

Proof of THM Consider (Ur, 4r) - chard around a. Then if X=ZCi(x) Dx; the eq. $De_{t}\left(\frac{d}{dt}\right) = Xe(t)$ can be written as a sys. of ODEs $\frac{dx_i}{dt} = C_1(x_1, \dots, x_n).$ Dy Picard-Lindelöf, 3! sol. on some intrual with init. cond. $(x_1(a), \dots, x_n(a)) = \Psi_{\gamma}(a)$. Suprose P,E': (2, p) -> M any two integral curves with (0)=4'(0)= a. Vxc(x,p), : lervel to, #J is compect => can be covered by a fin. number of coord. charles, in each of which we apply P-L to neverals [0, 2,], [2, 2], ..., [2, x]. Uniqueness => q=q' on [0, di] ~ on [di, di] ~ ~ ~ on [0, x] => q=q' everythere - then we dake the maximal interval on which we can define 9. · To fud the 1-paran. group of diffeo, ve nov let a EM vary. In Ex# above, the integral curve through (a, a) was to Ctranand. This defres the group of diffes (4 (x,,x2) = (+ x, , x2). (11) Theorem? Let X be a vector field on a mod M and for (t, x) E IR * M, let Q(4,x)=Qt(x) be the maximal integral curve of X through a. Then A the map (L,x) -> et (x) :s snooth 2 qt o qs = qt + 5 wherever the maps are defined. Bit M is compact, then et (x) is defined on R × M and gives a one-parameter group of diffeomorphisms. We need the following result on smooth dependence of solutions on the initial conditions: $THM^{**}(10.7: H: + di:n) If f: [to-a, to+a] \times D(x_0, b) \longrightarrow \mathbb{R}^{2} : S C^{k}, k \ge 1, and$ $\frac{d}{dt} d(t,x) = f(t, d(t,x)), \quad d(t_0,x) = x, \quad then \quad d:s \quad also C^{k}.$ (case k = co : f e C => & depends snoothly on mid. cond.) > defined in an open nothed of 1403 × 15 (k,b) Proof of THM @ By THM*, Va EM we have an intral (2(a), p(a)) on which maximal integral curve is defined. P-L THM (local existince) + continuous alre dependence on init. conditions in a north of a. (THM 10.5 in Kitchin) also implies that there is a solution for init. conditions in a nelid of a.

So, the sect

$$V = \{(1,x) \in \mathbb{R} : M : k \in (u(n), p(u))\}$$
is open. \mathbb{P}
This the red on which $\{(1, 0) = 0\}$ must ally defined
 \mathbb{P} small dependence that the says that $(1, u) \to 0$ this is the unique into surve through $(0, 0)$
 \mathbb{P} small dependence that the says that $(1, u) \to 0$ this is the unique into surve through $(0, 0)$
 \mathbb{P} conduct $\mathbb{P}_{0} \circ \mathbb{P}_{0}(x)$. $\mathbb{P}^{u} = 1$, $uxy + u = 1$ this is the unique into surve through $(0, 0)$
 \mathbb{P} conduct $\mathbb{P}_{0} \circ \mathbb{P}_{0}(x)$. $\mathbb{P}^{u} = 1$, $uxy + u = 1$ this is the unique into surve through $(0, 0)$
 \mathbb{P} conduct $\mathbb{P}_{0} \circ \mathbb{P}_{0}(x)$. $\mathbb{P}^{u} = 1$, $uxy + u = 1$ this is the unique into surve through $(0, 0)$
 \mathbb{P} conduct $\mathbb{P}_{0} \circ \mathbb{P}_{0}(x) = 1$ and \mathbb{P} is presty from the interve if is defined.
 \mathbb{P} conduct the costs of intervel ($\mathbb{P}(0, 0)$ contency 0 and conflicted Up \mathbb{C} M
 \mathbb{P}^{1} $\mathbb{P}(\mathbb{P}) = \mathbb{P}^{1}$ and \mathbb{P}^{1} $\mathbb{P}(\mathbb{P})$ $\mathbb{P}^{1}(\mathbb{P})$ and $\mathbb{P}^{1}(\mathbb{P})$ is defined on $(\mathbb{P}(0, 1), \mathbb{P}(1, 1) \times \mathbb{Q})$ and $\mathbb{P}^{1}(\mathbb{P}^{1}(1, 1) \times \mathbb{Q})$
 \mathbb{P}^{1} $\mathbb{P}(\mathbb{P}^{1}(1, 1) \times \mathbb{Q})$ $\mathbb{P}^{1}(\mathbb{P}^{1}(1, 1) \times \mathbb{Q})$ and $\mathbb{P}^{1}(\mathbb{P}^{1}(1, 1) \times \mathbb{Q})$ and $\mathbb{P}^{1}(\mathbb{P}^{1}(1, 1) \times \mathbb{Q})$
 \mathbb{P}^{1} $\mathbb{P}(\mathbb{P}^{1}(1, 1) \times \mathbb{P})$ $\mathbb{P}^{1}(\mathbb{P}(1, 1), \mathbb{P})$ is defined on $(\mathbb{P}^{1}(1, 1), \mathbb{P})$ is $\mathbb{P}(1, 1)$ is defined on $(\mathbb{P}^{1}(1, 1), \mathbb{P})$ is $\mathbb{P}(1, 1, 1)$ is defined in the united value in the value interve in the value in the value interve in \mathbb{P} is $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$.
 $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$ is defined in $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$ is $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$.
 $\mathbb{P}(1, 1) = \mathbb{P}(1, 1) = \mathbb{P}(1, 1)$ is $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$ is $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$.
 $\mathbb{P}(1, 1) = \mathbb{P}(1, 1) = \mathbb{P}(1, 1) = \mathbb{P}(1, 1)$ is $\mathbb{P}(1, 1) = \mathbb{P}(1, 1)$