LAST TIME

- X - vector field on M

$$
\left.\begin{array}{rl}
\leadsto X: C^{\infty}(M) & \rightarrow C^{\infty}(M) \\
\text { sit } X(f g) & =f X(g)+g x(f)
\end{array}\right\}- \text { derivation }
$$

Lie bracket $[X, Y]=X_{0} Y-Y_{0} X \quad$-new $\begin{aligned} & \text { uedor } \\ & \text { field }\end{aligned}$ as operators on $C^{\infty}(m)$

A vector bundle

$$
\begin{aligned}
E^{L^{P}} \text { is the data of } & - \text { a manifold } E \text { ("total specie") } \\
& \text { - a manifold } M \text { ("base") } \\
& \text {-projection } P: E \rightarrow M \text { (smooth subjective }
\end{aligned}
$$

such that - $\underset{M}{\forall x}, P^{-1}(x)$ is a m-dim. vector race

- $\forall x \in M$ heres a nbhd U and a differ $\left.\psi_{u}: p^{-1}(U) \cong U \times \mathbb{R}^{m}\right\}$
sit ψ_{u} mass $p^{-1}(y)$ into $\{y\} \times \mathbb{R}^{m}$

$$
\forall y \in u
$$

as a linear isomorphism.
def The Lie bracket of vector fields X, Y is the vector field $[X, Y]$.
Ex; $M=\mathbb{R}, x=f \frac{d}{d x} \quad, y=g \frac{d}{d x} \quad \Rightarrow[x, y]=\left(f g^{\prime}-g f^{\prime}\right) \frac{d}{d x}$

One-parameter groups of diffeomarphsms
intuition:

Lind velocity
vecheo fill d

$$
\begin{aligned}
& \text { vector file } \\
& \text { on } s^{2}
\end{aligned}
$$

$$
\text { on } S^{2}
$$

moves a particle at x to a new pout $\varphi_{t}(x)$
after time t. after timon s, it is at

$$
\left.\varphi_{s}\left(\varphi_{t}(x)\right)=\varphi_{s+1}(x)\right)
$$

def A one-rarameter group of difformar phisuous" of" a manifold M

$$
\text { is a smooth map } \varphi \cdot \mathbb{R} \times M \rightarrow M \text { sit. }
$$

- $\varphi_{1}: M \rightarrow \mu$ is $\quad(t, x) \longmapsto \varphi_{t}(x)$
- $\varphi_{t}: M \rightarrow M$ is a diffcomorplitom
- $\varphi_{0}=$ id

$$
\cdot \varphi_{s+t}=\varphi_{s} \circ \varphi_{t}
$$

ideai a vector fed giver rise to a 1- pram gro of differ, under certain assumptions.

- Given a 1-ruarangre of differ φ_{t}, we can produce a veda field out of $\cdot t$:
for $f \in C^{\infty}(M)$, set $X_{a}(f):=\left.\frac{d}{d t}\right|_{t=0} f\left(P_{t}(a)\right)$
- this X_{a} satisfies Leibnitz property: $X_{a}(f g)=\left.\frac{d}{d t}\right|_{t=0} f\left(\varphi_{t}(a)\right) g\left(\varphi_{t}(a)\right)$

$$
\begin{aligned}
& u_{2} \varphi_{0}\left(a_{a}=a-\left.f(a) \frac{d}{d t}\right|_{=0} g\left(\varphi_{t}(a)\right)+\left.g(a) \frac{d}{d t}\right|_{t=0} f\left(\varphi_{t}(a)\right)\right. \\
& =f(a) X_{a}(g)+g(a) X_{a}(f)
\end{aligned}
$$

$\Rightarrow X_{a}$ is a tangent vector at a.

