We ray that $F: \mu \times[a, b] \rightarrow N$ is smooth if it is a restriction of $\tilde{F}: M \times(a-\varepsilon, b+\varepsilon) \rightarrow N$

Theorem Let $F: M \times[0,1] \rightarrow N$ be a smooth map. Set $F+(x)=F(x, t)$ and consider the induced map on de Rhan colonology $F_{t}^{*}: H^{P}(N) \longrightarrow H^{p}(M)$. Then: $\quad F_{1}^{*}=F_{0}^{*}$.

Proof Let $a=[\alpha] \in H^{p}(N) \quad F^{*} \alpha \in \Omega^{p}(M \times[0,1])$ cored Rem on N

splithy (\#) is clear: a cord. system.
$\left[\begin{array}{l}\text { morerantly: } \\ \frac{\text { mad et }}{T_{0} \text { get } \gamma:} \\ \text { let } \\ \varphi_{t}(x, s) \mapsto(x, s+t)\end{array}\right.$ be the flow on $M \times(a, b)$-it grevates a vector $\left.f_{2 e}(d) X=\frac{\partial}{\partial t}\right]$

$$
\begin{aligned}
& \alpha \text { closed } \Rightarrow F^{*} \alpha \text { cased } \Rightarrow 0=d(\beta+d+\alpha \gamma) \\
& =d_{\mu} \beta+d t a \frac{\partial \rho}{\partial t}-d t \wedge d_{\mu} \gamma \\
& \Rightarrow \frac{\partial \beta}{\partial t}=d_{\mu}^{\gamma} \quad \Rightarrow F_{1}^{*} \alpha-F_{0 \alpha}^{*} \\
& \frac{\partial^{\prime \prime}}{\partial t} F_{t \alpha}^{*} \\
& =\int_{0}^{\int_{0}^{\alpha}} d t \underbrace{\frac{p}{\partial t} F_{t}^{*} \alpha}_{\frac{\partial p}{\partial t}=d_{\mu} \gamma}=d_{\mu} \int_{0}^{1} d t \gamma
\end{aligned}
$$

\Rightarrow cloned forms $F_{1}^{*} \alpha, F_{0}^{*} \alpha$ differ by an exact form

$$
\Rightarrow F_{1}^{*} a=F_{0}^{*} a
$$

Corollary: The de Ram cohomology groups of $M=\mathbb{R}^{n}$ are zero for $p>0$.

Proof: Set $F: \mathbb{R}^{n} \times[0,1] \rightarrow \mathbb{R}^{n}$

$$
(x, t) \longmapsto t x
$$

$$
F_{1}^{*}: H^{p}\left(\mathbb{R}^{n}\right) \rightarrow H^{p}\left(\mathbb{R}^{n}\right)^{K}
$$

$$
F_{1}=i d
$$

$$
\begin{aligned}
& F_{1}=i d \\
& F_{0} \text { man } \mathbb{R}^{n} \text { to } \quad 0 \in \mathbb{R}^{n}
\end{aligned}
$$

- content map

$$
\Rightarrow D F_{0} \text { vanishes } \Rightarrow
$$

for any $\alpha \in \Omega^{>0}\left(\mathbb{R}^{\wedge}\right), F_{0}^{*} \alpha=0$

$$
\Rightarrow F_{0}^{*}: H^{p}\left(\mathbb{R}^{n}\right) \rightarrow H^{p}\left(\mathbb{R}^{n}\right) \quad, p>0
$$

by Proposition, $F_{1}^{*}=F_{0}^{*} \Rightarrow H^{p}\left(\mathbb{R}^{n}\right)=0, P>0$

$$
\text { - } \mathbb{R}^{n} \text { is conucted } \Rightarrow H^{0}\left(\mathbb{R}^{n}\right)=\left\{\begin{array}{l}
\text { locally constant }\} \\
\text { Rnctors o. } \mathbb{R}^{\prime}
\end{array}\right\} \simeq \mathbb{R}
$$

