LAST TIME: - If Moneated med with bey, then $\partial M$ is orated:

- Stoles' theorem: $\quad \int_{M} d \alpha=\int_{\partial M} \alpha \quad, \alpha \in \Omega_{c}^{n-1}(M)$


$$
\approx \alpha_{x}\left(v_{1}, \ldots, v_{n}\right) \quad v_{1, \ldots, v_{x} \in T_{x} M}
$$

of $M=M_{1} \cup M_{2}$ ad $M_{1} \cap M_{2}$ is af ute of lovec-dinarsial submibbls of $M$ then $\int_{M} \alpha=\left.\int_{M_{1}} \alpha\right|_{M_{1}}+\int_{M_{2}} \alpha I_{M_{2}}$

〈crollay of Stokes'>
THM (Browner fixed pion theorem )
Let $B=\left\{x \in \mathbb{R}^{n} \mid\|x\| \leq 1\right\}$ be the unit ball and let $F: B \rightarrow B$ be smooth map. Then $F$ hes a fixed pout (ie. $J x \in B$ sit. $F(x)=x$ ).
Proof: assume $F$ has of feed pant: $F(x) \neq x \quad \forall x \in B$.
 We have a troth huston $f: B \rightarrow \partial B$ nit hor $x \in \partial D, f(x)=x$ Let $w$ be the stated orunktion $(2-1)-$ form on $\partial B=S^{n-1}$ with $\int_{\partial B} \omega=1$
 since $f_{\text {ar s }}=$ id stoles'

* Given a embedded submanifold $N \subset{ }^{\text {p-dinensial }} M$ and a $p$-horn a on $M$ we can form $\int_{N} l^{*} \alpha$ - the integral of a $p$-Ram over a $p$-dimensional
E.g. One can take $\gamma:[0,1] \longrightarrow M$ a smooth path then one ca integrate a 1-Rorm along it.

de Ram colomology in top dimension
Lemma: 1 .1 $U^{n}=\left\{x \in \mathbb{R}^{n}| | c_{i} \mid<1\right\}$ and let $\alpha \in \Omega^{n}\left(\mathbb{R}^{n}\right)$ with $\operatorname{supp} \alpha<U^{n}$ such that $\int_{U^{n}} \alpha=0$. Then $\exists \operatorname{seg}^{n-1}\left(\mathbb{R}^{n}\right)$ with supp $\beta \subset U^{n}$ sit. $\alpha=d \beta$. (proof: see Hutchin)

Theorem If $M$ is compact connected orientable n-manifold, then

$$
H^{n}(M) \cong \mathbb{R}
$$

Proof: Goer $M$ by cord. niles $\left\{U_{2}, \varphi_{\alpha}: U_{\alpha} \longrightarrow \mathbb{R}^{n}\right\}_{\alpha \in I}$ with $\varphi_{\alpha}\left(U_{\alpha}\right)=U^{n}$ open choose $\{\varphi:\}$ a subordinate partition of unity.
$M$ connect $\Rightarrow$ can assume the we have fitly any charts $U_{1}, \ldots, U_{N}$.
Using a bump function, fix an $n$-horn $\alpha_{0}$ south supp $\subset Y_{1}$ and with $\int_{m} 2_{0}=1$
$\left[\alpha_{0}\right] \neq 0 \in H^{n}(M)$ by Stokes:
Want to show that $\left.\forall \alpha \in \Omega^{n}(M), \quad[\alpha]=c[\alpha]\right]$ or equivelatly $\alpha=c \alpha_{0}+d \gamma$. with $\alpha=\sum_{i} \varphi_{i} \alpha-b_{y}$ inarily, it inthees to prove (\#) R, $\varphi_{i} \alpha$
$M$ connected $\Rightarrow$ cam connect $p \in U$. and $q \in U-$ by a pats. - Renumbering $U_{i}^{\prime}$ 's we car aisne that thy path is covered by

a sequence of $u_{i} s: \quad p \in U, U_{i} \eta U_{i+1} \neq \varnothing, q$
for $1 \leq i \leq m-1$, close $\alpha_{i} \in \Omega$ Lith $\sup p \subset U_{i} \cap U_{i+1}$,
with $\int_{\alpha_{i}, 1}$,
$D_{n} u_{1}: \int_{u_{1}} \alpha_{0}-\alpha_{1}=0 \Rightarrow \alpha_{0}-\alpha_{1}=d \rho_{\text {em }}$,
contouring: $\quad \alpha_{1}-\alpha_{2}=d \rho_{2}$

$$
\alpha_{m-2}-\alpha_{m-1}=d \rho_{m-1}
$$

$$
\underset{a d d n g}{\Rightarrow} \alpha_{0}-\alpha_{m-1}=d\left(\sum_{i=1}^{m-1} p_{i}\right)
$$

0. Um: $\int \alpha=c=c \int \alpha_{m-1}=\alpha_{\text {Lemma }}=\alpha-c \alpha_{m-1}=d \rho$

Thu Let $M, N$ be oriented, compact, convected manifolds of same dimension $n$ and $F: M \rightarrow N$ a smooth map. Then there exists an integer, called the degree of $F$ s.t.

