$$
\left.\begin{aligned}
& \Rightarrow g\left(x_{1} \ldots x_{n}\right)=h\left(y_{1}(x), \ldots, y_{1}(x)\right) \\
& \Rightarrow \frac{\partial g}{\partial x_{i}}=\sum_{j} \frac{\partial h}{\partial y_{j}}(y(x)) \sum_{\substack{\frac{\partial y_{j}}{\partial x_{i}}(x)}}^{\text {chein rule }} \begin{array}{l}
\text { invetible matrix, } \\
\text { ince } y(x) \text { is ivitile }
\end{array}
\end{aligned} \Rightarrow D\right|_{x(a)}=0 \text { iff }\left.D h\right|_{y(a)}=0
$$

Let $Z_{a}=\left\{f \in C^{\infty}(M) \mid f\right.$ has vinishing drivituae $\} \underset{\text { vect subbince }}{C}(M)$
def The cotangent srace T_{a}^{*} at $a \in M$ is the quetient space
$T_{a}^{*}=C^{\infty}(M) / Z_{a}$. The derveative of f_{n} at $a \in M$ is its image in this space and is clenoted $(d f)_{a}$.

$$
\cos ^{n}(m)
$$

- if $f \in C^{\infty}(\mathrm{m}),(d f)_{a}=d(\mu \cdot f)_{a} \Rightarrow$ can make sere of

$$
\begin{aligned}
& \text { suce ifu vanilesinnild da bunp fanction } \equiv 1 \text { :- (dA) for a locally-defred forth } \\
& \text { the } \nu \in Z_{a} \Rightarrow(d \nu)_{e}=0 \text {. } \\
& \text { sueh as (ina-bud ofa), } \\
& \text { sueh as } f=x_{1}, \ldots, x_{-} \text {-bc.cond. } \\
& \text { function }
\end{aligned}
$$

Proposition: Let M be an $n-m R d$. Then

- The cotangent snace T_{a}^{*} at $a \in M$ is an n-dimensional vector space.
- If (U, φ) ir a coord. chart arond a vith coords x, \ldots, x_{n}, then the elements $\left(d x_{1}\right)_{a}, \ldots,\left(d x_{n}\right)_{a}$ form a baris for T_{a}^{*}.
- If $f \in C^{\infty}(M)$ and i the coord chart, $f_{\circ} \varphi^{-1}=\psi\left(x_{1}, \ldots, x_{n}\right)$ then

$$
\begin{equation*}
(d f)_{a}=\sum_{i} \frac{\partial \psi}{\partial x_{i}}(\varphi(a))\left(d x_{i}\right)_{a} \tag{x}
\end{equation*}
$$

Proof $f-\sum_{i} \frac{\partial(4)}{\partial x_{i}}(\varphi(a)) x_{i} \quad-\begin{aligned} & \text {-ocally-defned insoth fanction } \\ & \text { whose dervative vanisher at a }\end{aligned}$

$$
\Rightarrow(d f)_{a}=\sum \frac{\partial \psi}{\partial x_{i}}(\varphi(a))\left(d x_{i}\right)_{a}
$$

and $\left(d x_{i}\right)_{a}$ span T_{a}^{*}. If $\sum_{i} \lambda_{i}\left(d x_{i}\right)_{a}=0$ then $\sum_{i} \lambda_{i} x_{i}$ has vawhing drivative at $a \Rightarrow \lambda_{1}=\ldots=\lambda_{n}=0$.
Rem We will denote $\psi_{\tau}=f$.
cord represestation of \&
So that (x) becomes: $d f=\sum_{i} \frac{\partial f}{\partial x_{i}} d x_{i}$.

