LAST TIME: $\cdot V \otimes W$

- $T V=\bigoplus_{P=0}^{\infty} V^{\otimes p} \quad$ - tensor algebra

$$
\text { - } \Lambda^{0} V=T V / I(V)
$$

$$
\Lambda^{P} V=\pi\left(V^{\otimes P}\right)
$$

ideal gre rated by $\{u \otimes u l u \in V\}$

- Λ-product on $\Lambda \cup V$ induced from \otimes-product on TV

$$
\text { - } \alpha \in \Lambda^{p} V, \beta \in \Lambda^{q} V \Rightarrow \alpha \beta \beta=(-1)^{p q} \beta \wedge \alpha \in \Lambda^{p+q} V
$$

- Remark:
(can interchange ar two vectors:a veliger product at the oort of clanging the
ign

Proposition 5.3 If $\operatorname{dim} V=n$, then $\operatorname{dim} \Lambda^{\wedge} V=1$
 matrix with cleans = Coordinate vectors of w... wan rel. to biome basis :- V

- If v_{1}, \ldots, v_{n}-basis : V, then angthy in $V^{\theta_{n}} 11$ a ln. comb. of $v_{i, \otimes \ldots} \otimes v_{i n}$, So, by Prop. (\#), anything in $\Lambda^{\top} V$ is a ln. comb of $v_{1} \wedge \sim \wedge v_{n}$.

$$
\text { So, } \operatorname{dim} \wedge^{n} V \leq 1
$$

Proposition. Let v_{1}, \ldots, v_{n} be a bases for V. Then the $\binom{n}{p}$ elements $\left\{U_{i,} \wedge \ldots U_{i_{p}}\right\}_{i \leq i,}<\ldots<i_{p} \leqslant n$ form a basis for $\Lambda^{P} V$.
Proof $\Lambda^{p} V$ is spooned by $\left\{v_{i, 1} \wedge \wedge v_{i p}\right\}_{1 \leq i \leq \leq n} \Rightarrow \wedge^{p} V=\int_{p a n}\left\{v_{i, 1} \wedge \wedge v_{i p}\right\}_{i,<\ldots<i p}$ $\begin{array}{ll}1 \leq-i p \leq n & \text { reordangy } \\ \text { Chaningrign }\end{array}$

Linearinderendence: $\sup r o r e ~ \sum a_{i 1} \ldots i_{p} v_{i 1} \wedge-\lambda v_{i p}=0 \quad(@)$

where $\underbrace{\{i, \ldots, i p\} \cup\left\{j, \ldots, j_{n-p}\right\}}\}=\{1,2, \ldots, n\}$
fixed subset of $\{1 \ldots n\}$
(al lother terns in the ihs of @ vanish after wedging vith β)

$$
\Rightarrow a_{i, \ldots i p}=0 \quad \text { for } a_{n} y, c .<i p
$$

Proportions $5.5 v$ is linearly dependent on the set of In. index. vectored v_{1}, \ldots, v_{p} iff $\quad v, \ldots \wedge v_{p} \wedge v=0$
Proof: if $v=\sum a_{i} v_{i}-1 \cdot n$. dependent on $v_{i} s$, then

$$
\left(v_{1} \wedge \ldots \wedge u_{p}\right) \wedge v=\sum_{i} a_{i} v_{1} \wedge \ldots \wedge v_{p} \wedge v_{i}=0
$$

if v is lin.indey., then $v_{1}, \ldots, v_{p,} v$ ca, be extended n for a has is for V and by the previous Prop., $U_{1} \uparrow \sim v_{p} \wedge U \neq 0$.
def if $A: V \rightarrow L J$ is a lin.transformation, then there is an induced linear transformation $\lambda^{P} A: \Lambda P V \rightarrow \Lambda^{P} W J$ defned by $v_{1} \wedge \ldots \wedge v_{p} \mapsto A v_{1} \wedge \ldots \wedge \Delta v_{p}$ (and extended by linearity)

