Proposition 5.7 If $\operatorname{dim} V=n$, then the linear transformation $\Lambda^{n} V \rightarrow \Lambda^{n} V$ is give -by (multiplication by) $\operatorname{det} A$.
Proof: $\Lambda^{n} V$ is 1-dinersional, so $\Lambda^{n} A: \Lambda^{n} V \rightarrow \Lambda^{n} V$ is a multiplication by a real amber $\lambda(A)$. For $v_{1}, \ldots, v_{n} \subset$ basis in V,

$$
\Lambda^{\wedge} A\left(v_{1} \wedge \ldots \wedge v_{n}\right)=\underbrace{\Delta v_{1} \wedge \ldots A v_{n}}=\lambda(A) v_{1} \wedge \ldots \wedge v_{n}
$$

$$
\begin{aligned}
& A v_{i}=\sum_{j} A_{j} i v_{j} \\
& \left(\begin{array}{l}
\left.A\left(2 v_{i} x_{i}\right)=\sum_{i j} v_{j} \frac{A_{j i} x_{i}}{}\right) \\
x^{\prime}-
\end{array}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \underbrace{\sum_{\sigma \in S_{n}} \operatorname{sign} \sigma \cdot A_{\sigma(1)} \ldots A_{\sigma(n) n}}_{\operatorname{det} A} v_{1} \ldots_{1}, v_{n}
\end{aligned}
$$

Differential forms
The bundle of p-forms. Let M - n-manifold, T_{x}^{*}-cotangent space, $\Lambda^{P} T_{*}^{*}$-its exterior power
consider $\Lambda^{P} T^{*} M:=\bigcup_{x \in M} \Lambda^{P} T_{x}^{*} \quad$-we will endow it with the structure of a (with a natural nojection to M) vector bundle (and thus a manifold)

- Let $\left(U, \varphi_{u}\right)$ a chart on M with x_{1}, \ldots, x_{n} coordinates.

Them, the elements $d x_{i_{1}} \wedge^{\wedge} d x_{i_{2}} \wedge \ldots \wedge d x_{i_{p}}$ for i, $<. . .<i p$ form a basis of $\Lambda^{p} T_{x}^{*}$ for $x \in U$
The $\binom{n}{p}$ coefficients of $\alpha \in \Lambda^{p} T_{x}^{*}$ then give a cooed. chart Ψ_{u}

$$
\underbrace{\bigcup_{x \in u^{-}} \Lambda^{p} T_{x}^{*}}_{\pi^{-1}(u)} \xrightarrow{\substack{c \mathbb{R}^{n} \times \mathbb{R}^{(}{ }^{n} \\ p \\ \text { open }}} \varphi_{u}(u) \times \mathbb{R}_{\binom{n}{p}}^{\Psi_{u}}
$$

 $\psi_{u}\left(x, \sum_{i} y: d x_{i}\right)=\left(x_{1}, \ldots, x_{i} ; y_{1}, \ldots, y_{n}\right)$ and on an overlap $U_{\alpha} \cap \cup_{\beta}$ we hod

$$
\psi_{\rho} \circ \psi_{2}^{-1}\left(x_{1} ;-; x_{n} ; y_{1}, \ldots, y_{n}\right)=\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n} ; \sum_{j} \frac{\partial x_{j}}{\partial \tilde{x}_{1}} y_{j}, \ldots, \sum_{j} \frac{\partial x_{j}}{\partial \tilde{x}_{n}} y_{j}\right)<\begin{gathered}
\text { this is a } \\
\text { indite } \\
\text { Rite } \\
\text { here }
\end{gathered}
$$

- for p arbitrary, we replace the matrix $A=\frac{\frac{\partial x_{j}}{\partial \tilde{x}_{i}}}{\underbrace{}_{J_{a}-1 T}}$ by its $p^{-t h}$ exterior power

$$
\begin{aligned}
& \Lambda^{P} A: \Lambda^{P} \mathbb{R}^{n} \rightarrow \Lambda^{P} \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
& \text {-invertible } \\
& -c^{\infty} \text { in } x
\end{aligned}
$$

$$
\begin{aligned}
& \Rightarrow \psi_{\rho} \cdot \psi_{\alpha}^{-1} \text { is } C^{\infty} \text { on overlaps } \Rightarrow X^{p} T^{*} M \text { is a smooth manifold, } d: m=n+\binom{n}{p}
\end{aligned}
$$

- def The bundle of p-forms on M is the roth med $\Lambda^{p} T^{*} M$ with the smooth structure as above; There is a natural projection $\pi: \Lambda^{p} T^{*} M \rightarrow M$; a section is called a differential p-form.
Ex: 1. A zeno-horm is a section of $\Lambda^{\circ} T^{*} M$ which is by convention a smooth function.

2. A 1 -form is a section of the cotangat bundle. E.g. $d f$ is a 1 -form. In eec. coords: $d f=\sum_{j} \frac{\partial f}{\partial x_{j}} d x_{j}$.

