LAST TIME: $\quad \mathrm{f}: X \rightarrow Y$ cont. bijection is a homeomorphism if X is compact, Y : Hausdorff.

- Heine-Borel: $K \subset \mathbb{R}^{n}$ is compact iff K is closed and bounded.

$$
Q_{u i z} I, 8 / 19 / 20
$$

(1) Which is NOT a topology on $\{1,2,3\}$?
A)

D)

(2) Which among those in (1) which are topologies are Haws dorff?
(3) What is a compact topological space? (Definition)

A quotient of a Hausdorff space which is not Hausdorff

$$
\begin{aligned}
& X=\mathbb{R} /(-1,1)
\end{aligned}
$$

$P^{-1}(U)$ overlaps with $(-1,1)$-must contain $(-1,1)$

$$
p^{-1}(v)
$$

\qquad " \qquad
\qquad
\Rightarrow cannot be disjoint \rightarrow contradictor!
Hene-Borel theorem - fact 1: ${ }^{a c l o s e d}[a, \dot{b}]$ is val :- \mathbb{R}

- Pad 2 : if X_{1}, \ldots, X_{n} are apt top. spaces then $X_{1} \times \ldots \times X_{n}$ is cit.
- Let $K \subset \mathbb{R}^{n} \underset{\text { Lena } \gamma}{ } \Rightarrow K$ closed $\quad\left\{B_{r}(0) \cap K\right\}_{r>0}$ open cover

finite $\bigcirc\left\{B_{r:}(0) \cap K\right\}$
succour

$$
R-l_{\text {largest }} r_{i}-B_{R}(0) \supset K
$$

K bounded.
$\cdot \Leftarrow \underset{\substack{\text { bounded }}}{k \text { closed }} \underset{\text { closed }}{K} \subset B_{e}(0) \subset[-R, R]^{x n}$ cpi <-us:g Pacts 1,2
$\Rightarrow K$ is compact!
Leman

Corollary of Heine-Dorel
if $f: X \rightarrow \mathbb{R}$ cont., X apt, then f has a minimum and
Proof: $k=f(x) \subset \mathbb{R}$ a maximum.
cit (Lemma)
$\Rightarrow k$ has a se premum b and an infinum a
$\Rightarrow b \in K \quad b=$ maximum
since K
is closed

$$
\Rightarrow \exists x_{\text {max }} \text { sit. } f\left(x_{\text {max }}\right)=b
$$

$$
\hat{x} \quad f(x) \leqslant f\left(x_{\max }\right)
$$

Connected space
def A top. space X is called connected if it can't be written as $X=U \Perp V$ with U, V nonempty, disjoint as $X=U \Perp V$ with U, V open subsets of X.

Ex Let

$$
a<b<c<d
$$

- $X=(a, b) \cup(c, d)$ is not connected

$$
\cdot X=\underset{\text { open set } i x: X([c, d])}{([a, b])}
$$

Lemma: Any interval $I \subset \mathbb{R}$ (open, closed, half-ona, bounded or not)
Proof: assume $I=\bigcup_{U}^{U} \Perp{\underset{V}{V}}_{V}$ assume $u<V$

$$
\begin{aligned}
& {[u, v]=U^{\prime} \Perp V^{\prime \prime}} \\
& U \cap[u, v] \quad V^{\prime} \cap[u, v]
\end{aligned}
$$

Claim $c=\sup U^{\prime}$ belongs to both U^{\prime} and V^{\prime} - Gntradiction!

- c-init point of $U^{\prime} \Rightarrow c \in U^{\prime}$
U^{\prime} - is closed $2 n[u, v]$
- $\forall x \in(c, v)$ in $V^{\prime} \Rightarrow$ seq, in V^{\prime} converging to c $\Rightarrow c=$ limit in $V^{\prime} \Rightarrow c \in V^{\prime}$.

Intermediate value theorem
Let X be a connected space and $f: X \longrightarrow \mathbb{R}$ a cont map If $a, b \in f(X) \quad \forall c$ s.t. $a<c<b$ is h $f(X)$.
Proof assume $c \notin f(x)$

$$
X=f^{-1}(\underset{a}{-\infty} \underset{a}{-\infty} c) \Perp f^{-1}(c,+\infty)
$$

def: A top. space X is called path connected if $\forall x, y \in X$ \exists path connecting x and $y: X:$ e. $\exists r:[a, b] \xrightarrow{\infty} X$

$$
\text { with } \gamma(a)=x, \gamma(b)=y
$$

Lena Any rath concerted space X is connected.
Proof: : ${ }^{\text {assure }} X$ path connected but not corrected, $X=U$ 1) V
$\Rightarrow[a, b]$ is not erected -contradiction