- Another construction of $\Lambda^{P} A$: by univ. properly

$$
\begin{aligned}
& V \times \ldots \times V \xrightarrow{\otimes} V^{\otimes P} \quad A^{\otimes P}(I(V)) \\
& \sum^{\left(v_{1}, \ldots, v_{p}\right)} \dot{v}^{\prime} A^{\otimes p} \\
& \subset I(w)
\end{aligned}
$$

$\Rightarrow A^{\oplus P}$ induces a map of quotients $\Lambda^{P} A: V^{\otimes P} / I(V) \longrightarrow W^{G P} / I(N)$

$$
=\Lambda^{p} \bar{V} \quad=\Lambda^{p} \omega
$$

Proposition 5.7 If $\operatorname{dim} V=n, \begin{aligned} & \text { add } \Delta: V \rightarrow V \\ & , \\ & \text { then the linear transformation }\end{aligned} \Lambda^{n} V \rightarrow \Lambda^{n} V$ is give -by (multiplication by) $\operatorname{det} A$.
Proof: $\Lambda^{n} V$ is 1-dsers:inal, so $\Lambda^{n} A: \Lambda^{n} V \rightarrow \Lambda^{n} V$ is a multiplication by a real amber $\lambda(A)$. For v_{1}, \ldots, v_{n} a basis in V,

$$
\wedge^{\wedge} A\left(v_{1} \wedge \ldots \wedge v_{n}\right)=\underbrace{A v_{1} \wedge \ldots A v_{n}}=\lambda(A) v_{1} \wedge \ldots v_{n}
$$

$A v_{i}=\sum_{j} A_{j}: v_{j}$

$$
\sum_{j \ldots j-\cdots}^{\prime \prime} A_{j}, v_{j} \wedge \cdots \wedge A_{j n} n v_{j n}
$$

$$
\text { permutations } \rightarrow \sum_{\sigma \in S_{n}} \Delta_{\sigma(1)}, v_{\sigma(1)} \wedge \cdots \Delta_{\sigma(n) n} v_{\sigma(n)}
$$

$$
\underbrace{\sum_{\sigma \in S_{n}} \operatorname{sign} \sigma \cdot A_{\sigma(1)} \ldots A_{\sigma(n)} n}_{\operatorname{det} A} v_{1} \wedge \ldots 1 v_{n}
$$

Differatial forms
The bundle of p-forms. Let M - n-manifold, T_{x}^{*}-cotangent space, $\wedge^{P} T_{x}^{*}$-its exterior power
consider $\Lambda^{P} T^{*} M:=\bigcup_{x \in M} \Lambda^{P} T_{x}^{*} \quad$-we will endow it with the structure of a (with a actual nojection π to M) vector bundle (and thus a manifold)

- Let $\left(U, \varphi_{4}\right)$ a chart on M with x_{1}, \ldots, x_{n} coordinates.

Them, the elements $d x_{i_{1}} \wedge^{\wedge} d x_{i_{2}} \wedge \ldots \wedge d x_{i_{p}}$ for i,,$\ldots<i p$ form a basis of $\Lambda^{p} T_{x}^{*}$ for $x \in U$
The $\binom{n}{p}$ coefficients of $\alpha \in \Lambda^{p} T_{x}^{*}$ then give a cooed. chart Ψ_{u}

$$
\underbrace{\bigcup_{x \in u} \Lambda^{p} T_{x}^{*}}_{\pi^{-1}(u)} \xrightarrow{\stackrel{\Psi_{u}}{c} \varphi_{u}(u) \times \mathbb{R}^{\binom{n}{p}} \times \mathbb{R}^{\binom{n}{p}}}
$$

