$\begin{aligned} \text { LAST TIME: - flow } \varphi: \begin{array}{l}\mathbb{R} \times M \rightarrow M\end{array} \text { st. } \varphi_{t+5}=\varphi_{t} \circ \varphi_{s}, & \varphi_{+}: M \rightarrow M, \\ (t, x) \mapsto \varphi_{+}(x) & \varphi_{0}=i d \mu \quad \text { differ }\end{aligned}$

- flow $\varphi_{t} \leadsto$ vector held $X ; \quad X(f)=\left.\frac{d}{d t}\right|_{t=0} ^{\varphi_{t}^{*}} f$
- integral curve of a vector fred $X-\operatorname{map} \quad \varphi:(\alpha, \rho) \rightarrow M$ sit. $D \varphi_{t}\left(\frac{d}{d t}\right)=X_{\varphi(t)}$

THM: given a vect.feld X on M ad a point $a \in M, \exists$! a maximal int. ave $\varphi:(\alpha, \rho) \rightarrow M$ of $X \quad$ with $\varphi(0)=a$.

Theorem @ Let X be a vecterfield on a and M and for $(t, x) \in \mathbb{R} \times M$, let $\varphi(t, x)=\varphi_{t}(x)$ be the maximal integral curve of X through x. Then
(14) the map $(t, x) \longmapsto \varphi_{t}(x)$ is smooth.
(2) $\varphi_{t} \circ \varphi_{s}=\varphi_{t+s}$ wherever the mass are defined.
(3) If M is compact , then $\varphi_{t}(x)$ is defined on thentine $\times M$ and gives a one-parameter group of diffeanorplims.
we need the following result on smooth dependence of solutions on the initial conditions:

1) $\overline{T H M}^{* *}\left(10.7\right.$ in H thin) If $f:\left[t_{0}-a, t_{0}+a\right] \times \overline{B\left(x_{0}, b\right)} \rightarrow \mathbb{R}^{n}$ is $C^{k}, k \geqslant 1$, and 3) $\frac{d}{d t} \alpha(t, x)=f(t, \alpha(t, x)), \quad \alpha\left(t_{0}, x\right)=x$, then α is also C^{k}.
(case $k=\infty: f \in C^{\infty} \Rightarrow \alpha$ deeds snootily on init. coed.) of $\left\{t_{0}\right\} \times T^{\prime 2}\left(x_{0}, b\right)$
Proof of THM@ By THM*, $\forall a \in M$ we have an ital $(\alpha(a), \beta(a))$ on which
 there is a solution for wits.conditors in a abd of a.

So, the set
$V=\{(t, x) \in \mathbb{R} \times M: t \in(\alpha(x), \rho(x))\}$ is open.

- This the ret on which $\varphi_{f}(x)$ is maxinally defued

(1) Smoth deperdence thm $* *$ says that $(t, x) \longmapsto \varphi_{+}(x)$ is smoth.
(2) carides $\varphi_{t} \circ \varphi_{s}(x)$. fir $s, v a r y \rightarrow$ this is the unigue int: meve through $\varphi_{s}(x)$
but $\varphi_{t+s}(x)$ is also an integrel weve acesing throgh $\varphi_{s}(x)$ at $t=0 \Rightarrow \varphi_{t} \circ \varphi_{S}(x)=\varphi_{\text {tes }}(x)$
$A l_{\text {so: }} \varphi_{+} \circ \varphi_{-t}=1 d \Rightarrow$ we have a diffoo wherever :t is defned.
(3) Consider the $\operatorname{cas}^{\text {wlex }} M^{\text {is }}$ ompact. <porsibly non-max.iteruel
$\forall x \in M$ we have an pren uterval $(\tilde{\alpha}(x), \tilde{\rho}(x))$ contaning 0 and apphihd $U_{x} \subset M$
s.t. $\varphi_{t}(g)$ is defred on $(\tilde{Z}(x), \tilde{\rho}(x)) \times U_{x}$. Cover M by $\left\{U_{x}\right\}_{x \in M}$ and
take a finte rabcoverng $U_{x_{1}, \ldots}, U_{x_{N}}$; set $I=\bigcap_{i=1}^{N}\left(\widetilde{\alpha}\left(x_{i}\right), \tilde{\rho}\left(x_{i}\right)\right)$-open int-va)
Thes, for $t \in I$, we have $\varphi_{t}: I \times M \rightarrow M$, contaning 0 . defning (porsibly non-marinal) inticurve threugh each $x \in M$, vith $\varphi_{0}(x)=x$.
We aced to extend to all real values t.
- dofnce $\varphi_{t}=\left(\varphi_{t / n}\right)^{n}$ whertipicication $=$ comprition
where n :s large enough, so that $\frac{t}{n} \in I$.
- this is well-defned, if we choose m sit $\frac{t}{m} \in I$, he-

$$
\begin{aligned}
&\left(\varphi_{t / m}\right)^{m}=\left(\left(\varphi_{\frac{t}{m \cdot n}}\right)^{n}\right)^{m}=\left(\left(\varphi_{t}^{m \cdot n}\right)^{m}\right)^{n}=\left(\varphi_{t / n}\right)^{n} \\
&\left(\frac{\varphi_{t}}{m \cdot n}\right)^{n \cdot m} / 1
\end{aligned}
$$

