Computing N_{d} using intersection theory on the Kontsevich space $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$
 Fall 2019, Intermediate Geometry and Topology

Wern Yeong

November 11, 2019

Strategy:

(1) Recall that $N_{d}=\#$ degree- d rational plane curves passing through $3 d-1$ general points in \mathbb{P}^{2}.
(2) Define a curve $Y \subseteq \bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$.
(3) Intersect Y with boundary components of $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$.
(c) Use linear equivalence (Keel) relations.

Set-up.

Let $n=3 d($ not $3 d-1)$.
Label the marked points by $\{1,2, \ldots, n-4, q, r, s, t\}$.
Recall that we have the forgetful morphism

$$
\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right) \rightarrow \bar{M}_{0,\{q, r, s, t\}}
$$

Pulling back the boundary points of $\bar{M}_{0,\{q, r, s, t\}}$ gives Keel relations in $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$:

$$
\sum_{\substack{d_{1}+d_{2}=d \\ q, r \in A \\ s, t \in B}} D\left(A, B ; d_{1}, d_{2}\right)=\sum_{\substack{d_{1}+d_{2}=d \\ q, s \in A \\ r, t \in B}} D\left(A, B ; d_{1}, d_{2}\right)=\sum_{\substack{d_{1}+d_{2}=d \\ q, t \in A \\ r, s \in B}} D\left(A, B ; d_{1}, d_{2}\right) .
$$

Define the curve Y.

Let $z_{1}, \ldots, z_{n-4}, z_{s}, z_{t}$ be general points and let I_{q}, I_{r} be general lines in \mathbb{P}^{2}. Then

$$
Y=\rho_{1}^{-1}\left(z_{1}\right) \cap \cdots \cap \rho_{n-4}^{-1}\left(z_{n-2}\right) \cap \rho_{q}^{-1}\left(I_{q}\right) \cap \rho_{r}^{-1}\left(I_{r}\right) \cap \rho_{s}^{-1}\left(z_{s}\right) \cap \rho_{t}^{-1}\left(z_{t}\right)
$$

is a curve in $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$.
Sanity check:

- $\operatorname{dim} \bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)=\operatorname{dim} \mathbb{P}^{2}+\int_{d[\text { line }]} c_{1}\left(T \mathbb{P}^{2}\right)+n-3=$ $2+3 d+n-3=2 n-1$.
- codim $Y=2(n-2)+1(2)=2 n-2$ because there are $n-2$ points (which have codim 2) and 2 lines (which have codim 1).

Intersect Y with boundary components of $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$.

Bertini + general position of the points and lines \Longrightarrow

- Y is a nonsingular curve in the automorphism-free locus.
- Y intersects all boundary divisors transversally at general points of the boundary.
A point in $Y \cap D\left(A, B ; d_{1}, d_{2}\right)$ with $q, r \in A$ and $s, t \in B$ is represented by a pointed map $\mu: C_{A} \cup C_{B} \rightarrow \mathbb{P}^{2}$.

Now we split into cases to count these pointed maps.

Intersect Y with boundary components of $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$.

Case I: $d_{1}=0, d_{2}=d$.

- μ maps C_{A} to the point $I_{q} \cap I_{r}$.
- If there is some point other than q, r in A, then μ maps that point to $I_{q} \cap I_{r}$, which contradicts the assumption that the points and lines lie in general position.
- Thus $Y \cap D(A, B ; 0, d) \neq \emptyset$ only when $A=\{q, r\}$.
- μ takes the $3 d-2$ points in B to the $3 d-2$ general points in \mathbb{P}^{2}.
- μ takes $C_{A} \cap C_{B}$ to $I_{q} \cap I_{r}$.
- Therefore $\# Y \cap D(\{q, r\},\{1, \ldots, n-4, s, t\} ; 0, d)=N_{d}$.

Intersect Y with boundary components of $\bar{M}_{0, n}\left(\mathbb{P}^{2}, d\right)$.

Case II: $1 \leq d_{1} \leq d-1$.

- $Y \cap D\left(A, B ; d_{1}, d_{2}\right) \neq \emptyset$ only when $|A|=3 d_{1}+1$ due to general position.
- There are $\binom{3 d-4}{3 d_{1}-1}$ partitions such that $q, r \in A, s, t \in B$ and $|A|=3 d_{1}+1$.
- For each partition, $\# Y \cap D\left(A, B ; d_{1}, d_{2}\right)=N_{d_{1}} N_{d_{2}} d_{1}^{3} d_{2}$:
- \# choices of $\mu\left(C_{A}\right)$ (discounting $\left.q, r\right)=N_{d_{1}}$.
- \# choices of $\mu\left(C_{B}\right)=N_{d_{2}}$.
- \# choices of $\mu(q)=\# \mu\left(C_{A}\right) \cap I_{q}=\operatorname{deg}\left(\mu\left(C_{A}\right)\right)=d_{1}$.
- \# choices of $\mu(r)=\# \mu\left(C_{A}\right) \cap I_{r}=\operatorname{deg}\left(\mu\left(C_{A}\right)\right)=d_{1}$.
- \# choices of $C_{A} \cap C_{B}=\# \mu\left(C_{A}\right) \cap \mu\left(C_{B}\right)$
$=\operatorname{deg}\left(\mu\left(C_{A}\right)\right) \cdot \operatorname{deg}\left(\mu\left(C_{B}\right)\right)=d_{1} d_{2}$.
Case III: $d_{1}=d, d_{2}=0 . Y \cap D\left(A, B ; d_{1}, d_{2}\right)=\emptyset$ due to general position.

Use linear equivalence (Keel) relations.

Summing all the cases,

$$
\begin{aligned}
\# Y \cap D(q, r \mid s, t) & =\sum_{\substack{d_{1}+d_{2}=d \\
q, r \in A \\
s, t \in B}} D\left(A, B ; d_{1}, d_{2}\right) \\
& =N_{d}+\sum_{\substack{d_{1}+d_{2}=d \\
d_{1}, d_{2}>0}} N_{d_{1}} N_{d_{2}} d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1} .
\end{aligned}
$$

Similar calculation gives

$$
\# Y \cap D(q, s \mid r, t)=\sum_{\substack{d_{1}+d_{2}=d \\ d_{1}, d_{2}>0}} N_{d_{1}} N_{d_{2}} d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2} .
$$

Use linear equivalence (Keel) relations.

By Keel relations, these numbers equal, so we get the recursive formula:

$$
N_{d}=\sum_{d_{1}+d_{2}=d} N_{d_{1}} N_{d_{2}}\left(d_{1}^{2} d_{2}^{2}\binom{3 d-4}{3 d_{1}-2}-d_{1}^{3} d_{2}\binom{3 d-4}{3 d_{1}-1}\right) .
$$

Note that this is the same formula obtained from computation using quantum cohomology.

Reference

Section 0.6 of "Notes On Stable Maps And Quantum Cohomology" by Fulton and Pandharipande.

