LAST TIME : $\pi_{1}\left(S^{\prime}\right)=\mathbb{Z}$

$$
s \longmapsto(\cos 2 \pi s, r n 2 \pi s)
$$

Lemma (a)
For each path $\alpha: I \rightarrow S^{\prime}$ stating at x_{0} and each $\tilde{x}_{0} \in P^{-1}\left(x_{0}\right)$, there exists a unique $\frac{\text { lift }}{\tau} \tilde{\alpha}: I \longrightarrow \mathbb{R}$ starting at \tilde{x}_{0}.

$$
\text { i.e. } p \cdot \tilde{\alpha}=\alpha
$$

$$
\begin{gathered}
\tilde{\alpha}, \rightarrow \\
I \xrightarrow[\alpha]{\mathbb{R}} \underset{\sim}{\perp} S^{\prime} P
\end{gathered}
$$

Lemma (b)
For each homotory $\alpha_{t}: I \rightarrow S^{1}$ of paths starting at x_{0} and each $\tilde{x}_{0} \in p^{-1}\left(x_{0}\right)$, there exists a unique $\frac{\text { lifted homotopy }}{T} \tilde{\alpha}_{t}: I \longrightarrow \mathbb{R}$ of paths starting at \tilde{x}_{0}.

$$
\text { ie. } p \cdot \tilde{\alpha}_{t}=\alpha_{t}
$$

Lemma (c) 〈homotopy |i.fting propecty〉
 there exists a unique lifting $Y \times \frac{I^{\prime}}{\mathbb{M}} \xrightarrow[S^{\prime}]{\downarrow}$ restricting to given \widetilde{F}_{0} on $Y \times\{0\}$.

$$
y=p t \Rightarrow \text { (a) } \quad y=I \Rightarrow b
$$

can choose a cover of $S^{\prime}\left\{U_{\alpha}\right\}$ s.! $\forall \alpha$

$$
P^{-1} U_{\alpha}=\frac{11}{r} \underbrace{\tilde{U}_{\alpha, r}}_{\underline{\simeq} U_{\alpha}} \quad U_{\alpha} \text { are "evenly covered" }
$$

construct \widetilde{F} locally in Y. Fix a pt $y_{0} \in Y$

$$
\begin{aligned}
& \text { Ut }\left(t, y_{0}\right) \text { has a able } N_{t} \times\left(a_{t}, b_{t}\right) \\
& \text { st. }=\left(N_{t} \times\left(a t, b_{t}\right)\right) \stackrel{y_{0}}{\subset} U_{\alpha} \\
& \text { forsome } \alpha \\
& \{y,\} \times I \text { cpt } \Rightarrow \text { fun. tray }\left(a t, L_{t}\right) \text { aver I }
\end{aligned}
$$

\Rightarrow can choose $N \subset Y$ and a partition

We kwa that $F\left(N \times\left[t_{i j} t_{i+1}\right]\right) \subset U_{i}$
$\Rightarrow \underset{p \nmid \tilde{U}_{i, r}}{ } \subset \mathbb{R} \quad$ containing the point $\widetilde{F}\left(y_{0}, t_{i}\right)$

$$
P \bigcup_{U_{i}}^{2 Q^{2}} \quad \Rightarrow \quad \widetilde{F}\left(N \times\left\{t_{i}\right\}\right)<\tilde{U}_{i}, r
$$

might need to replace
\Rightarrow define $\left.\tilde{F}\right|_{N \times\left[t_{i}, t_{i+1}\right]}=\left.\underbrace{P^{-1}}_{\uparrow} \cdot F\right|_{N \times\left[t_{i}, t_{i+1}\right]}$

