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PrepositionCeffingcriterion Let p F Fo X xo be a covering nap
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f IT CYgo C p IT XNIo There is at most one such lift
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Classificationof coverings
def A covering p I E X X is called a universalavering
if T is simplyconnected In thatcase IT is called theanigerate of X

PCand
If X is LPC a univ covering I satisfies the un u property
Xiao F E CI I f anyway X d X a

a
p p g byLiftingCriterion withY X
X no I simplycan ftp.cyzocp cyy Criterion

U applies
evenlycoveredforpandp s X LPC I Lpcf IT p opf is itself a coverng normally one wouldalso assume It is PC

Univ Goering of a LPC space X is unique up to isomorphism by C
onespeak of the univ covering of X

i p IR S mu ove ng of S since R simplyconnected

t eatit

2 pi S IRP S univ covering of IRP since S
n 32 Simply connected



Ssc
def Aspace X is semilocally simply connected if theEX has a ibhd U sit
theinduced homomorphism IT U IT X x is the trivialmap
SSC is a necessary condition for theexistenceof a univ covering I X for
X path connected Indeed for se cX let U CX be an euaky overeatenBhd
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homomorphism mustbe trivial
i An example of a space whichis not SSC Hawaiian earring
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locallysimply connected is astrongerpropertythan
Sen locally simply connected

E9 Warsaw circle in net LPC but has it o SSC
not Lsc

Cone HawaiianEarring has it but not everyplant has a simply ons
Ssc subnbhdofanyprescribedabhd

def A topSpace X is reasonable if it is locallypath connected and
senilecally simplyconnected CIPCcs.sc

Theorem
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A equable path connected space X hes a univ covering LP
x

Munkres Than 82.1 Hatcher pp 65 65



Construction of the univ covering for a path connected reasonable X
f x EX I paths in X starting at adf.no

qy ofpathsP 8m2cm

I simply am F uniquehonefepy class ofpaths for To to anyY
liftingof apathCuptohomotopy in X starting at X

1oology on IT
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are meterc n X byset I u IT X

is trivial
use sets Very as a basis for topology on I Hatcher p 64

allpath a nU's with it cu Milk try Lanahan L topology on X
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Classification theorem for coveringspaces
ILet X be pathconnected reasonable Thenthereis a bijection betweenthesetof
basepent preservingisomorphismelasses ofpath con coverings pi X Fo X Xe and
theset of subgroups H CT X Xo obtainedas H p TICK Io
B if basements are ignored thiscoreshendence gives a bijection
pix 1 g conjugacy classes of

subgroups i Ti XXo



Groupactions
2

def Let C be a topologicalgroup
i A G action on a space X is a ant map G XX 4 X

g X I 5 g x
satisfying g h x gh x for g h E G x E X
If G is a d group continuity if p is equiv to continuityof

pig X X Vg c Gx l g x
ii The action is free if the EX gx X g Ipunit in C
iii Action is transitive if t x y cX FgEG s t g x y
iv For x c X the subset Ex Lgx Ige G c X as the orbit through a

GX orbits is theorbit space of the G action on X

Topology on the quotient topology determined by p X
K 1 7 Gx

Examplesof groupactions

1 TL acts on IR via Ca t net Orbit space 2 S
Et eat it

Thus theprog map TR k 7 S is our standcovering

t eat t of S

l Tiz acts on S via I 13 x S S Orbitspace
Itis Ctl x Ix RIP

in the examples P X 1 are the vi v coverings forthequotient S or RIP
G is it of the quotient

Lenny Let p X x bethe univ ove ng of apath a n LK SpaceX

theft X x acts feeds I so that bits are the fiber of p