- By using a bump function, ve can extend a locally-difaed p-form like $d x, \cap \ldots a d x_{p}$ to the whole $M \Rightarrow$ sectors always exist.
- one can represent functions puectorfields/p-forms al suns of local ones using a partition of unity.
- Partitions of unity
def A partition of unity on M is a collection $\left\{\varphi_{i}\right\}_{i \in I}$ of smooth functions sit.
- $\varphi_{i} \geqslant 0$
- $\left\{\right.$ supp $\left.\varphi_{i}: i \in I\right\}$ is locally finite ie. $\forall x \in M \exists U$ open ibid whichintersects only finitely many supports $\operatorname{supp} \varphi_{:}$.
- $\sum_{i} \varphi_{i}=1$
(The 10.8)
Theorem (the Given any open cover $\left\{V_{\alpha}\right\}$ of a manifold M, there exists a partition afurity $\left\{\varphi_{i}\right\}$ on M sit $\operatorname{supp} \varphi_{i} \subset V_{\alpha(i)}$ for some $\alpha\left({ }_{i}\right)$.
(then one says that $\left\{\varphi_{i}\right\}$ is "subordinate" to the cover $\left\{V_{2}\right\}$)
Proof in case M compact: $\forall x \in M$ take a coordinbhd $U_{x} \subset V_{\alpha}$ and a bump function μ_{x} which is 1 in anhhd $V_{x} \subset U_{x}$ and vile supp $\mu_{x} \subset U_{x}$

$$
\left\{V_{x}\right\}_{x \in M}^{\stackrel{\bullet}{x}} \text { is a cover of } M \underset{\text { compactness }}{\Rightarrow} \text { can fund a finite subcoer }\left\{V_{x_{i}}\right\}_{i=1} \ldots N
$$

Set $\varphi_{i}=\frac{\mu_{x_{i}}}{\sum_{j=1}^{\tilde{\mu_{x}}}}$ - this is a partition of unity subordinate to $\left\{V_{\alpha}\right\}$

Working with differential forms
In a bloc. cord. System on M, a differential barm looks like

$$
\begin{equation*}
\alpha=\sum_{i<\ldots<i p} \underbrace{\alpha_{i_{1}} \ldots i_{p}(x)}_{\text {smooth functions }} d x_{i_{1}} \ldots \cdot d x_{i_{p}} \tag{x}
\end{equation*}
$$

If y_{1}, \ldots, y, different l_{c}. cordate system, $x=x(y)$, then write
$d x_{i k}=\sum_{j} \frac{\partial x_{i k}}{\partial y_{j}} d y_{j} \sim$ substitute into (x) to get

$$
\alpha=\sum_{j<\ldots<j_{p}} z_{j, \ldots j p}(y) d y_{j,} \wedge \wedge d y_{j p}
$$

Ex: Let $M=\mathbb{R}^{2}, \quad \omega_{1}=d x_{1} \wedge d x_{2}-2$-form.
If we want polar cords to Charge to polar cords on the open ret $\left(x_{1}, x_{2}\right) \neq(0,0)$:

$$
\begin{aligned}
& x_{1}=r \cos \theta, x_{2}=r \sin \theta \\
& \Rightarrow d x_{1}=\cos \theta d r-r \sin \theta d \theta \\
& d x_{2}=\sin \theta d r+r \cos \theta d \theta \\
& \Rightarrow \omega=(\cos \theta d r-r \sin \theta d \theta) a(\sin \theta d r+r \cos \theta d \theta)=r d r a d \theta
\end{aligned}
$$

Notation $\Omega^{P}(M):=$ space of all p-forms on M (an ∞-dimensional vector space)

Pull-back of a differential form
$F: M \rightarrow N$ a smooth map
Let $\alpha \in \Omega^{p}(N)$

$$
D F_{x}: T_{x} M \rightarrow T_{F(x)} N
$$

(dual mar so as not to confuse with pullibacle
(λ^{r}

$$
\hat{\wedge}^{p} \Lambda^{p}\left(D F_{x}^{v}\right): \Lambda^{p} T_{F(x)}^{*} N \rightarrow \Lambda^{p} T_{x}^{*} M
$$

Rem: for tangent vectors, we have a push bernard $D F_{x}: T_{x} M \rightarrow T_{F(x)} N$ but it dassn't teafiece a purhborved bor vector fields if F is not onto (and if F not -restive, it can be : Il-difred)

$$
\text { so: } \quad \Lambda^{P}\left(D F_{x}^{V}\right)\left(\alpha_{F}(x)\right) \text { is defined for all } x \text { and is a } p \text {-farm on } M
$$

def The pullback of a p-form $\alpha \in \Omega^{p}(N)$ by a smooth map $f: M \rightarrow N$ is the $p^{- \text {-lon }} F^{*} \alpha \in \Omega^{p}(M)$ defiled by $\left(F^{*} \alpha\right)_{x}:=\Lambda^{p}\left(D F_{*}^{v}\right)\left(\alpha_{F(0)}\right)$

Ex: (1) hor a 0 -horn $f \in C^{\infty}(M)$, we get the pullback of functions,

$$
F^{*} f=f \cdot F
$$

(2) by def. of the dual map, $f_{0}, \alpha \in S^{\prime}(M)$

$$
\begin{aligned}
& D F_{x}^{v}\left(\underset{T^{*} N}{\left(\alpha_{F_{x}}\right)}\left(X_{x}\right)=\alpha_{F(x)}\left(D F_{x}\left(X_{x}\right)\right) \quad \text { take } \quad \alpha=d f\right. \text { : } \\
& T_{F(x)}^{+} N \quad\left(F^{*} d f\right)\left(x_{x}\right)=D F_{x}^{v}(d f)\left(X_{x}\right)=d f_{F(x)}\left(D F_{x}\left(X_{x}\right)\right) \\
& =X_{x}\left(F^{*} f\right)=\left(d\left(F^{*} f\right)\right)\left(X_{*}\right) \\
& \Rightarrow F^{*}(d f)=d\left(F^{*} f\right) \\
& \tau_{\text {by def. of } D F}
\end{aligned}
$$

