\cdot \wedge \xi$. One can then use this to check that the complex given by d is elliptic.

References:

1. Partial Differential Equations by Evans
2. Elliptic Partial Differential Equations of Second Order by Trudinger \& Gilbarg
3. https://ocw.mit.edu/courses/mathematics/18-117-topics-in-several -complex-variables-spring-2005/lecture-notes/18117_lec20.pdf
4. http://math.mit.edu/ vwg/18965notes.pdf
5. https://en.wikipedia.org/wiki/Atiyah\�\�\�Singer_index_theorem
6. https://en.wikipedia.org/wiki/Symbol_of_a_differential_operator
