LAST TIME
Notes on the course webpage

- paths $\gamma \cdot[0,1] \rightarrow X \overbrace{\gamma_{1}}^{r} \int_{y}$
- honotory of paths $r_{0} \sim \gamma_{1}$

- fundamental group $\Pi_{1}\left(X, X_{0}\right)=\frac{\text { closed rats } X_{0} \rightarrow X_{0} \text { ("bared loops") }}{\text { homotopy }}$
 assoc. Ron monotony classes not assoc.
par paths concatenation of paths $\alpha * \beta \longrightarrow$ multiplication in π_{1} reversal of a path $\bar{\alpha} \rightarrow$ inverse in π_{1} constant path at $X_{0} \longrightarrow$ unit in π_{1}

$$
\pi_{1}\left(X, x_{0}\right)
$$

Lemma Let X a top space and β a path bon x_{n} to $X_{\text {. }}$
Then $\phi: \pi_{1}\left(X, x_{0}\right) \rightarrow \pi_{1}\left(X, x_{1}\right)$

$$
[r] \longmapsto[\bar{\beta} * \gamma * \rho]
$$

-is an isomorphism of groups.
I. particular. X is path concedes.

the iso class of $\pi_{1}\left(X, x_{0}\right)$ does at depend o. the choice of base point.
Proof:- P is well defined:

$$
\begin{aligned}
& \text { homomophisn ? - based at } x_{1} \\
& \phi\left(\left[r_{1}\right] \cdot\left[r_{2}\right]\right) \quad \stackrel{?}{=} \phi\left(\left[r_{1}\right]\right) \cdot \phi\left(\left[r_{2}\right]\right) \\
& \phi\left(\left[\gamma_{1} * \gamma_{2}\right]\right)=\left[\bar{\beta} * \gamma_{1} * \gamma_{\lambda} * \beta\right]=\left[\left(\frac{\beta}{\beta} * \gamma_{1} * \rho\right) *\left(\hat{\beta} * \gamma_{2} * \rho\right)\right] \\
& c_{\kappa_{0}} \sim \beta+\bar{\beta} \\
& =\left[\bar{p} * \gamma_{1} * \rho\right] \cdot\left[\bar{\rho} * \gamma_{2} * \uparrow\right]=\phi\left(\left[\gamma_{1}\right]\right) \cdot \Phi\left(\left[\gamma_{2}\right]\right)
\end{aligned}
$$

-iso? $\phi^{\prime}:\left[\gamma^{\prime}\right] \longmapsto\left[\beta * \gamma^{\prime} * \bar{\beta}\right]$

$$
\begin{aligned}
& \phi^{\prime} \cdot \phi:[\gamma] \rightarrow \phi^{\prime}[\bar{\beta} * \gamma+\rho]=[\underbrace{\rho * \bar{\rho} * \gamma *}_{\sim C_{x_{0}}} \underbrace{\rho * \bar{\rho}}_{C_{x_{0}}}]=[\gamma] \\
& \phi^{\prime} \cdot \phi=i d .
\end{aligned}
$$

A space X is "simply connected" if it is

- path connected and
- $\pi_{1}\left(x_{x_{0}}\right)=0$

Leman X is simply conucted of $\forall x, y \in X \quad \exists$! honotory chs of paths show x to y.
Proof: path coneatelncerl existence

$$
\text { Sep pose } \pi_{\sim 1} \pi_{1}(X)=0,2, \rho \text { from } x \text { to } y
$$

then $\alpha \sim(\alpha * \underbrace{\sim} \underbrace{\sim c_{x}}) * \beta \quad \sim \beta$.

reverse: take $x=y=x_{0}$

$$
\mathcal{D}_{\text {exp }_{0}} \Rightarrow \pi_{1}(x)=0
$$

Fundamental group of the circle
Theorem: $\pi_{1}\left(S^{\prime}\right)=\mathbb{Z}$
Explicitly: $\quad \phi: \mathbb{Z} \rightarrow \pi_{1}\left(S^{\prime},(1,0)\right)$ is an isomaritith $n \longmapsto\left[\omega_{n}(s)=(\cos 2 \pi n s, \sin 2 \pi n s)\right]$

Proof: $p: \mathbb{R} \rightarrow S^{\prime}$

$$
S \longmapsto(\cos 2 \pi s, \sin 2 \pi s)
$$

$$
\begin{aligned}
\omega_{n}= & p_{0} \widetilde{\omega}_{n} \\
& \xlongequal{n} \\
& \pm \nVdash \mathbb{R} \\
& s \mapsto n s
\end{aligned}
$$

$$
\phi(n)=\left[\omega_{n}\right]=\left[p \cdot \widetilde{\omega}_{n}\right]=[p \cdot \tilde{\alpha}]
$$

- ϕ is a homonoiplism. from o to 1 i \mathbb{R}

$$
\begin{aligned}
& \phi(m+1)=[p(\underbrace{\tilde{\omega}_{m} * \tau_{m}\left(\widetilde{\omega}_{n}\right)}_{0 \rightarrow T})]=[{\left[\omega_{m} * \omega_{1}\right] } \\
&=\phi(m) \cdot \phi(n) v \\
& \tau_{m}: s \longmapsto s+m \text { trans }(a t i o n
\end{aligned}
$$