- By a similar argument:
- Poincare lemma: if $U \subset \mathbb{R}$ " a "sta reshaped region"

$$
\forall x \in U, t \in[0,1], t x \in U
$$

$$
\left\{\int_{0} \text { then } H^{p}(U)= \begin{cases}\mathbb{R} & \text { if } p=0 \\ 0 & \text { if } p>0\end{cases}\right.
$$

- $H^{p}\left(M \times \mathbb{R}^{n}\right) \cong H^{p}(M) \quad$ for any maribold M
$F_{t}(a, x)=(a, t x) \quad \sim$ deformation refraction of $M \neq \mathbb{R}^{2}$ onto M
* Example: $H^{\prime}\left(S^{\prime}\right)$

$$
S^{\prime}=\left\{e_{i}^{i \varphi} \in \mathbb{C}\right\}
$$

U_{1} parameterize by th angle $\varphi \in \mathbb{R} / 2 \pi \mathbb{Z}$

$$
\mu=d \varphi \text { is }
$$

a novere-vaishing 1- harm on S

$$
\begin{aligned}
\mu \text { defied by thisf-l : : } & U_{1}=S^{\prime} \backslash\{-1\} \\
& \text { were } \varphi \in(-\pi, \pi) \\
& \text { and } \left.U_{2}=\int^{\prime} \backslash+1\right\} \\
& \text { weer } \varphi \in(0,2 \pi)
\end{aligned}
$$

$d \mu=0$ obviously (le., hor degree ration)
assume $\mu=d f \quad S^{\prime}$ onract $\Rightarrow f$ mud have a min and a max global function on $S^{\prime} \Rightarrow d f$ mut vanish romestbore

So: $H^{\prime}\left(S^{\prime}\right) \neq 0$
but μ is norvaishing! $\Rightarrow \mu$ is a ot exact.
and contains the nonzero clans $[\mu]$
Let $\alpha_{\|} \in \Omega^{\prime}\left(S^{\prime}\right)$ any horn
want $\alpha=d h \Rightarrow g(\varphi)=h^{\prime}(\varphi)$

this solution is periodic if $\int_{0}^{2 \pi} d s g(s)=0$

Sol $\alpha=g \cdot \frac{g_{d \varphi}}{\mu}+\underbrace{d h}_{\text {exact form }} \quad \Rightarrow H^{\prime}\left(S^{\prime}\right)=S_{\text {pan }}[\mu]=\mathbb{R}$.

Theorem: For $n>0, H^{p}\left(S^{n}\right) \cong \begin{cases}\mathbb{R} & \text { if } p=0 \text { or } n \\ 0 & \text { otherwise }\end{cases}$
Proof Let $n>1$ (case $n=1$ wu disused above). Let $1<p<n$.
Let $\alpha \in \Omega_{\text {doused }}^{p}\left(S^{n}\right)$

$$
\left.\left.\alpha\right|_{u}=d u \leftarrow \text { since } H^{p}\left(\mathbb{R}^{n}\right)=0\right)
$$

$$
\alpha \mid v=d v \quad \text { for some } u \in \Omega^{P^{-1}(u)}
$$ on Un v: $o=\left.\alpha\right|_{u n v}-\left.\alpha\right|_{u n v}=d u-d v=d(u-v)$

$$
\begin{aligned}
& U=S^{n} \backslash S^{4 n}, \mathbb{R}^{n}
\end{aligned}
$$

$$
\begin{aligned}
\Rightarrow & u-v \in \Omega_{\text {closed }}^{p-1} \\
& (\underbrace{(u n v}_{\text {ditwo }} \times S^{n-1} \\
& \quad H^{p-1}\left(\mathbb{R} \times S^{n-1}\right)=H^{p-1}\left(S^{n-1}\right)_{\text {by in duafion }}=\text { for }^{k} \stackrel{1<p<n}{=}
\end{aligned}
$$