- compatiblevith comporiton:

$$
\varphi_{t} \circ \varphi_{s}=\left(\varphi_{t}\right)^{n}\left(\varphi_{\frac{s}{n}}\right)^{n}=\left(\varphi_{t e s}^{n}\right)^{n}=\varphi_{t+s}
$$

Clove n s.t $\frac{t e s}{n}, \frac{t}{n}, \frac{s}{n} \in I$

$$
\varphi_{t / n} \cdot \varphi_{s / 2}=\varphi_{\frac{t t s}{n}}^{n}=\varphi_{s / n}^{n} \cdot \varphi_{t / 2}-\text { commute! }^{\prime}
$$

Lie bracket revisited fuations, vector fulls, cote objedry ca be naturally travis "3 by differs \rightarrow by"infaiterinaldilfos".

- natural action of differ $F, M \rightarrow M$ on functions $f \in C^{\infty}(M): \quad f \longmapsto F^{+} f$
\rightarrow specialize to $F=\varphi_{t}$ a flow and take $\left.\frac{d}{d t}\right|_{t=0} \rightarrow$ we get a vectorofuld

$$
x:\left.f \mapsto \frac{d}{d t}\right|_{t=0} \varphi_{t}^{*} f
$$

WARNING: We cen only do :t hor Fa differ, not any sooth map! $ح$

- if Y is a vector field on $M, Y: M \rightarrow T M$, we can construct it "pullback alan g $F: \quad D F_{x} \sigma_{x_{凶}} M \rightarrow T_{F(x)} M \quad$-thus defines a new vector field $\tilde{Y}_{\text {on }} M$

$$
\tilde{y}_{x} \longmapsto y_{F(x)}^{\Psi} \quad \text { via } \quad y_{F(x)}=D F_{x}\left(\widetilde{y_{x}}\right)
$$

Ie. $\tilde{Y}_{x}\left(F^{*} f\right)=Y_{F(x)}(f) \leftarrow$ recall that $D F_{a}\left(X_{a}\right)(f)=X_{a}\left(F^{*} f\right)$

$$
\begin{align*}
& \left.\left.\tilde{y}^{\prime \prime}\left(F^{*} f\right)\right|_{x} \quad F^{* \prime} y(f)\right|_{x} \\
\Rightarrow & \tilde{y}\left(F^{*} f\right)=F^{*} y(f) \tag{x}
\end{align*}
$$

setting $F=\varphi_{t}$ a flow corresponding to a vector fold X, we have \tilde{Y}_{t} \rightarrow we can differentiate: $\dot{y}=\left.\frac{\partial}{\partial t}\right|_{t=0} \tilde{y}_{t}$

$$
f_{\text {rom }}(*): \dot{y}(f)+y x(f)=x Y(f)
$$

So that $\dot{y}=x y-y x$
(\#)
put another: $\quad[X, Y]_{a}=\left.\frac{d}{d t}\right|_{t=0} D \varphi_{-t}^{x}\left(Y_{\varphi_{t}^{x}(a)}\right)$

- We want to defue "tensors" on maribolds greeralizing functions and vector fields.
- Weill need a construction from linear algebra.

Tensor product of vector spaces
Let V,U vechorspaces over \mathbb{R}. We will define a new v.sp. $V \otimes W$
equipped with a map $V \times W \longrightarrow V \otimes W$ which :s bilinear:
$(v, \omega) \longmapsto v \otimes \omega \quad\left(\quad v_{1}+\mu v_{2}\right) \otimes \omega=\lambda v_{1} \otimes \omega+\mu v_{2} \otimes \omega$

$$
v \otimes\left(\lambda \omega_{1}+\mu v_{2}\right)=\lambda v \otimes \omega_{1}+\mu v \otimes \omega_{2}
$$

Universal property of the tensor product:
If $B: V \times W \rightarrow U$ is a bilinear map to a v.sp. U,
then there is a unique linear map $\beta: V \otimes W \rightarrow U$ such that $B(v, w)=\beta(v \otimes L)$

$$
\begin{array}{r}
V \times W \stackrel{\otimes}{\rightarrow} V \otimes W \\
B \searrow u^{\vdots} \ddagger!\beta
\end{array}
$$

