Preposition Let M, N be two cpl, conn 2 mifds , $M=\Sigma\left(\omega_{1}\right), N=\Sigma\left(U_{2}\right)$, ω_{1}, ω_{2} - words from disjoint alphabets. Then the connected sum is

$$
M \# N=\sum\left(\omega_{1} \omega_{2}\right)
$$

Proof

$$
\begin{aligned}
& y_{2} w_{2}=y_{1} \cdots y_{n} \\
& y_{1} \cdot \frac{|l| l}{y_{-}} \frac{y_{n-1}}{y_{n-1}}=\sum\left(w_{2}\right)=N
\end{aligned}
$$

$$
\Rightarrow M \# N=\sum\left(x_{1} \ldots x_{m} y_{1} \ldots y_{n}\right)=\sum\left(W_{1} W_{2}\right)
$$

Corollary: (i) $\Sigma_{g}=\underbrace{T \# \ldots T}_{g=\sum\left(a_{1} b_{1} a_{1}^{-1} b_{1}^{-1}\right) \# \# \# \sum\left(a_{g} b_{g} a_{j}^{-1} b_{j}^{-1}\right)} \approx \sum\left(a_{1} a_{1} a^{-1} b_{1}^{-1} a_{2} b_{2} a_{2}^{-1} b_{2}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right)$

$$
\text { (2) } X_{k}=\underbrace{\mathbb{R}^{2} \#-\# \mathbb{R} \mathbb{R}^{2}}_{k} \approx \sum\left(a_{1} a_{1} a_{2} a_{2} \cdots a_{k} a_{k}\right)
$$

Proposition: Let W_{1}, W_{2}, W_{3} be words and a a letter not occurring in them. Then there are homeomorphisms
(x) $\quad \sum\left(\omega_{1} a \omega_{2} a W_{3}\right) \approx \sum\left(\omega_{1} a a W_{2}^{-1} \omega_{3}\right)$,
(**) $\quad \sum\left(W_{1} a \omega_{2} a \omega_{3}\right) \approx \sum\left(\omega_{1} \omega_{2}^{-1} a a \omega_{3}\right)$
where ω_{2}^{-1} is the "inverse" of the word $\omega_{2}: \omega_{2}=x_{1} \ldots x_{n} \rightarrow \omega_{2}^{-1}=x_{n}^{-1}-x_{1}^{-1}$. (as for a group product)
Proof: 〈let's check $(t)\rangle$

$$
\begin{aligned}
& \sum\left(\omega_{1} a \omega_{2} a \omega_{3}\right) \approx \sum\left(a \omega_{2} a \omega^{\prime}\right) \\
& \sum\left(\omega_{1} a a \cdot \omega_{2}^{-1} \omega_{3}\right) \approx \sum\left(a a \omega_{2}^{-1} \omega_{1}^{\prime}\right)
\end{aligned}
$$

So, we vent to prove: $\sum\left(a \omega_{2} a \omega^{\prime}\right) \approx \sum\left(a a w_{2}^{-1} \omega^{\prime}\right)$

$(k *)$ is $\sin 2 l a r$ - we cut the square by the other diagonal

Application: proof of $T \# \mathbb{R} \mathbb{P}^{2} \approx \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}$

$$
\begin{aligned}
& \text { Indeed: T\#\|R} \mathbb{P}^{2}=\sum\left(a b a^{-1} b^{-1}\right) \# \sum(c c) \approx \sum\left(a b a^{-1} b^{-1} c c\right) \\
& \approx \sum(a b c b a c) \approx \sum\left(a b b c^{-1} a c\right) \approx \sum\left(b b c^{-1} a c a\right) \\
& \approx \sum\left(b b c^{-1} c^{-1} a a\right) \approx \sum(b b) \# \sum\left(c^{-1} c^{-1}\right) \# \sum(a a) \approx \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2} \# \mathbb{R} \mathbb{P}^{2}
\end{aligned}
$$

- Idea of proof of "constructive part" of the clarification THM <that any pt conn $2 \mathrm{mld}: s \approx \Sigma_{g}$ or $\left.X_{k}\right\rangle$
(1) Show that every \sum admits a triangulation (cell decamp where polygons =triangles)
$\Rightarrow \Sigma^{-}=11$ polygons \rightarrow give cad edge ifs own label

$$
\begin{aligned}
& \text { s/jluing ed gs } \\
& \text { cary ing melobel }
\end{aligned}
$$

(2) Reduce the number of polygons by one by gluing a pair of edger with sand label belonging to dittirent polygon
\longrightarrow inductively, reduce to a single polygon
(3) Use the moves of Lemma A, Prop. I to show that labeling of edges of the polygon can be medifud, without danang the honeotype of the resulting quotient, to -stain the stand. labeling for \sum_{g} or X_{k}.
def A 2 -mfd \bar{Z} is non-orientable if it contains a subspace homes to the Möbius band. Otherwise, Σ is called orient isle.
Prop (i) X_{k} is non-orientable
(ii) \sum_{g} is orientable.

Rem: if $\sum \stackrel{f}{\approx} \Sigma^{\prime}$ a homes of 2 -rids then both are either orienteble or non(if $M \subset E$ homed to $M . b$., then $f(M) \subset \sum^{\prime}$ is too)
Thus, $P_{\text {roo }} \Rightarrow \Sigma_{g} \not \not \not X_{k}$ for any g, k !

Proof of (i): $\quad X_{k}=\sum\left(a_{1} a_{1} \cdots a_{k} a_{k}\right)$
after glung, bi-colored staip beomes Möbbius stiup. green part gete glued to mage part.
$\Rightarrow X_{k}$ contais a Mobius strip!
<iketch>
(ii) Cet i: $M \longrightarrow \Sigma_{g}$ hames onto its inage \qquad Tiple Lo the

$$
[0,1] \times(-1,1) /(0, t) \sim(1,-t)
$$

orea mobius starp

$$
\Sigma_{g}=\Sigma\left(a_{1} b_{1} a_{1}^{-1} b_{1}^{-1} \cdots a_{g} b_{g} a_{g}^{-1} b_{g}^{-1}\right)
$$

\rightarrow Lemma: Any open abld $U \subset M$ catans a sub-abld $\stackrel{\rightharpoonup}{c}$ cortans a sub-abld $\quad \breve{C} \subset U$
s.t. $V \backslash C$ is rath-comected.

$$
\begin{aligned}
& \text { red cunve }=i(C) \\
& \text { its nuhd }=2 \text { raded htrip } U
\end{aligned}
$$

UVi(C) is green poort 11 red part -disjoint? -contiediction wath Lema
grea pus bo the

4g-gon
Thil: cerigitit because \underline{f} is alvegr glued to \underline{e}^{-1}.