$U^{\prime}=\varphi_{u}^{-1}\left(B_{2}(0)\right) \quad$ Let $\psi=$ bump fanction on U Lik suporf $U N$ r.t. $\psi=1$ in $U^{\prime} \cap V^{\prime}$ Let $V^{\prime}=\varphi_{v}^{-1}\left(D_{2}(0)\right)$
$\psi \cdot \omega_{t}$-global (p-2)-horm on S^{n}
(extented $\begin{gathered}\text { sy pera) }\end{gathered}$
defive $\beta=\left\{\begin{array}{l}u \text { on } u^{\prime} \\ v+d(\psi w) \text { on } v^{\prime}-\text { global }(p-1) \text {-Rorn (restructions do } u^{\prime} n v^{\prime} \text { agree) }\end{array}\right.$
then $d \beta=\alpha \Rightarrow \alpha$ is exact! $\Rightarrow H^{p}\left(S^{n}\right)=0$
Lor $\quad<p<n$

- If $p=1, u-v \in \Omega_{\text {cobred }}^{o}(u \cap v)$
$=C$ - a courtut function (uingthat UnV is annocted, for $n>1$)
$\Rightarrow \beta=\left\{\begin{array}{lll}u & \text { on } & U \\ v+c & \text { on } & V \text { gloal funafor, } \\ \text { (agre or oveltep) }\end{array} d \rho=2\right.$
- If $p=n, \quad u-v$ difnes a class in $H^{1-1}(u \cap v) \cong H^{p-1}\left(S^{n-1}\right) \cong \mathbb{R}$

Let $H^{t-1}\left(S^{n-1}\right)=S_{\mu m}\left[C_{0}\right]$

$$
\operatorname{Unv} \stackrel{\Phi}{\Longrightarrow} S^{\pi\rfloor_{S^{n-1}}} \times \mathbb{R}
$$

So: $u-v=\lambda \phi_{1}^{4} \omega_{0}+d w$. If $\lambda=0$, thenve do as above ad fad aglobal $(\beta-1)$

$$
\begin{equation*}
\text { She } \lambda \in \mathbb{R} \tag{Brm}
\end{equation*}
$$

$$
\text { s.f. } \alpha=d \beta \text {. }
$$

- λ is bear in α
ond inderendeff of the choce of u, v (s:Ating them by an eraid term can be absorbed nto w)

$$
\Rightarrow \operatorname{dim} H^{n}\left(S^{n}\right) \leq 1
$$

ψ-buap buncton on \mathbb{R}
-Neadto fud α with nanzeco a. Sel $\left.\alpha=\phi^{+}(\psi \underset{4}{\downarrow}) d+\sim \omega\right) \in \Omega^{n}\left(S^{n}\right)$

$$
\begin{aligned}
& u-v=\underbrace{\left(\int_{-\infty}^{0} \psi(s) d s\right)}_{-\infty} \phi^{*} \text { or unv }
\end{aligned}
$$

Integration of forms
Orientation Recall a change of variabler formule in a multiple integral

$$
\begin{equation*}
\int f\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots d y_{n}=\int f\left(y_{1}(x) \ldots y_{n}(x)\right)\left|\operatorname{det} \frac{\partial y_{i}}{\partial x_{j}}\right| d x_{1} \ldots d x_{n} \tag{*}
\end{equation*}
$$

comnare to: the change of coods foc an n. Ronm on an n-unbl:

$$
\begin{aligned}
& \theta=f\left(y_{1}, \ldots, y_{n}\right) d y_{1}, \ldots \wedge d y_{n}=f\left(y_{1}(x), \ldots, y_{n}(x)\right)\left(\sum_{i,} \frac{\partial y_{1}}{\partial x_{i,}} d x_{i_{i}}\right) \wedge \ldots \wedge\left(\sum_{i_{n}} \frac{\partial y_{n}}{\partial x_{i_{n}}} d x_{i_{n}}\right) \\
&=f\left(y_{1}(x), \ldots, y_{n}(x)\right) \cdot \operatorname{det}\left(\frac{\partial y_{i}}{\partial x_{j}}\right) \cdot d x_{1} \wedge \ldots \wedge d x_{n}
\end{aligned}
$$

