derivative of a Reaction

$$
\left(d x_{i}\right)_{a}=\sum_{j} \frac{\partial x_{i}}{\partial y_{j}} \quad\left(d y_{j}\right)_{a}
$$

 (ackintale)

Thus, vectors: T_{a} are the tangent vectors
locally:

$$
\begin{aligned}
& \text { LAST TIME } \\
& \text { tangent srece } \\
& T_{a} \cong \quad T_{a}^{A l g} \\
& (\underbrace{C^{\prime \prime \infty}(\mu)} / Z_{a})^{*} \quad \begin{array}{l}
\text { tangent vectors } \\
X_{a}: C^{\infty}(\mu) \rightarrow \mathbb{R}
\end{array} \\
& X_{a}: C^{\infty}(m) \rightarrow \mathbb{R} \mid \\
& \left.X_{a}\left(R_{g}\right)=f(a) X_{a}(g)+g(a) X_{a}(f)\right\} \\
& \xi \in T_{a} \longmapsto\left(X_{a}: f \longmapsto \xi\left(d f_{a}\right)\right) \\
& \left(\xi:(f f) \mapsto X_{a}(f)\right) \longleftarrow X_{a}
\end{aligned}
$$

then $X_{a} f=\sum_{i=1}^{n} C_{i} \frac{\partial f}{\partial x_{i}}(a)$

Derivatives of smooth maps
Suppose $F: M \rightarrow N$ smooth map,$f \in C^{\infty}(N)$. Then $f \circ F \in C^{\infty}(M)$.

$$
\begin{aligned}
\text { Rem: } C^{\infty}(N) & \xrightarrow{F^{*}} C^{\infty}(M) \\
f & \longmapsto f \circ F
\end{aligned} \text { is a homenerphism }
$$

$$
F^{*} f^{\prime \prime}-\text { "pul lack of } f
$$

λ def The derivative at $a \in M$ of the smooth map $F: M \rightarrow N$ is the homomorphism of tangent spaces $D F_{a}: T_{a} M \rightarrow T_{F(a)} N$ defined by

$$
D F_{a}\left(X_{a}\right)(f)=X_{a}(f \circ F)
$$

-This is an abstract, coord-firee definition. In condunates, wring (@):

$$
D F_{a}\left(\frac{\partial}{\partial x_{i}}\right)_{a}(f)=\frac{\partial}{\partial x_{i}}(f \circ F)(a)=\sum_{j} \frac{\partial F_{j}}{\partial x_{i}}(a) \frac{\partial f}{\partial y_{j}}(F(a))=\sum_{j} \frac{\partial F_{j}}{\partial x_{i}}(a)\left(\frac{\partial}{\partial y_{j}}\right) f(a)
$$

ie. $D F_{a}:\left(\frac{\partial}{\partial x_{i}}\right)_{a} \longmapsto \sum_{j} \frac{\partial F_{j}}{\partial x_{i}}(a)\left(\frac{\partial}{\partial y_{j}}\right)_{F(a)}$
thus, $D F_{a}$ is an invariantuag of defaming the Jacobian matrix.
Thy Let F:M $\rightarrow N$ be a smooth map and $c \in N$ be such that for each $a \in F^{-1}(c)$, the derivative $D F_{a}$ is surjective. The "is $\varepsilon^{\prime \prime} F^{-1}$ grable of $F^{\prime \prime}$
(c) is a smooth manifold of dimension

$$
\operatorname{dim} M-\operatorname{dim} N .
$$

- inclusion $L: F^{-1}(c) \hookrightarrow M$ is a smooth map,
$D L$ is:-jective al in $D i_{a}=\operatorname{ker} D F_{a}{ }^{p} \quad$ [exercise]
Thus: $T_{a} F^{-1}(c) \cong \operatorname{ker} D F_{a}$
- helps understand tangent spaces in the cape $M=R^{n}$.
Examples: 1) $S^{n}=F^{-1}(1), F, \mathbb{R}^{n+1} \rightarrow \mathbb{R}$

$$
\begin{aligned}
& \mathbb{R} \longrightarrow \mathbb{R} \\
& x \mapsto\|x\|^{2}
\end{aligned} \quad D F_{a}(x)=\sum_{i} 2 x_{i} a_{i}
$$

ken $D F_{a}=\left\{\right.$ vectors фrthogmal to $\left.a \in S^{\wedge}\right\}$
2) $O(n)=F^{-1}(I)$, $F: M_{a t_{n r n}}+S_{y m} M_{a d n}$ an

$$
D F_{I}(H)=H^{T}+H
$$

kea $D F_{I}=\left\{H \in M_{\text {afn... }} \mid H^{\top}=-H\right\}=\{$ skew-rym.matrice $\}$.
def $A n$ (embedded) submanifold of N is the image $L(M) \subset N$ of an inclusion map $\quad l: M \rightarrow N$ st.
(a) L is smooth
(b) $D L_{x}$ is injective for each $x \in M$
(a) the terology on M coincides with the induced (subspace) ane from N.
\qquad

$$
\begin{aligned}
& (-1, \infty) \xrightarrow{\longrightarrow} \mathbb{R}^{2}+\text { part of the cubic ic } \\
& (1-\delta, 1+\delta) \text { not open lin induced topology! }
\end{aligned}
$$