- Locally: $\varphi_{+}\left(x_{1}, \ldots, x_{n}\right)=\left(y,(t, x), \ldots, y_{n}(t, x)\right)$

$$
\begin{aligned}
& \left.\frac{d}{d t}\right|_{t=0} f\left(y_{1}, \ldots, y_{-}\right)=\sum_{i} \frac{\partial f}{\partial y_{i}}(y) \underbrace{\left.\frac{d y_{i}}{d t}(x)\right|_{t=0}}_{c_{i}(x)}=\sum_{i} c_{i}(x) \frac{\partial f}{\partial x_{i}}(x)=X(f) \\
& \text { with } X=\sum_{i} c_{i}(x) \frac{\partial}{\partial x_{i}}
\end{aligned}
$$

- vector full.
- We vent to revere their process and go from a vector field to the differmophism. - First, we wart to track the "trajectory of a single perticle".
def An integral curve of a vectorkeld X is a smooth map

Example $M=\mathbb{R}^{2}$ with coordinates (x, y)

and $X=\frac{\partial}{\partial x}$. The derivative $D \varphi$ of a smooth fan. $\varphi(t)=(x(t), y(t))$
is $D \varphi+\left(\frac{d}{d t}\right)=\frac{d x}{d t} \frac{\partial}{\partial x}+\frac{d y}{d t} \frac{\partial}{\partial y}$. $\quad \rho_{0}$, the equation (t) is:

Theorem* Given a vector field X on a manifold M and $a \in M$, there exists $\frac{\text { hivique }}{a} \frac{\text { maximal }}{1}$ integral curve of $X \quad$ with $\varphi(0)=a$.
ie. the interval (α, p) is maximal
for the proof, we need
 and suppose $\&$ satisfies Lipschitz condition $\left\|f\left(t, x_{1}\right)-f\left(t, x_{2}\right)\right\| \leq L\left\|x_{1}-x_{2}\right\|$. (for some L "Lapscita constant")
If $\lambda=\sup |f(t, x)|$ and $h=\min (a, b / \lambda)$, then the differential equation $\frac{d x}{d t}=f(t, x), x\left(t_{0}\right)=x_{0}$ has a unique solution for $\left|t-t_{0}\right| \leq h$.

Proof of TH M ${ }^{*}$ Consider $\left(U_{r}, \psi_{r}\right)$-chart around a. Then if $X=\sum_{i} c_{i}(x) \frac{\partial{ }^{3}}{\partial x_{i}}$, the eq. $D \varphi_{t}\left(\frac{d}{d t}\right)=X_{\varphi(t)}$ can be written as a syr. of ODEs
$\frac{d x_{i}}{d t}=C_{1}\left(x_{1}, \ldots, x_{n}\right)$. Dy Picard-Lindelïf, \exists ! sol. on some interval with init. card. $\left(x_{1}(0), \cdots, x_{n}(0)\right)=\psi_{r}(a)$.
Suppose $\varphi, \varphi^{\prime}:(\alpha, \rho) \rightarrow M$ an two integral carver with $\varphi(0)=\varphi^{\prime}(0)=a_{0} \quad \forall x \in(\alpha, \rho)$, interval $[0, k]$ is compact \Rightarrow can be covered by a fu.number of cord. chats, in each of which we caaprly P-L to intervals $\left[0, \alpha_{1}\right],\left[\alpha_{1}, \alpha_{2}\right], \ldots,\left[\alpha_{1}, x\right]$.
$U_{n i q u e r e s s} \Rightarrow \varphi=\varphi^{\prime}$ on $[0, \alpha$,

$$
\left[\begin{array}{l}
{\left[0, \alpha_{1}\right]} \\
\sim \operatorname{an}\left[\alpha_{1}, \alpha_{2}\right] \rightarrow \ldots \sim \text { on }[0, x] \Rightarrow \varphi=\varphi^{\prime} \text { evergotere }
\end{array}\right.
$$

\rightarrow then we take maximal :nte-jal on which we can define φ.

- Tofnd the 1 -pram. group of differ, we nu let $a \in M$ vary. I, Ex\# above, the integral curve through $\left(a_{1}, a_{2}\right)$ was $t \mapsto\left(t+a_{1}, a_{2}\right)$. This defies the group of differ $\varphi_{1}\left(x_{1}, x_{2}\right)=\left(t+x_{1}, x_{2}\right)$.
Theorem Let X be a vector field on a abd M and fer $(t, x) \in \mathbb{R} \times M$, let $\varphi(t, x)=\varphi_{t}(x)$ be the maximal integral curve of X through x. Then
(1) the man $(t, x) \longmapsto \varphi_{t}(x)$ is smooth
(2) $\varphi_{t} \circ \varphi_{s}=\varphi_{t+s}$ wherever the maps are defined.
(3) If M is compact , then $\varphi_{t}(x)$ is defined on the $\frac{\text { a tine }}{\mathbb{R}} \times M$ and gives a one-parameter group of diffeonorptions.
we need the following result on smooth dependence of solutions on the initial conditions:

1) $\frac{T H M^{* *}}{}\left(10.7\right.$ in $\left.H \cdot+t_{\text {chin }}\right)$ If $f:\left[t_{0}-a, t_{0}+a\right] \times \overline{B\left(x_{0}, b\right)} \rightarrow \mathbb{R}^{n}$ is $C^{k}, k \geqslant 1$, and 3) $\frac{d}{d t} \alpha(t, x)=f(t, \alpha(t, x)), \quad \alpha\left(t_{0}, x\right)=x$, then α is also C^{k}.
(case $k=\infty: f \in C^{\infty} \Rightarrow \alpha$ deeds snootily on nit. cod.) of $\{t,\}_{0} \times T^{\circ}\left(x_{x}, b\right)$

Proof of THM@ By THM*, $\forall a \in M$ we have an interval ($\alpha(a)$, pl)) on which maximal integral curve is defied. P-L THM (local existace) decedmetmoons ant and ito implies that there is a solution for witiconditions in a abd of a.

So, the set
$V=\{(t, x) \in \mathbb{R} \times M: t \in(\alpha(x), \rho(x))\}$ is open.

- This the ret on which $\varphi_{f}(x)$ is maxinally defued

(1) Smoth deperdence thm $* *$ says that $(t, x) \longmapsto \varphi_{+}(x)$ is smoth.
but $\varphi_{t+s}(x)$ is also an integrel weve acesing throgh $\varphi_{s}(x)$ at $t=0 \Rightarrow \varphi_{t} \circ \varphi_{S}(x)=\varphi_{\text {tes }}(x)$
$A l_{\text {so: }} \varphi_{+} \circ \varphi_{-t}=1 d \Rightarrow$ we have a diffeo wherever it is defued.
(3) Consider the $\operatorname{cas}^{\text {wlex }} M^{\text {is }}$ ompact. <porsibly non-max.iteruel
$\forall x \in M$ we have an pren uterval $(\tilde{\alpha}(x), \tilde{\rho}(x))$ contaning 0 and apphihd $U_{x} \subset M$
s.t. $\varphi_{t}(g)$ is defred on $(\tilde{Z}(x), \tilde{\rho}(x)) \times U_{x}$. Cover M by $\left\{U_{x}\right\}_{x \in M}$ and
take a finte rabcoverng $U_{x_{1}, \ldots}, U_{x_{N}}$; set $I=\bigcap_{i=1}^{N}\left(\widetilde{\alpha}\left(x_{i}\right), \tilde{\rho}\left(x_{i}\right)\right)$-open int-va)
Thes, for $t \in I$, we have $\varphi_{t}: I \times M \rightarrow M$, contaning 0 . defning (porsibly non-marinal) inticurve threugh each $x \in M$, vith $\varphi_{0}(x)=x$.
We aced to extend to all real values t.
- defne $\varphi_{t}=\left(\varphi_{t / n}\right)^{n}$ multzelication $=$ comprosition
where n :s large enough, so that $\frac{t}{n} \in I$.
- this is well-defned, if we choose m sit $\frac{t}{m} \in I$, he-

$$
\begin{aligned}
&\left(\varphi_{t / m}\right)^{m}=\left(\left(\varphi_{\frac{t}{m \cdot n}}\right)^{n}\right)^{m}=\left(\left(\varphi_{t}^{m \cdot n}\right)^{m}\right)^{n}=\left(\varphi_{t / n}\right)^{n} \\
&\left(\frac{\varphi_{t}}{m \cdot n}\right)^{n \cdot m} / 1
\end{aligned}
$$

- compatiblevith comporiton:

$$
\varphi_{t} \circ \varphi_{s}=\left(\varphi_{t}\right)^{n}\left(\varphi_{\frac{s}{n}}\right)^{n}=\left(\varphi_{t e s}^{n}\right)^{n}=\varphi_{t+s}
$$

Clove n s.t $\frac{\text { tes }}{n}, \frac{t}{n}, \frac{s}{n} \in I$

$$
\varphi_{t / n} \cdot \varphi_{s / 2}=\varphi_{\frac{t t s}{n}}^{n}=\varphi_{s / n}^{n} \cdot \varphi_{t / 2}-\text { commute! }^{\prime}
$$

