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manifoldsdefA manifold of dimension n or n manifold is atopspace X
which is locally homeomorphic to 1127 g e ExeX has an open nbhd CX
sit Us Vc IR Additionally X is assumed to behome open
1Causder and second countable i.e F countablebasisof topology

Rtn If X is Hausdorff then any subspace 4C X is Hausdorff

If X is 2nd countable then a is 2ndcountable
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If X Y are manifolds of din m n then Xx 4 is an Cmtn manifold
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RIP is an n manifold homework

Examples of 2 manifolds
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Then Classification of compactconnected 2 manifolds

Every compact connected 2 manifold is neo to exactly one of the following
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