Vector fields
The tangent bundle.
"Pre-definition"
a vector field on M y one for each a family of vectors $X_{a} \in T_{a}, a \in M$ " Varying smatilly as a moves on M."
imagine: Wired velocity at every pout on Earth at a giventive - vector field on S^{2} - smooth map $X:^{2} \rightarrow \mathbb{R}^{3}$ st. $X(x)$ is tangential to $S_{a}^{2} X$.

- Wart a grecral defuiton ot a vii. on M what a reference to any ambient space.
- Let $T M=\bigcup_{x \in M} T_{x}$ (a set) -the disjoint union of all tangent spaces

Let $\left(U, \varphi_{u}\right)$ be a cord. chart on M. for $x \in U, V\left\{\left(\frac{\partial}{\partial x_{1}}\right)_{x}, \ldots,\left(\frac{\partial}{\partial x_{n}}\right)_{x}\right\}-\begin{aligned} & \text { the target vectors } \\ & \text { for }\end{aligned}$
$\psi_{u}: U \times \mathbb{R}^{n} \rightarrow \bigcup_{x \in U} T_{x} \quad$-bijection

$$
\left(x, y_{1}, \cdots, y_{i}\right) \longmapsto \sum_{i=1}^{n} y_{i}\left(\frac{\partial}{\partial x_{i}}\right)_{x}
$$

Thur, $\phi_{u}=\left(\varphi_{u}, i d\right) \circ \psi_{u}^{-1}: \underbrace{\bigcup_{x \in u} T_{x}}_{V \subset T} \rightarrow \varphi_{u}(u) \times \mathbb{R}^{-}$
is a coordinate chart for $V=U{ }_{x_{E}} U T_{X}$.
(Topology on TM - generated by $\left\{\phi_{u}^{-1}\right.$ Coper balls
given U_{α}, U_{β} cool. charts on M,

$$
\left.\begin{array}{rl}
\Phi_{\alpha}\left(V_{\alpha} \cap V_{\beta}\right)= & \left.\varphi_{\alpha}\left(U_{\alpha} \cap U_{\beta}\right) \times \mathbb{R}^{n}\right) \\
& - \text { pen } \therefore \mathbb{R}^{2 n}
\end{array}\right)
$$

$$
\text { in balls } \left.\left.\operatorname{lil}_{u}(u) \not \mathbb{R}^{n}\right)\right\} \text {) }
$$

-if $\left(x_{1}, \ldots, x_{n}\right)$-cords $\cdots U_{\alpha},\left(\tilde{x}_{1}, \ldots, \tilde{x}_{n}\right)$-cords: \tilde{U}_{ρ} then

$$
\begin{aligned}
& \left(\frac{\partial}{\partial x_{i}}\right)_{x}=\sum_{j=1}^{n} \frac{\partial \tilde{x}_{j}}{\partial x_{i}}\left(\frac{\partial}{\partial \widetilde{x}_{j}}\right)_{x} \Rightarrow \\
& \phi_{\beta} \phi_{\alpha}^{-1}\left(x_{1}, \ldots, x_{i}, y_{1}, \ldots y_{n}\right)=\left(\widetilde{x}_{1}, \ldots, \bar{x}_{n} ; \sum_{i} \frac{\partial \widetilde{x}_{1}}{\partial x_{i}} y_{i}, \ldots, \sum \frac{\partial \tilde{x}_{y_{i}}}{\partial x_{i}}\right)
\end{aligned}
$$

- Smooth :ix x,y
(infect, Pinear:ay)

$$
\Leftrightarrow \operatorname{Jacob}_{\text {bar }}\left(\frac{\partial \tilde{x}_{j}}{\partial x_{i}}\right) \text { is sheath in } x
$$

$\Rightarrow\left(V_{\alpha}, \varphi_{\alpha}\right)$ defies an atlas on TM, $\operatorname{dim} T M=2 n$

Def The tangent bundle of a manifold M is the $2 n$-dimensional smooth manifold structure on TM def ned by the at las $\left(V_{\alpha}, \phi_{2}\right)$ above.