- for $p=1$, this is just the cord. chart we had for the cotangent bundle $T^{*} M$ $\psi_{u}\left(x, \sum_{i} y: d x_{i}\right)=\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y_{n}\right)$ and on an overlap $U_{\alpha} \cap \cup_{\beta}$ we hod

$$
\psi_{s} \cdot \psi_{2}^{-1}\left(x_{1} ;-; x_{n} ; y_{1}, \ldots, y_{n}\right)=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n} ; \sum_{j} \frac{\partial x_{j}}{\partial \tilde{x}_{1}} y_{j}, \ldots, \sum_{\dot{j}} \frac{\partial x_{j}}{\partial \tilde{x}_{n}} y_{j}\right)<\begin{gathered}
\text { then is a } \\
\text { nitrite ike } \\
\text { pith } \\
\text { here? }
\end{gathered}
$$

- for p arbitrary, we replace the matrix $A=\underbrace{\frac{\partial x_{j}}{\partial \tilde{x}_{i}}}_{\mathcal{J}_{a-1 T}}$ by its $p^{-t h}$ exterior power

$$
\Lambda^{P} A: \Lambda^{P} \mathbb{R}^{n} \rightarrow \Lambda^{P} \mathbb{R}^{n}
$$

a complicated to write in a hasir, but

- invertible

$$
-c^{\infty} \text { in } x
$$

$\Rightarrow \psi_{\rho} \circ \psi_{\alpha}^{-1}$ is C^{∞} on overlaps $\Rightarrow x^{p} T^{*} M$ is a smooth marble, $d: m=n+\binom{n}{p}$

- def The bundle of p-forms on M is the sroothmbd $\Lambda^{p} T^{*} M$ with the smooth structure as above; There is a natural projection $\pi: \Lambda^{P} T^{*} M \rightarrow M$; a section is called a differential p-form.
Ex: 1. A zero-horm is a section of $\Lambda^{\circ} T^{*} M$ which :s by convention a smooth Reaction.

2. A 1 -form is a rection of the cotangent bundle. E.g. $d f$ is a 1 -form. In bloc. cords: $d f=\sum_{j} \frac{\partial f}{\partial x_{j}} d x_{j}$.

- By using a bump function, ve can extend a locally-difaed p-form like $d x, \cap \ldots a d x_{p}$ to the whole $M \Rightarrow$ sections always exist.
- one can represent functions pucctorfields/p-forms a/ suns of local ones using a partition of unity.
- Partitions of unity
def A partition of unity on M is a collection $\left\{\varphi_{i}\right\}: \in I$ of smooth functions sit.
- $\varphi_{i} \geqslant 0$
- $\left\{\right.$ supp $\left.\varphi_{i}: i \in I\right\}$ is locally finite ide. $\forall x \in M \exists U$ open ibid whichinksects only finitely many supports supp $\varphi_{\text {: }}$.
- $\sum_{i} \varphi_{i}=1$
(the 10.8)
Theorem any open cover $\left\{V_{\alpha}\right\}$ of a manifold M
$\left\{\varphi_{i}\right\}$ on M s.t supp $\left.\varphi_{i} \subset V_{\alpha} C_{i}\right)$ for some $\alpha(i)$.
(the one says that $\left\{\varphi_{i}\right\}$ is "subordinate" to the cover $\left\{V_{\alpha}\right\}$)
Proof in case M compact: $\forall x \in M$ take a coord, ibid $U_{x} \subset V_{\alpha}$ and a bump function
μ_{x} which is 1 in anted $V_{\nu_{x}} \subset U_{x}$ and will sup $\mu_{x} \subset U_{x}$

$$
\left\{V_{x}\right\}_{x \in M}^{\stackrel{\rightharpoonup}{x}} \text { is a over of } M \underset{\text { oungectress }}{\Rightarrow} \text { can find a finite subcouer }\left\{V_{x_{i}}\right\}_{:=1 \ldots N}
$$

Set $\varphi_{i}=\frac{\mu_{x_{i}}}{\sum_{j=1}^{\mu_{x_{j}}}}$ - thisis a partiton of misty subordiate to $\left\{V_{\alpha}\right\} \square$

