## INTERMEDIATE GEOMETRY AND TOPOLOGY EXERCISE SHEET 1, OCTOBER 2019

## 1. Chern-Simons 3-Form

Fix $G=S U(2)$ and $\mathfrak{g}=\mathfrak{s u}(2)$ the corresponding Lie algebra.
(a) Show that, for $A \in \Omega^{1}(N, \mathfrak{g})$ a connection 1-form in a trivial $G$-bundle over a manifold $N$, one has

$$
\begin{equation*}
\frac{1}{2} \operatorname{tr} F_{A} \wedge F_{A}=d \underbrace{\operatorname{tr}\left(\frac{1}{2} A \wedge d A+\frac{1}{6} A \wedge[A, A]\right)}_{\omega_{C S}} \tag{1}
\end{equation*}
$$

where $F_{A}=d A+\frac{1}{2}[A, A] \in \Omega^{2}(N, \mathfrak{g})$ is the curvature. The 3-form $\omega_{C S}$ appearing on the r.h.s. is called the Chern-Simons 3 -form.
(b) [Optional.] Find the Chern-Simons $(2 k-1)$-form $\omega_{C S}^{2 k-1}$ - a differential polynomial in $A$ satisfying

$$
\frac{1}{k!} \operatorname{tr}\left(F_{A}\right)^{\wedge k}=d \omega_{C S}^{2 k-1}
$$

(c) For $M$ an oriented closed 3-manifold, consider the "Chern-Simons action functional" - a function on the space of connections in the trivial principal $G$-bundle on $M$ given by

$$
\begin{equation*}
S_{C S}(A)=\frac{1}{(2 \pi)^{2}} \int_{M} \operatorname{tr}\left(\frac{1}{2} A \wedge d A+\frac{1}{6} A \wedge[A, A]\right) \tag{2}
\end{equation*}
$$

For $A^{g}=g A g^{-1}+g d g^{-1}$ the connection acted on by a gauge transformation (automorphism of the principal bundle) given by $g: M \rightarrow G$, prove that ${ }^{1}$

$$
\begin{equation*}
S_{C S}\left(A^{g}\right)-S_{C S}(A) \in \mathbb{Z} \tag{3}
\end{equation*}
$$

(d) In the setting of (c), let $A$ be a connection 1-form on $M$. Show that the directional derivative

$$
\left.\frac{d}{d t}\right|_{t=0} S_{C S}(A+t \alpha)
$$

vanishes for arbitrary $\mathfrak{g}$-valued 1 -form $\alpha$ if and only if the connection $A$ is flat.

[^0]
## 2. Lagrangian Grassmanian

For a symplectic vector space $V$, consider the space $\mathrm{LG}(V)$ of Lagrangian vector subspaces of $V$ - the "Lagrangian Grassmanian."
(a) Assuming $\operatorname{dim} V=2 n$, find the dimension of $\mathrm{LG}(V)$. Show that $\mathrm{LG}(V)$ is a smooth compact manifold.
(b) Describe explicitly $\operatorname{LG}\left(\mathbb{R}^{2}\right)$, with $\mathbb{R}^{2}$ the standard symplectic plane.
(c) Show that, for $V=\mathbb{R}^{2 n}$, the Lagrangian Grassmanian can be identified with the homogeneous space $U(n) / O(n) \bigsqcup^{2}$

## 3. Moduli spaces of flat connections (flat bundles)

Recall that, for $M$ a connected manifold and $G$ a Lie group, the moduli space of flat bundles has the following realization:

$$
\begin{equation*}
\mathcal{M}_{\text {flat }}(M, G)=\operatorname{Hom}\left(\pi_{1}(M), G\right) / G \tag{4}
\end{equation*}
$$

where Hom stands for group homomorphisms and quotient by means passing to the orbits of the action of $G$ on homs induced by action of $G$ on (target) $G$ by conjugation. The r.h.s. is understood as the set of orbits equipped with quotient topology.
(a) Show that $\mathcal{M}_{\text {flat }}\left(S^{1}, G\right)=G / G$ is the set of conjugacy classes of $G$. Show that for $G=S U(2)$, one gets

$$
\mathcal{M}_{\text {flat }}\left(S^{1}, S U(2)\right)=\frac{\left\{\left.\left(\begin{array}{ll}
e^{i \theta} & 0 \\
0 & e^{-i \theta}
\end{array}\right) \right\rvert\, \theta \in \mathbb{R} / 2 \pi \mathbb{Z}\right\}}{\theta \sim-\theta}
$$

Thus, points of $\mathcal{M}_{\text {flat }}\left(S^{1}, S U(2)\right)$ are in bijection with points on the interval $[0, \pi] \ni \theta$, where the isotropy subgroup/stabilizer (the subgroup of $G$ leaving invariant the given homomorphism $\left.\pi_{1}\left(S^{1}\right) \rightarrow G\right)$ is $U(1)$ (diagonal matrices of unit determinant) for $0<\theta<\pi$ and is the entire $S U(2)$ for $\theta=0, \pi$.
(b) Find explicitly $\mathcal{M}_{\text {flat }}($ Klein bottle, $S U(2)) 4^{3}$
(c) Show that, for $\Sigma$ a closed oriented surface of genus $g$, the moduli space with coefficients in $U(1)$ is a $2 g$-torus:

$$
\mathcal{M}_{\text {flat }}(\Sigma, U(1))=\underbrace{S^{1} \times \cdots \times S^{1}}_{2 g}
$$

[^1]
[^0]:    ${ }^{1}$ Hint: use ap. An oriented closed 3 -manifold $M$ is necessarily null-cobordant, i.e. is a boundary of some compact 4-manifold $N_{+}$. Extend $A$ to a connection $A_{+}$over $N_{+}$and extend $A^{g}$ to a connection $A_{-}$over $N_{-}-$a copy of $N_{+}$with opposite orientation. Then $A_{+}$and $A_{-}$ glue into a connection $\tilde{A}$ in a bundle $\tilde{\mathcal{P}}$ over the closed 4-manifold $N=N_{+} \cup_{M} N_{-}$defined by a transition function $g$ over (a thickening of) $M$. Finally, compute $\frac{1}{8 \pi^{2}} \int_{N} \operatorname{tr} F_{A} \wedge F_{A}$ : on the one hand it reduces by Stokes' and (1) to the l.h.s. of (3). On the other hand, it is the Chern-Weil representative of the second Chern class of $\tilde{\mathcal{P}}$ paired with the fundamental class of $N$. Hence, it is an integer!

[^1]:    2 The solution in on p. 22 in https://math.berkeley.edu/~alanw/GofQ.pdf
    3 Answer: $\mathcal{M}_{\text {flat }}($ Klein bottle, $G)=\frac{\left\{(x, y) \in G \mid y^{-1}=x y x^{-1}\right\}}{(x, y) \sim\left(g x g^{-1}, g y g^{-1}\right)}$. For $G=S U(2)$, the equivalence classes in $\mathcal{M}_{\text {flat }}$ can be represented by pairs $\left(x=e^{i \theta \sigma_{1}}, y=e^{i \phi \sigma_{3}}\right)$ where $\sigma_{3}:=$ $\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right), \sigma_{1}:=\left(\begin{array}{cc}0 & 1 \\ 1 & 0\end{array}\right)$ and the admissible values for $\theta, \phi$ are: $(\phi, \theta) \in[0, \pi] \times\left\{\frac{\pi}{2}\right\} \cup$ $\{0\} \times[0, \pi] \cup\{\pi\} \times[0, \pi]$. What are the isotropy subgroups for different equivalence classes here?