- The projection map
$p: T M \longrightarrow M$
$X_{a} \in T_{a} \mapsto a$
is smooth, with raciective derivative
since n boc.cordrates it is given by $P\left(x_{1}, \ldots, x_{n} ; y_{1}, \ldots, y\right)=\left(x_{1}, \ldots, x_{1}\right)$
- $P^{-1}(a)=T_{a}$ the fiber of the projection
(Macon mandan: of p
- boc.cond
$(\cdots, 10)\}$
\Rightarrow rank =n

$$
\left(-g_{\text {de }} L_{2: I} L_{a} l\right)
$$

def A vector field on a manifold M is
a smooth map $X: M \rightarrow$ TM such that $\quad p \circ X=i d_{M}$
Coaly; since $p \circ X=i d_{\mu}, X\left(x_{1}, \ldots, x_{n}\right)=\left(x_{1}, \ldots, x_{n} ; y_{1}(x), \ldots, y_{n}(x)\right)$ where $y_{i}(x)$-sheath functions
I.e., the turgent $\quad X(x)=\sum_{i=1}^{n} y_{i}(x)\left(\frac{\partial}{\partial x_{i}}\right)_{x}$ - shasothly varying field of tangent vector.

Remark More gneerlly, given a projection $P: Q \longrightarrow M$,
a "section" of P is a smooth map $S: M \longrightarrow Q$ s.t. $p o s=i d \mu$.

- Fox $Q=T M$ the tangent bundle, we buys have the zero-section -the vedor field $X=0$.
- Multiplying by a bump faction μ, we can contract vector fuelds out of
locally defned v.\&.s

$$
S_{(x)}=\sum \underbrace{y_{i}(x)}_{\substack{\text { ecally-difned } \\ C^{\infty} \text { functions }}}\left(\frac{\partial}{\partial x}\right)_{x}
$$

Remarle Can similarly form the cotangent bundle $T^{*} M=\bigcup_{a} T_{a}^{*}$ using the basis $\left(d x_{1}\right)_{x,-},\left(d x_{n}\right)_{x}$:- T_{x}^{*}
instead of the dual basis in T_{x}
$\lambda_{u}: U \neq \mathbb{R}^{n} \rightarrow \bigcup_{k \in U^{*}}$
$\left(x_{1}-x_{n} ; z_{1}-z_{n}\right) \stackrel{k \in u^{x}}{{ }^{k} z_{i}\left(d x_{0}\right)_{x}}$

$$
\Phi_{u}=\left(\varphi_{u}, \cdot d\right) \circ \lambda_{u}^{-1}: \underbrace{U T_{x}^{*}}_{N_{n}} \rightarrow \varphi_{u}(u) \times \mathbb{R}^{n}
$$

transition map: $\psi_{\rho} \psi_{2}^{-1}:\left(x_{1}, \ldots, x_{n} \cdot z_{i},-, z_{i}\right) \mapsto\left(\tilde{x}_{i}, \ldots, \tilde{x}_{n} ; \sum_{i}^{W} \frac{\partial x_{i}}{\partial \tilde{x}_{1}} z_{i}, \ldots, \sum \frac{\partial x_{i}}{\partial \widetilde{x}_{n}} z_{i}\right)$

Then, the derivative of $f \in C^{\infty}(M)$ is a map $d f=M \longrightarrow T^{*} M$ satisfying $p \circ d f=d_{M}$. (bat not every section of $T^{*} M$ is a derwative!)

TM and $T^{*} M$ are examples of vector bundles
def A real vector bundle of rant m on a manifold M is a manifold E with a moth projection map $p: E \rightarrow M$ sit. "Cocaltrivalization" - each fiber $p^{-1}(x)$ has the structure of an m-dinensional real factor space.

- each point $x \in M$ has a nbhd U and a diffomaphimen $\psi_{u}: p^{-1}(U) \cong U \times \mathbb{R}^{m}$
 to the usprace \mathbb{R}^{m}.
<consequence of the previous>
- on the intersection $U \cap V$,

$$
\begin{aligned}
& \psi_{u} \circ \psi_{v}^{-1}: U \cap V \times \mathbb{R}^{m} \longrightarrow U \cap V \times \mathbb{R}^{m} \\
& \text { is of the form }(x, v) \longmapsto\left(x, g_{u v}(x) V\right)
\end{aligned}
$$

where $g_{\text {uv }}(x)$ is a smooth Suction on UVVV with values in nuertisle mem
\qquad "transition function"
for TM, $g_{u v}$ is the Jacobian matrix $\left(\frac{\partial \widehat{x}_{i}}{\partial x_{j}}\right)$
for $T^{* *} \mu \quad g_{u V}$ is its inverse trappole $\left(\frac{\partial x_{i}}{\partial \widetilde{x}_{i}}\right)$