So: the difference is the abrolike value Idet 1: (x) If we cun deal vitt thent, we

def A_{n} n-mifd is orrentable if it has an evergubve non-vaisting n-form \mathcal{U}. de f Let M be an orientable n-manifold. An orentation on M is an equiv.clast of non-vanising n-borms w^{\prime} where cunc' if $w^{\prime}=f e$ with $f>0$.

- A conrected orientable med has two onenfations [\pm ev].

Ex $1: \quad f: \mathbb{R}^{n+1} \rightarrow \mathbb{R}$

$$
M=f^{-1}(c) \subset \mathbb{R}^{n+1} \text { sulmanifold }
$$ (by regula value levelset them)

if $\left.\frac{\partial f}{\partial x_{i}}\right|_{a} \neq 0$, the $x_{1}, \ldots, \hat{x}_{i}, \ldots, x_{n+1}$ are loc. coords on M neap a.
On sud a patch, carsider $\omega=(-1)^{i} \frac{1}{\frac{\partial f}{\partial f}} d x_{1} \wedge \ldots \widehat{d x_{i}} \cdots n d x_{n+1}{ }^{(\#)}$ - non-vanising an-form
$\left.\therefore \frac{\partial f}{\partial x_{j}}\right|_{a} \neq 0$ also, then $\omega=(-1)^{j} \frac{\frac{1}{\partial x_{i}}}{\partial f} d x_{1}, n-d x_{j} \ldots \lambda d x_{n+1} \underbrace{\text { sunhtitate }}=d x_{j}=-\frac{1}{\partial x_{j}}\left(\frac{\partial f}{\partial x_{j}} d x_{i}+\ldots\right)$
$\Rightarrow(\#)$ deferes for all chads a nonumishing n-borm
$\Rightarrow M$ is orientable
E.g. $M=S^{n}$ with $w=(-1)^{i} \frac{1}{x_{i}} d x_{1} n \ldots \widehat{d x}_{i} \ldots n d x_{n+1}$ (@)

Ex2 Conider $\mathbb{R}^{1} \mathbb{P}^{n}$,

$$
\begin{aligned}
& p: S^{n} \longrightarrow \mathbb{R}^{n} \\
& \text { unt vecto, }
\end{aligned} \longrightarrow S_{n a n}\{v\}
$$

$$
-\mathbb{R}^{n+1}
$$

if $x_{1} \neq 0$, use $\left(x_{2} \cdots x_{n+1}\right)$ coordinater on $S^{n},\left(\frac{x_{2}}{x_{1}}, \frac{x_{n+1}}{x_{1}}\right)$ coordr. on $\mathbb{R}^{n} \mathbb{P}^{n}$

$$
p(x)=\frac{x}{\sqrt{1-\|x\|^{2}}} \text {, imooth with snooth inverse } q(y)=\frac{y}{\sqrt{x_{1}}}
$$

Let $\sigma: S^{n} \rightarrow S^{n}$ be the differ $\xi(x)=-x$. Then

$$
\left.{\sigma^{*} \omega}_{\Gamma}^{\tau}=(-1)^{i} \frac{1}{-x_{i}} d\left(-x_{1}\right) \wedge \widehat{d\left(-x_{i}\right.}\right) \cdots \wedge d\left(-x_{n+1}\right)=(-1)^{n+1} \omega
$$

 n- Rorn on S^{n}

$$
\text { and so } p^{*} \theta=f \omega_{\text {, }} \text {, }
$$

for f a vonvariling Ructor.