With acharge of cood. $\left(x_{1}, \ldots, x_{1}\right) \longmapsto\left(y_{1}(x), \ldots, y_{n}(x)\right)$, we get
$d f=\sum_{j} \frac{\partial f}{\partial y_{j}} d y_{j}=\sum_{i, j} \frac{\partial f}{\partial y_{j}} \frac{\partial y_{j}}{\partial x_{i}} d x_{i}$

* del The tagent srace T_{a} at $a \in M$ is the dual space to the cotangent snece T_{a}^{*}.
-if $x_{1}, \ldots, x_{0}-b_{c}$ cord. sydtem at a and $\left(d x_{1}\right)_{a}, \ldots,\left(d x_{n}\right)_{a}$-the corresp, bais of T_{a}^{*}, the dual batis of T_{a} is derotd $\left(\frac{\partial}{\partial x}\right)_{a}, \ldots,\left(\frac{\partial}{\partial x_{n}}\right)_{a}$
two aproraches to itrusic defuition of T_{a} :
(i) equivalace clases of carves $f: \mathbb{R} \rightarrow M$

(ii) tangent netor
$\rightarrow \vec{u} \leadsto$ diractional dervative $\left.f \mapsto \vec{u} \cdot \vec{\nabla} f_{a}\right)$ $D f_{a}^{\prime \prime}(4)$
def A tagent vector at $a \in M$ is a linear map $X: C^{\infty}(M) \rightarrow \mathbb{R}$
s.1. $X_{a}(f g)=f(a) X_{a} g+g(a) X_{a} f$.
(formal Leibsitz rule)
if $\xi \in \underbrace{}_{\text {dual } T_{\text {race to }}{ }^{T_{a}} c^{\infty}(m) / z_{a}}, \quad f \longmapsto \xi\left((d f)_{a}\right)$
$\mu_{\text {oreverersfrom }}(x): d(f g)_{a}=f(a)(d g)_{a}+g(a)(d f)_{a}$
(H) Thes, $X_{a}: f \mapsto \xi\left((d f)_{a}\right) \quad$ is a tagent vectorf
- In Dact, all tangat vectors are of this form!
injective! map $T_{a} \rightarrow T_{A}^{A} y$ (camod heve a z to sit $\tilde{z}(d \ell(f)=0 \quad \forall R)$
Lemma Let X_{a} be a tangent vector at a and $f \in Z_{a}$. Then $X_{a} f=0$.

if $(d f)_{a}=0$, then $\left.g_{i}\right|_{x=a}=0$ and $h_{i}\left(x_{x}\right)=x_{i}-a_{i}$ alco vanuler at $x=a$.

$$
f=f(a)+\sum_{i} g_{i} h_{i} \text {-Cocally, mear } a \text { with } g_{i}, L_{i} \text { vanishing at } x=a \text {. }
$$

glabal extassion by aburp fun. ψ

- if $V \subset W$ vector spaces, $A_{m a}(V) \subset W^{*}$ annihilator, then $A_{n 1}(V) \cong(W / V)^{*} \quad\left(C_{112}^{\infty}(M) / Z_{a}\right)^{*}=T_{a}$

$$
\Rightarrow T_{a}^{a l g} \subseteq T_{a}
$$

$$
\text { \{tangutvectars\} }
$$

- togther with (\#), it gives $T_{a} \cong T_{a}^{a l g}$.

Thus, vectors :- T_{a} are the tangent vectors
Locally; in coorduaks: $\quad X_{a}=\sum_{i=1}^{n} C_{i}\left(\frac{\partial}{\partial x_{i}}\right)_{a}$
then $X_{a} f=\sum_{i=1}^{n} C_{i} \frac{\partial f}{\partial x_{i}}(a)$

Derivatives of smooth maps
Surpose $F: M \rightarrow N$ smooth map,$f \in C^{\infty}(N)$. Then $f \circ F \in C^{\infty}(M)$.

$$
\begin{aligned}
& \begin{aligned}
\text { Rem: } C^{\infty}(N) & F^{*} C^{\infty}(M) \text { is a homerenh(sm } \\
f & \longmapsto f \circ F \\
& \text { of rings. }
\end{aligned} \\
& F^{*} f^{\prime} \text { " "pullsack of } f
\end{aligned}
$$

