

LAST TIME:

- Orientation on an n-manifold $M=$ a noshere-vanishing n-form as on M up to equivalence $\omega \sim f \omega, f \in C^{\infty}(M)$ $f>0$
- S^{n} is arientable
$\mathbb{R}^{2 m}$:s mon-orientable

Proporition Amed :s orientable iff it has a covering by coord. chats est. $\operatorname{det} \frac{\partial y_{:}}{\partial x_{j}}>0$ on every overlap.
Proaf Arsume M is orientable ω-mivanist:g n-form
\therefore a cood chart on $M, \quad \frac{\omega=f\left(x_{1},-x_{1}\right) d x_{1}, \ldots, n d x_{n}}{a}$ cood. change x After porsibly making

$$
\text { a coord change } x_{1} \longmapsto-x \text {. }
$$

we have coods lit $f>0$
On an werlap (?)

$$
c=\underbrace{g\left(y_{1} \ldots y_{n}\right)}_{>0} d y_{1} \wedge . a d y_{n}=\underbrace{g\left(y_{1}(x), \ldots, y_{n}(x)\right)}_{>0}\left(\operatorname{det} \frac{\partial y_{i}}{\partial x_{j}}\right) d x_{1} \cap \ldots d x_{n}
$$

$$
=\underbrace{f\left(x_{1} \ldots, x_{n}\right)}_{>0} d x_{1} \ldots \ldots x d x_{1}
$$

$$
\Rightarrow \operatorname{det} \frac{\partial y_{i}}{\partial x_{j}}>0
$$

Gonversely:
suppose we have sech coords
on $\left\{u_{2}\right\}$

$$
\omega=\sum_{\alpha} \oplus_{\alpha} d y_{1}^{\alpha} \wedge . . d y_{n}^{\alpha}, \quad \Omega^{n}(M)
$$

On a chart U_{β} with cords $x_{1} \ldots x_{1}$

Integration
Suprose M is an orestable n-arfe and we have closen an orentacton. $F_{\text {ix }} \theta$ an n-doren on M with ompact support. want to defve $\int_{M} \theta$
Closse $\left\{U_{\alpha}\right\}$ Geverng by cord. chants compatitle with the orietation.

$$
\left.\theta\right|_{u_{\alpha}}=f\left(x_{1}, \ldots, x_{1}\right) d x_{1} \sim \cdots d x_{1}
$$

$\left\{\varphi_{i}\right\}$ - pact of wity $\left.\varphi_{i} \in\right|_{U_{2}}=\underbrace{g_{i}\left(x_{1}, \ldots, x_{1}\right)}_{\begin{array}{c}\text { sn. R.enctan with ant sappoat } \\ \text { an } \mathbb{R}^{n}\end{array}} d x_{1} \wedge \ldots \wedge d x_{0}$

$$
\operatorname{suph} \varphi_{1} \subset U_{\alpha}
$$

$$
\int_{M} \theta=\sum_{i} \int_{M} \varphi_{i} \theta=\sum_{i} \int_{\mathbb{R}^{n}} g_{i}\left(x_{1} \ldots x_{1}\right) d x_{1} \ldots d x_{1}
$$

$$
\text { or } \mathbb{R}^{n}
$$

$\int_{M} \theta$ is well-debind be cause of change of voriables f-h for itegral

+ connaknt cloire of sign of det Yac fron orentation

Guillemin-Pollack, p. $167-168$

Properties:

$$
\begin{aligned}
& \int_{M}: \quad \Omega_{c}^{n}(M) \rightarrow \mathbb{R} \quad \text { is a linear map } \\
& \int_{M}(\alpha+\beta)=\int_{M} \alpha+\int_{M} \beta \quad \int_{M} c \alpha=c \int_{M} \alpha
\end{aligned}
$$

(2) changing the onentation on M results in changiy the rign of $\int_{M} \theta$.

$$
\text { (ray, } M \text { is connected) }
$$

(3) if $F: M \longrightarrow N$ is orientation-rreserving diffemonglisn and $\theta \in \Omega_{c}^{n}(N)$

$$
\int_{N} \Theta=\int_{M} F^{*} \theta
$$

Stokes' Theoren
simple version
Theorem: Let M an orrentid n-manibld and $\alpha \in \Omega_{c}^{n-1}(M)$. Thon

$$
\int_{M} d \alpha=0
$$

Proof CLoave a part of uist $\{\varphi:\}$ subordnate to a coordicover $\left\{U_{2}\right\}$

$$
\begin{aligned}
& \alpha=\sum_{i} \varphi_{i} \alpha \quad \varphi_{i} \alpha=a_{1} d x_{2} \wedge \ldots \wedge d x_{1}-\underline{a_{2}} d x_{1} \wedge d x_{3} \wedge \ldots a d x_{1}+\ldots \\
& d\left(\varphi_{i} \alpha\right)=\left(\frac{\partial a_{1}}{\partial x_{1}}+\frac{\partial a_{2}}{\partial x_{2}}+\ldots+\frac{\partial a_{1}}{\partial x_{1}}\right) d x_{1} \wedge \ldots \wedge d x_{1} \\
& \Rightarrow \int_{M} \varphi_{i} \alpha=\int_{u_{\alpha}} \varphi_{i} \alpha=\int_{\mathbb{R}^{\wedge}}\left(\frac{\partial a_{1}}{\partial x_{1}}+\ldots+\frac{\partial a_{1}}{\partial x_{1}}\right) d x_{1} \ldots d x_{n}=0
\end{aligned}
$$

Proporition Let M be a apt oriantable n-mifd Then $H^{n}(M) \neq 0$.
Prool: M orentable $\Rightarrow w$-nonvanishing n-form $\quad w:$ cloed $[\omega] \in H^{n}(M)$
chase the orialition dekmined by a
assume
$c=d \alpha \Rightarrow \int_{m} \omega_{m}=\int_{m} d \alpha=0 \Rightarrow c$ cannt be exact

$$
\Rightarrow[0] \neq 0 \text { in } H^{n}(m)
$$