- if $\alpha \in \Omega^{n}(N)$, then $\int_{M} F^{*} \alpha=\operatorname{deg} F \int_{N} \alpha$
- if $c$ is a regular value of $F$ then

$$
\operatorname{deg} F=\sum_{x \in F^{-1}(c)} \text { sign } \operatorname{det} D F_{x}
$$

$$
F^{*} \omega_{\nu}=\lambda \omega_{\mu}
$$

$$
\operatorname{rgma}_{n} \lambda(x)
$$

$$
\begin{aligned}
& \Rightarrow \alpha=c \alpha_{m+1}+d \rho=c \alpha_{0}+d\left(\beta-c \sum_{i} \rho_{i}\right) \\
& \text { if } \int \omega_{m}=1,\left[u_{n}\right]-\text { hates }-H^{n}(M)
\end{aligned}
$$

$$
\begin{aligned}
& \text { Degree of a map }
\end{aligned}
$$

Corollary: if $F$ is not surjective, then deg $F=0$
Ex: if $F$ is an orientation p-eseroring differ, then $\operatorname{deg} F=1$.
$\begin{aligned} \text { Ex: }^{k \text {-sheet }} F & \rightarrow S^{\prime} \\ Z & \longmapsto S^{k}\end{aligned} \quad \operatorname{deg} F=k$.
Ex: $f_{1}, f_{2}: S^{\prime} \rightarrow \mathbb{R}^{3}$ two smooth maps suppose :"m $f_{1}$ is duyjout hen in "~" $\mathbb{R}_{2}$ -th circle, :- $\mathbb{R}^{3}$ ("knots")
Guider

$$
\begin{aligned}
F: s^{\prime} \times s^{\prime} & \rightarrow s^{2} \\
(s, t) \mapsto & \mapsto f_{1}(s)-f_{2}(t) \|
\end{aligned}
$$

$$
\operatorname{deg} F=" \ln , b_{i g} \text { number" }
$$

$$
\text { of } K_{1} \text { and } K_{2} \text {. }
$$



Poincasé duality for de Rham cohondogy
Theorem:
Let $M$ be compact, oriented, $n$-manifold. Then
One has a non-degnerate bilinear form $H^{P}(M) \times H^{n-p}(M) \rightarrow \mathbb{R}, 0 \leq P \leq n$

$$
\underset{\left.\substack{m \\ \Omega_{c l}^{\tilde{p}}} \underset{\Omega_{c l}^{n}}{[\alpha]}, \underset{\Omega_{c}^{n-p}}{[\beta]}\right) \longmapsto \int_{M} \alpha \wedge \beta .}{ }
$$

$>$ this bilinear for giver an iso. $H^{P}(M) \xrightarrow{\simeq}\left(H^{n-P}(M)\right)^{+}$
Corollary: $\operatorname{dim} H^{\rho}(M)=\operatorname{dim} H^{n-p}(M)$.

* Relation between $H^{\prime}(M)$ and $\pi_{1}(M)$ :
- there is a pairing $\pi_{1}\left(M, x_{0}\right) \times H^{\prime}(M) \rightarrow \mathbb{R}$

$$
([\gamma], \alpha) \longmapsto \int_{\gamma} \alpha=\int_{S^{\prime}} \gamma^{*} \alpha
$$

it induces a cell-efegeded arate raving $\left(\Pi_{1}\left(M, x_{0}\right)^{a b} \otimes \mathbb{R}\right) \times H^{\prime}(M) \rightarrow \mathbb{R}$
abelianizaton of a group: $G / L$
Thus: $\left[H^{\prime}(M) \cong\left(\pi_{1}^{a b}(M) \otimes \mathbb{R}\right)^{*}\right]$

$$
\begin{aligned}
\varepsilon_{x}: \quad \pi_{1}^{a b}\left(\Sigma_{g}\right) & \simeq \mathbb{Z}^{2 g} & \rightarrow H^{\prime}\left(\Sigma_{g}\right) \simeq \mathbb{R}^{2 g} \\
\pi_{1}\left(x_{k}\right) & \simeq \mathbb{Z}^{k-1} \oplus \mathbb{Z}_{2} & \rightarrow H^{\prime}\left(x_{k}\right) \simeq \mathbb{R}^{k-1}
\end{aligned}
$$

k- Rild progective space