$$
\begin{aligned}
& \text { - } X_{a}\left(r \cdot \tilde{\chi}^{\text {bump neara }}\right)=\chi_{(a)} X_{a}(r)+\underbrace{r(a)}_{r} X_{a}(y)=X_{a}(r) \Rightarrow X_{a}(r)=0 \\
& \text { - } X_{a}^{0}(1 \cdot 1)=1 \cdot X_{a}^{1}(1)+1 X_{a}(1) \Rightarrow X_{a}(1)=0 \Rightarrow X_{a}(\text { ang corst })=0 \\
& \text { Lé:bnitz } \\
& \Rightarrow X_{a} f=\sum_{i} \tilde{g}_{i}(6) X_{a}\left(\tilde{h}_{i}\right)+\tilde{h}_{(6)} X_{a}\left(\tilde{g}_{i}\right)=0
\end{aligned}
$$

$$
\begin{aligned}
& \xi_{f}=f(a)+\sum_{i} \tilde{g}_{i} \tilde{h}_{i}+\underbrace{}_{r} \quad-g \text { losally } \\
& \psi g_{i} \psi^{\top} \mathrm{h}_{\mathrm{i}} \text { varistes in ubld of a }
\end{aligned}
$$

λ del The derivative at $a \in M$ of the smooth map $F: M \rightarrow N$ is the homomorphism of tangent spaces $D F_{a}: T_{a} M \rightarrow T_{F(a)} N$ dunned by

$$
D F_{a}\left(X_{a}\right)(f)=X_{a}(f \circ F)
$$

-This is an abstract, coord-free definition. In condinates, wring (@):

$$
D F_{a}\left(\frac{\partial}{\partial x_{i}}\right)_{a}(f)=\frac{\partial}{\partial x_{i}}(f \circ F)(a)=\sum_{j} \frac{\partial F_{j}}{\partial x_{i}}(a) \frac{\partial f}{\partial y_{j}}(F(a))=\sum_{j} \frac{\partial F_{j}}{\partial x_{i}}(a)\left(\frac{\partial}{\partial y_{j}}\right)_{F(a)} f
$$

ie. $D F_{a}:\left(\frac{\partial}{\partial x_{i}}\right)_{a} \mapsto \sum_{j} \frac{\partial F_{j}}{\partial x_{i}}(a)\left(\frac{\partial}{\partial y_{j}}\right)_{F(a)}$
thus, $D F_{a}$ is an invariantuag of defaming the Jacobian matrix.
Thy Let F:M $\rightarrow N$ be a smooth map and $c \in N$ be such that for each $a \in F^{-1}(c)$, the derivative $D F_{a}$ is subjective. The "is $\varepsilon^{\prime \prime} F^{-1}\left(\operatorname{la}\right.$ value of $F^{\prime \prime}$
then $F(c)$ is a smooth manifold of dimension $\operatorname{dim} M-\operatorname{dim} N$.

- inclusion $L: F^{-1}(c) \hookrightarrow M$ is a smooth map,
$D L$ is -jective al in $D \ell_{a}=\operatorname{ker} D F_{a}$
Thus: $T_{a} F^{-1}(c) \cong \operatorname{ker} D F_{a}$
- helps understand target spaces in the cape $M=R$?
Examples: 1) $S^{n}=F^{-1}(1), F, \mathbb{R}^{n+1} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \mathbb{R} \rightarrow \mathbb{R} \\
& x \longmapsto\|x\|^{2}
\end{aligned} \quad D F_{a}(x)=\sum_{i} 2 x_{i} a_{i}
$$

ken $D F_{a}=\left\{\right.$ vectors фrthogmal to $\left.a \in S^{\wedge}\right\}$
2) $O(n)=F^{-1}(I)$, $F: M_{a t n m}+S_{y m} M_{a t m a n}$

$$
D F_{I}(H)=H^{T}+H
$$

kea $D F_{I}=\left\{H \in M_{\text {alan }} \mid H^{\top}=-H\right\}=\{$ skew-rym.matrices $\}$
def A man: old M is an (embedded) submanifold of N if there is an inclusion map $\quad \iota: M \rightarrow N$ st.
(a) L is smooth
(b) $D L_{x}$ is injective for each $x \in M$
(a) the topology on M coincides with the induced (subspace) ane from N.
(
to avoid a siltation like

$$
(-1, \infty) \xrightarrow{L} \mathbb{R}^{2}
$$

$L(1-\delta, 1+\delta)$ not open : induced trilogy!