$$
\begin{aligned}
p \circ \sigma=p \Rightarrow f c)=p^{*} \theta=\sigma^{*} p^{*} \theta & =\sigma^{*}(f c) \\
& \left.=\left(\sigma^{*} f\right) \cdot(-1)^{n+1} c\right)
\end{aligned}
$$

Thus, if $n=2 m$ even, then $f=-\sigma^{*} f$, i.e. $f(a)=-f(-a)$
So, if $f(a)>0$, the $f(-a)<0$. Aut S^{n} is comected, sothis means that f must varsish sonewhere - contradictua!
$\Rightarrow \underline{\underline{R} \mathbb{P}^{2 m} \text { is non-omentable! }}$

Proposition A manibld is onentable iff it hai a coverng by coord. charts such that $\operatorname{det}\left(\frac{\partial y_{i}}{\partial x_{j}}\right)>0$ on the intersection.
Proof Assume M is orientable, as a non-venishing n-form. In a cosrd. chart, $c=f\left(x_{1}, \ldots, x_{1}\right) d x_{1} \wedge \ldots d x_{1}$. After piriihly makng a coord. chagge $x_{1} \mapsto c-x_{1}$, we have coords. s.t. $f>0$.
Look at two such overlapping charts:

$$
\begin{aligned}
\omega=g\left(y_{1}, \ldots, y_{n}\right) d y_{1} \ldots n d y_{n} & =g\left(y_{1}(x), \ldots, y_{n}(x)\right)\left(\operatorname{det} \frac{\partial y_{1}}{\partial x_{j}}\right) d x_{1} \wedge \ldots d x_{n} \\
& =f\left(x_{1}, \ldots, x_{n}\right) d x_{1} \wedge \ldots \wedge d x_{n}
\end{aligned}
$$

since $f>0, g>0$, we have $\operatorname{det}>0$.
Caversely: supprie ve have such coodds. Let $\left\{\varphi_{\alpha}\right\}$ be a purtiton of unity subordinate to $\left\{U_{\alpha}\right\}$ \{uer $\left.u_{\alpha}\right\}$

Set $\omega=\sum_{\alpha} \varphi_{\alpha} d y_{1}^{\alpha} \wedge \ldots \wedge d y_{n}^{\alpha}$
On a chat u_{β} with coords x_{1}, \ldots, x_{n}, ve have

$$
w \|_{u_{\beta}}=\sum_{\alpha=0}^{\sum_{\alpha} \varphi_{\alpha}} \underbrace{\left(\frac{\partial y_{k}^{2}}{\partial x_{j}}\right)}_{>0} d x, \wedge \wedge \wedge d x_{n} \quad \text {-narvaishing! }
$$

- Integration suppose Mis omeatable and we have choren an orventetion. We will deftre $\int_{M} \theta$ of any n-form θ of onpaed support on M.
cboose $\left\{U_{\alpha}\right\}$-cordnate coving $\theta 1 u_{2}=f_{2}\left(x_{1}, \ldots, x_{1}\right) d x_{1} \ldots \ldots d x_{n}$
let $\left\{\varphi_{i}\right\}$-patiton of wi.ty subordinate $\left.\quad \varphi_{i} \Theta\right|_{U_{2}}=\underbrace{g_{i}\left(x_{1}, \ldots, x_{n}\right.}) d x_{1}, \ldots \wedge d x_{n}$

$$
\text { to }\left\{u_{\alpha}\right\}
$$

Define $\int_{M} \theta:=\left(\sum_{i} \int_{M} \varphi_{i} \theta i=\right) \sum_{i} \int_{\mathbb{R}^{n}} g_{i}\left(x_{1}, \ldots, x_{1}\right) d x_{1} \ldots d x_{n}$ s mpoct on the antive \mathbb{R}^{n}

$\int_{M} \theta$ is well-defred be cause of the clange of verables f-la bor integration + corrutent cloice of rign of dit Jac tron oreatation.