- ϕ is surjective

Lemma (a)
For each path $\alpha: I \rightarrow S^{\prime}$ stating at x_{0} and each $\tilde{x}_{0} \in P^{-1}\left(x_{0}\right)$, there exists a unique $\begin{aligned} \frac{\text { lift }}{\tau} & \tilde{\alpha}: I\end{aligned} \rightarrow \mathbb{R} \quad \begin{array}{r}\text { starting at } \\ \tilde{\alpha}, \rightarrow \\ \mathbb{R}\end{array} \quad \tilde{x}_{0}$.
$\alpha: I \rightarrow S^{\prime} \operatorname{loop}$ representing the give class $[\alpha] \in \pi,\left(S^{\prime}\right)$ based at $(1,0)$
$\Rightarrow \exists!\mathcal{\alpha}$ - path in \mathbb{R} starting at 0

$$
\begin{array}{r}
\alpha(1)=n \in \mathbb{Z} \\
\text { rice } p \mathcal{\alpha}(1)=\alpha(1)=(1,0) \\
\Rightarrow \phi(n)=[p: \mathcal{Z}]=[\alpha]
\end{array}
$$

- ϕ is injective
suppose that $\phi(m)=\phi(1) \quad \omega_{m} \sim \omega_{n}$ Let α_{t} be the honotopy $\quad \alpha_{0}=\omega_{m} \quad \alpha_{1}=\omega_{1}$

Lemma (b)
For each homotory $\alpha_{t}: I \rightarrow S^{1}$ of paths starting at x_{0} and each $\tilde{x_{0}} \in p^{-1}\left(x_{0}\right)$, there exists a unique $\frac{\text { lifted homotopy }}{T} \tilde{\alpha}_{t}: I \rightarrow \mathbb{R}$ of oaths starting at \tilde{x}_{0}.

$$
\therefore \text { i. } p \circ \tilde{\alpha}_{t}=\alpha_{t}
$$

\Rightarrow lifted homotony $\tilde{\alpha}_{+}$- a honotagy of paths $\therefore \mathbb{R}$

$$
\begin{aligned}
& \tilde{\alpha}_{0}=\widetilde{\omega}_{m} \\
& \tilde{\alpha}_{1}=\widetilde{\omega}_{n} \in \operatorname{by} \text { uniqueness } \operatorname{Lm}(b)
\end{aligned}
$$

$$
\underset{l_{1}}{\tilde{\alpha}_{0}(1)=\tilde{\alpha}_{1}(1)} \begin{gathered}
n \\
n
\end{gathered}
$$

$\tilde{\alpha}_{t}(1)$ is independent of t (since it is a Lonotery of paths)

Application: fund. thesem of - Igebra
every mon-costant polynomial with coff in (1) has a root in \mathbb{C}. $n \neq 0$
Proof: We may assume that $p(z)=z^{n}+a_{1} z^{n-1}+\ldots+a_{n}$ assume that p has 20 roots iv C.

$$
\begin{aligned}
& \forall r \geqslant 0 \quad \alpha_{r}(s)=\frac{p\left(r e^{2 \pi i s}\right) / p(r)}{\operatorname{lp}\left(r e^{2 \pi i s}\right) / p(r)} \quad-a \\
& 0 \leq s \leq 1
\end{aligned} \quad S_{\text {unit aide }}^{\prime} \in \mathbb{C}
$$

as r varies α_{r} is a lonotery of loop

$$
\alpha_{0}=c_{1} \quad \Rightarrow\left[\alpha_{r=0}\right]=0 \in \pi_{1}\left(S^{\prime}\right)
$$

cst loon at $1 \quad\left[\begin{array}{c}11 \\ {\left[\alpha_{r}\right]}\end{array}\right.$
take $r=R \quad R>\max \left(1, \sum_{i}\left|a_{i}\right|\right)$
for $|z|=R \quad|z|^{n}>\left|a_{1} z_{1}^{n-1}+\ldots+a_{n}\right|$

$$
\begin{array}{cc}
p_{t}(z)=z^{n}+t\left(a_{1} z_{1}^{n-1}+\ldots+a_{n}\right) & \text { has ho roots } \\
0 \leq t \leq 1 & \text { on the circle } \\
& |z|=R
\end{array}
$$

$$
\beta_{t}(s)=\frac{p_{t}\left(r e^{2 \pi i s}\right) / p_{t}(r)}{\left.\mid p_{t}\left(r e^{2 \pi i s}\right) / p_{t}(r)\right)}
$$

$$
t \rightarrow 0 \quad \int_{t_{0}}=\omega_{n} \quad\left[\omega_{n}\right]=1 \cdot \frac{1}{1} \neq 0 \in \pi_{1}\left(s^{\prime}\right)
$$

$r=0 \sim r=R \quad t=1 \longrightarrow t=0 \quad$ generator of \mathbb{Z}

$$
\begin{aligned}
& {\left[\alpha_{r=0}\right]=\left[\alpha_{r=R}\right]=\left[\beta_{t=0}\right]} \\
& 11 \\
& 0 \in \Pi_{1} \quad\left[\omega_{n}\right] \neq 0
\end{aligned}
$$