- construction for V,W finite-dimensional:
$V \otimes W:=$ dual space to the space of bilinear forms $B: V \times W \rightarrow \mathbb{R}$
for $v \in V, u \in W$, we set $v \otimes \omega=(B \longmapsto B(0, \nu)) \in V \otimes W$
It satisfies the Univ. property: if $B^{\prime}: V \times W \rightarrow U$,

$$
\left(\xi \in U^{*}\right) \stackrel{\varphi}{\longrightarrow}\left(\xi \circ B^{\prime}: V \times W \rightarrow \mathbb{R}\right)
$$

$$
\begin{aligned}
& \text { is a ln. map } \\
& U^{*} \rightarrow \text { Bilinear forms on V,W }
\end{aligned}
$$

the dual map is $\rho: V \otimes W \longrightarrow\left(U^{*}\right)^{*}=U$
asidel abstact/geneal construction:
$V \otimes \omega):=F(V \times L) / \sim, \sim$-equivirel. ger eng

$$
\begin{aligned}
& (v, \nu)+\left(v^{\prime}, \nu\right) \sim\left(v+v^{\prime}, \nu\right) \quad(v, \nu)+\left(v, \nu^{\prime}\right) \sim\left(v, v+v^{\prime}\right), \\
& c(v, \omega) \sim(c v, \omega) \sim(v, c \omega)
\end{aligned}
$$

free vela space: $F(V \times L)=\left\{\sum_{i} c_{i}\left(v_{i}, \nu_{i}\right)\right\}$-finite sens

$$
v \otimes w:=[(v, v)]
$$

－If v_{1}, \ldots, v_{m}－basis $=V, \quad \omega_{1} \ldots \omega_{n}$－basis $i \omega$ ，
then a bilinear form B is uniquely determined by values $B\left(v_{i}, w_{j}\right)$ ．
Thus， $\operatorname{dim}(V \otimes W)=(\operatorname{dim} V)(\operatorname{dim} W)$
－vectors $\left\{v_{i} \otimes w_{j}\right\}_{i=1 \ldots m}$ form a basis in $V \otimes W$

$$
j=1 \ldots n
$$

ie．elements of VOW have the form $\sum_{i, j} a_{i j} V . \otimes W_{j}$（they are generally ot

$$
\left(\cdot \operatorname{ascanc} \sum a_{i j} v_{i} \otimes w_{j}=0 \text {, ie }\left(\sum a_{j} v_{i} \cdot v_{j}\right)(B)=0 \forall B \in D \cdot j\right.
$$

$$
\left[\begin{array}{ll}
\left(a_{i j} D\left(v, v_{j}\right)\right.
\end{array} \quad \Rightarrow a l l a_{i j}=0 \Rightarrow v_{i}\left(\sigma_{j}, \operatorname{are}\left(m, i m_{n}\right)\right.\right.
$$

－We can form tensor pewee：$V \otimes V=V^{\otimes^{2}}, V \otimes V \otimes V=V^{\otimes^{3}}, \ldots$
of V

$$
V^{\triangle P}=(\text { space } p \text {-fold multiliear horns on } V)^{*}
$$

tensor algebra．$T V:=\bigoplus_{k=0}^{\infty} V^{\otimes k}$
an element is a forte $\underset{\text { of mum }}{\text { products of vectors }} \underset{v_{i} \in V}{ } \lambda \cdot 1+v_{0}+\sum_{i, j} v_{i} \otimes v_{j}+\ldots+\sum_{i,-i p} v_{i n} \otimes \ldots \otimes v_{i p}$
multiplication on TV－extension by linearity of the product

$$
\left(v_{1} \otimes \ldots \otimes v_{p}\right)\left(u_{1} \otimes \ldots \otimes u_{q}\right)=v_{1} \otimes \ldots \otimes v_{p} \otimes u_{1} \otimes \ldots \otimes u_{q}
$$

－it is associative but not commutative．

Exterior algebra
$T \vee$－tensor algebra of＝v．sp．V ．Let $I(v)=$ ideal gencated by elements U®U，

$$
\text { I.e. } I(v)=\left\{\begin{array}{l|l}
\sum_{i} \alpha_{i}\left(v i \otimes v_{i}\right) \rho_{i} & \begin{array}{l}
v_{i} \in U \\
\alpha_{i}, \rho_{i} \in T(v)
\end{array}
\end{array}\right\}
$$ for $v \in V$

豕 def the exterior algebra of V is the quotient $\Lambda^{\circ} V:=T V / I(V)$ ． If $\pi: T V \rightarrow \lambda^{\bullet} V$ the quotient map， $\Lambda^{P} V:=\pi\left(V^{\otimes p}\right)$－＂p－fold exterior power of V＂
$=\binom{\text { multilinear } \operatorname{lorns} M\left(v_{1}, \ldots, v_{p}\right) \text { on } V \text { which vanish it any to }}{=\text { arguments coincide }}^{*}$
def The exterior product of $\alpha=\pi(a) \in \Lambda^{p} V$ and $\beta=\pi(b) \in \Lambda^{q} V$ is $\alpha \wedge \beta=\pi(a \otimes b)$ ．

Rem: for $v_{1}, \ldots, v_{p} \in V$, we defne the element:n (altematng forms)* by

$$
v_{1} \wedge \ldots \wedge v_{p}(M):=M\left(v_{1}, \ldots, v_{p}\right)
$$

