LAST TIME:. CU complex: (cell)

- (topolgical) ${ }^{n-}$ man:fold: X s.t. $\forall x \in X$ has an oper nhind homeo to an open: $: \mathbb{R}^{n}$ (+ Housdorff, $+2^{\text {nd }}$ cuntiste)
- Ex: any open $U \subset \mathbb{R}^{n}$ is an n-manifold.

$$
\begin{aligned}
& S^{n}=\left\{x \in \mathbb{R}^{n+1} \mid\|x\|=1\right\} \\
& U^{+}=\left\{x=\left(x_{0}, \ldots, x_{n}\right) \mid x_{i}>0\right\} \quad, i=0 \ldots n \\
& U_{i}^{-}=\left\{\square x_{i}<0\right\} \\
& U_{i}^{ \pm} \xrightarrow{1-1} D^{n}=\left\{\left(v_{2}, \ldots, v_{n}\right) \mid v_{1}^{2}+\ldots+v_{1}^{2}<1\right\} \text { Loneomernimen } \\
& x\left.\xrightarrow{ } x_{0} \ldots \hat{x}_{i} \ldots x_{1}\right)
\end{aligned}
$$

$$
\left(v_{1} \ldots \pm \sqrt{1-\|v\|^{2}}-v_{n}\right) \longleftrightarrow \quad\left(v_{1} \ldots v_{n}\right)
$$

- If X, Y-mfds
$X \times Y(m+n)-d: m a f d$ min-dim $^{\hat{1}}{ }_{n-d i n}$
- $\mathbb{R} \mathbb{P}^{n}$ is an n-mfd.
$d_{i m}=2$ manidals
- 2-tarus $T \approx \underset{a}{a}+b \approx S^{\prime} \times S^{\prime}-2$-manibold

$$
\begin{aligned}
& \Sigma_{1}=\text { torus } \\
& \Sigma_{0}=\text { sphere }
\end{aligned}
$$

9 holes
Connected sum construction

$$
M, N-n-m \delta d s \sim
$$

$$
M \# N
$$

nev -med "convected sum

- chare $x \in M \quad, y \in N$
pick a romeo $\varphi: \bigcup_{\dot{x}} \underset{\sim}{\text { oh en }} \xrightarrow{\sim} \subset B_{2}(0) \subset \mathbb{R}^{n}$
$\psi: \bigcup_{y}^{V} \subset N$

M\# N - is a manifold

- dependence on choice of $x, y ; e, \psi$ shard assume M, N connected
fact. He result is unique "p to homes it one is "cave with orientation" in $d i n=2$, the result is varigue.

$$
\begin{aligned}
& \varepsilon_{x}: \sum_{2} \# T \approx \sum_{3}, \sum_{g} \# \sum_{g} \approx \approx \sum_{g+g^{\prime}} \\
& \Rightarrow \underbrace{T \# \ldots \# T}_{k} \approx \sum_{g} \text { (take it to be the do of } \sum_{g} \text {) } \\
& X_{k}:=\underbrace{\mathbb{R} \mathbb{P}^{2} \# \cdots \# \mathbb{R} \mathbb{P}^{2}} \text {-"k-fold projective plane" }
\end{aligned}
$$

Classification Theorem for compact, connected 2 -ards
Every copt, conn $2 \mathrm{-mfl}$ is homes to exactly one of the following.

- genus $\operatorname{g~sufface~}_{g \geqslant 0} \Sigma_{g}=\underbrace{T \text { \# } \ldots T}_{g \geqslant 1}$ or $\Sigma_{0}=S^{2}$

$$
\text { - } X_{k}=\mathbb{R} \mathbb{P}^{2} \# \underbrace{\# \cdots \# \mathbb{R} \mathbb{P}^{2}}_{k}, t \geqslant 1
$$

Euler char. + oriatability

(2) any apt conn z-midd is homes t- one of the std ores

$$
\begin{aligned}
\text { Rom: } & \text { Klein bottle } \approx \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}=X_{2} \\
& \mathbb{R} \mathbb{P}^{2} \# T \approx \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}=X_{3}
\end{aligned}
$$

Euler characteristic Let \sum be a copt $2-\mathrm{mPd}$
A cell $(C W)$ decamp r of Σ
-graph Γ on Σ

- a coll.

$$
\begin{aligned}
& \text {-acells } \\
& \text { 1-cells endronts belong to } \\
& \text { inkesectrons } \quad V=\left\{v_{1}-v_{k}\right\}
\end{aligned}
$$

such that

Eulerclar $\quad \chi(\Sigma ; \gamma)=\#$ vertices $-\#$ edges $+\#$ polygons

$$
x=\sum_{n \geqslant 0}(-1)^{n} \# n-c e l l s
$$