$$
\tilde{u}_{i, r} \leftarrow u_{i}
$$

after fin. many repetitions we get $\widetilde{F} l_{N \times I}$.
Uniqueriers
$Y=p t \quad$ Let $\tilde{F}, \tilde{F}^{\prime} \quad$ of $\quad F: I \rightarrow S^{\prime} \quad \tilde{F}(0)=\tilde{F}^{\prime}(0)$ as before $0=t_{0}<t_{1}<\ldots<t_{m}=1 \quad$ an. $F\left(\left[t_{i}, t_{i+1}\right]\right) \subset U_{i}$
Induction: assume $\tilde{F}=\bar{F}^{\prime}$ on $\left[0, t_{i}\right]$
$\left[t_{i}, t_{i+1}\right]$ connected $\Rightarrow \tilde{F}\left(\left[t_{1}, t_{i+1}\right]\right)$ also connected \Rightarrow

$$
\begin{aligned}
& \Rightarrow \tilde{F}\left(\left[f_{i}, t_{i+1}\right]\right) \subset \tilde{U}_{i, r} \\
& \text { similarly } \tilde{F}^{\prime}\left(\left[_{i}, t_{i}+J\right) \subset \tilde{U}_{i, r^{\prime}}\right. \\
& r=r^{\prime} \text { because } \tilde{F}\left(t_{i}\right)=\widetilde{F}^{\prime}\left(t_{i}\right) \quad \Rightarrow \quad r=r^{\prime}
\end{aligned}
$$

- proves miquaces.
< coincide on overlaps by cenzuness \Rightarrow lift exists on Y and is unique.

Induced map on π.
$f: X \longrightarrow y \quad \gamma, \delta$ path in X then if $\gamma(0)=\delta(0), \gamma(1)=\delta(1)$ and $\delta \sim \delta$ then $f \circ r \sim f \circ \delta$

$$
\underset{r(1)=\delta(0)}{r} \sim[f \circ(\gamma * \delta)=(f \circ \gamma) *(f \circ \delta)]
$$

def Let $f: x \rightarrow x_{0} \longmapsto y_{0}$
the mar (pushboward)

$$
\begin{aligned}
f_{*}: \pi_{1}\left(X, x_{0}\right) & \longrightarrow \pi_{1}\left(y, y_{0}\right) \quad \text { is called of pudamental } \\
{[\alpha] } & \longrightarrow[f 0 \alpha] \quad \text { groaps induced by } f .
\end{aligned}
$$

- $f_{*}{ }^{\prime} \pi,\left(X, x_{0}\right) \longrightarrow \pi_{1}\left(Y, y_{0}\right)$ docin't have to be surjective or ingective
- if f is a boneo then f_{*} is an isomopisism

$$
\left(f_{\star}\right)^{-1}=\left(f^{-1}\right)_{\lambda}
$$

Honotory ivarience of π_{1}
$X \overbrace{g}^{f} Y$ f,g are lontopic $f \sim g$ if J a cort map

$$
\begin{array}{ll}
H: \quad X \times I \rightarrow Y \text { r.t. } & H(x, 0)=f(x) \\
& \\
& H(x, 1)=g(x)
\end{array}
$$

$$
f_{1}: X \rightarrow Y
$$

maps interpolatang letwee, fad $\}$

- spaces X,Y ere Londoric if

$$
\begin{aligned}
& X \underset{\sim}{\underset{\sim}{r}} \underset{\sim}{\varphi} Y \quad \text { st. } \psi \circ \varphi \sim i d x, \varphi \circ \psi \sim i d_{Y} \\
& \underbrace{\lambda} \\
& \text { if }(X, x_{0} \overbrace{\sum_{4}^{\varphi}}^{\varphi}\left(Y, y_{0}\right) \\
& \text { - honotopies preserve } \\
& x_{0}, y_{0}
\end{aligned}
$$

$$
\frac{\varepsilon_{x}: \pi_{1}(\mathbb{C} \backslash\{0\}) \simeq \pi_{1}\left(Y, y_{0}\right) .}{\pi_{1}(X \times Y)=\pi_{1}\left(S^{\prime}\right)(X) \times \pi_{1}(Y)}=\mathbb{\mathbb { Z }} .
$$

